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Why and how do systems react in thermally fluctuating environments?

Shinnosuke Kawaiand Tamiki Komatsuzaki
IMolecule& Life Nonlinear Sciences Laboratory, Research Institute for Electronic Science,
Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo 001-0020, Japan

Complicated trajectories of chemical reaction in multi-dimensional molecular systems with thermally fluctuating environments are
disentangled into simple forms.
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Many chemical reactions, including those of biological importance, take place in thermally fluctuating en-
vironments. Compared to isolated systems, there arise marketHyedit features due to théfects of energy
dissipation through friction and stochastic driving by random forces reflecting the fluctuation of the environ-
ment. Investigation of how robustly the system reacts under the influence of thermal fluctuation, and elucidating
the role of thermal fluctuation in the reaction are significant subjects in the study of chemical reactions. In
this article, we start with overviewing the generalized Langevin equation (GLE), which has long been used
and continues to be a powerful tool to describe a system surrounded by a thermal environment. It has been
also generalized further to treat a nonstationary environment, in which the conventional fluctuation-dissipation
theorem no longer holds. Then, within the framework of the Langevin equation we present a method recently
developed to extract a new reaction coordinate that is decoupled from all the other coordinates in the region of
a rank-one saddle linking the reactant and the product. The reaction coordinate is buried in nonlinear couplings
among the original coordinates and the influence of stochastic random force. It was ensured that the sign of this
new reaction coordinate=a nonlinear functional of the original coordinates, velocities, friction, and random
force) at any instant is $ficient to determine in which region, the reactant or the product, the system finally
arrives. We also discuss how one can extend the method to extract such a coordinate from the GLE framework
in stationary and nonstationary environments, where mentéegts exist in dynamics of the reaction.

I. INTRODUCTION the two valleys, there is often a rank-one saddle point, where
the potential is maximum along the direction connecting the
. . reactants and the products regions but is minimum along all
Under;tandmg .Of reactions, or more gene'rally the Ch"?mg?ne other directions. (Note, however, that some reactions, es-
Of. states in a mu_ltl-b_o_dy system, Is of_plvotal importance 'n.apecially highly exothermic reactions, do not possess a saddle
wide range of scientific studies including not just reactions 'npointll.) The vicinity of the saddle point is sometimes called
chemistry:=® but also ionization of a hydrogen atom in exter- “the region of the saddle” or “the saddle region.” When there
nal fields® isomerization of clustersthe escape of asteroifls, is a rank-one saddle point and the energy is nc;t very high, all
the _dffu5|on (.)f impurities mo crystalh_ne materiatsand the reactive trajectories necessarily pass from the reactant (prod-
foldmg/unfoldmg of proteins?® A reaction can b.e regardeq as uct) to the product (reactant) regions through the region of the
a motion of atoms, or more generally of a motion of a point iNgaddle. Therefore. the dynamics in the saddle region is very
an appropriate phase space, starting in a certain (phase spagg).ia| for unveiliné] the cause of reactions, namely, what de-
region corresponding to the ‘reactants’, and going into anothe[rermines the fate of reactions. ' '
region called the ‘products’. A main goal in the study of reac-
tion dynamics is to predict, given the present state (the values The dynamics in the saddle region has been extensively
of position coordinates and momenta) of the system, whethestudied®”12-51A brief (and probably not sficient) summary
the system will evolve into the products region or the reactantsnay be given by pointing out the importance of two geo-
region. In many cases, each of the two regions corresponds toetrical concepts in the phase space. One is called “Tran-
avalley of the potential energy surface of the system. Betweesition State (TS)”, defined originally by Wigner as a hyper-
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surface in thephasespace between the reactants and the proddeterministic area-preserving Poincaré Mape not feasible
ucts regions, such that once the system crosses that surfacddt systems with dissipation and stochastic, external driving
will fall into the products region without recrossing that sur- force that fluctuates thermally. To define an appropriate “TS”
face. The TS has long been postulated to &istbut it was  in a fluctuating media, some people have developed the so-
just recently that the TS was proved to exist robustly with acalled variational TS theory (VTS¥1° which optimizes a
firm mathematical grourtd-2°-3°following several develop- configurational “dividing” surface by minimizing the num-
ments in experimem&4! and theorie$?->! Another impor-  ber of recrossings. The VTST has been applied with explicit
tant object is an invariant manifold, of which there are sev-harmonic bath modeS:"3The VTST has provided excellent
eral kinds3"~2% An invariant manifold is a set of points in the physical insights about the location of the dividing surface
phase space such that any point in that set will perpetually reas well as improved expressions for rate constants. In prac-
main in that set during the time evolution. As a consequencsdijce, VTST needs a certain small number of selected variables
if an invariant manifold divides the whole phase space intado parametrise the dividing surface [usually position coordi-
two disjoint regions, the system can never cross the invariamate(s) of the system (e.g., solute)]. However, as indicated by
manifold from one region to the other. An important invariant Van der Zwan and Hyné$and later by Polla® using a har-
manifold in the context of reaction dynamics is the one thatmonic bath Hamiltonian system, the reaction coordinate must
separates the trajectories going into the product region frorbe,in principle, a function of all the position coordinates and
those going into the reactant region. Once we know whictvelocities of the reacting system and all thEeets exerted by
side of the manifold a given initial condition is, we can tell the surroundings. It is far from trivial to identify which de-
without any further time propagation whether the reaction ocgrees of freedom are actually required to be involved.

curs or not. In what follows, this manifold between the re- Recent developments in reaction dynamics the-
active and the non-reactive trajectories will be_ called a “reacyries under the existence of thermally  fluctuating
tivity boundary”, distinguishing it from a “reaction boundary” enyironment5264-6876-7° have made great progress in

which may signify the TS, the no-recrossing surface betweefnderstanding the origins of reactions, that is, what type of
the reactants and the products. Recently it was shown that thgitia| conditions can bring the system to the reactant or the
invariant manifold dividing the trajectories into reactive and product. It was showif4-58that, by introducing a coordinate
nonr.eactiye ones can be egtracted analytically even when thgsit for a given realization (i.e., time sequence) of the
nonlinearity of the system is so large that the concept of Norangom force, the phase space structure dividing reactive and
return TS is not applicabf&:* nonreactive trajectories can be extracted exactly in the case
Many important reactions in biology and industry occur in of a quadratic barrier without any nonlinear couplings among
condensed phase. A characteristic feature of condensed phake modes. The theory has recently been generalized to a
reactions is that they involve a huge number of atoms, includmuch wider class of systems in which multiple modes of the
ing the atoms in the solvent molecules. Although numericabystem generally interact with each other nonline2ahkf~"°
simulation on the all-atom basis is becoming possible througlEven with the existence of both the random force and non-
the development of computational technology, it is desirabldinear couplings among the modes, under the assumption of
to find a low-dimensional description for the purpose of un-moderate magnitude of nonlinearity, a single coordinate still
derstanding. A representation called the generalized Langevitan be extracted which is decoupled from the others and its
equation (GLE) has thus been develop&d®in which the to-  sign solely determines the destination region of the trajectory
tal system is decomposed intsgstenwith a small number i.e., either the region of the reactant or the product. This new
of selected variables andtmth (or environmentthat repre-  reaction coordinate is generally a nonlinear functional of all
sents the collection of all the other degrees of freedom. Therthe position coordinates and velocities of the system plus the
the system is described by an equation of motion (GLE) irtime-dependent external force.
which the dynamicalféects of the environment appear as fric-  \wnen we know, or can reasonably assume, the statis-
tion and random force. The friction in the GLE represents &jcq| properties of the random force, we can calculate,
memory éfect in the dynamics in the sense that it depends ofy; example, reaction rat&s®®6678 from the statistics of
the values of the system variables in frstrather than just  the above-mentioned reaction coordinate, and the stochastic
only their present values. The physical interpretation of thissenarari377:8%84which can be considered as the boundary
memory éfect is that the present position of the environment,petween a phase space region with high reaction probability
on which the force felt by the system depends, reflects an aging that with low probability. Thus an equilibrium distribu-
tion from the system in the past. The GLE has provided Ugjon of the bath is usually assumed when the GLE is §8ed.
with several insights in understanding reactions in condenseg, example of such a statistical property of the random force
phase>"68 is the fluctuation-dissipation theorem, where the autocorrela-
When the dynamics in the condensed phase is described lipn function of the random force is related to the friction ker-
the GLE, a striking dierence from gas phase arises from thenel. The statistical property of the random force is derived by
fact that the system is always subject to external stochastiassuming a thermal equilibrium (or more generally, a station-
forces exerted by the environment. Even for a fixed initialary distribution) of the bath degrees of freedom. More pre-
condition of all the variables in the system, the final destina-cisely, the distribution is assumed to be a so-called constrained
tion is not necessarily unique. Thus, concepts like the rescequilibrium?® where the initial condition of the system can
nance overlaf? based on the Hamiltonian formalism, or the be specified arbitrarily but the distribution of the other modes
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(bath) is in equilibrium. However, one can often encountervariable, which is the average of the acceleratigrof the
many nonequilibrium molecular phenomena occurring with asystem for a fixed value af over the probability distribution
non-stationary initial distribution of the bath. For example, inof the bath. When the mean force is obtained as a gradient of
photo-excited reactions the initial distribution is determineda certain functiorJ(q),

by the response of the system to the light and thus can be

different from the stationary one even along the coordinates f,(q) = _3U(Q), @)
other than the naive “reaction coordinate.” Sometimes one aq;

also excites the bath mode vibrations to obtaifiedent re- the latter function i lled th tential of ¢ Th

action product§?-8*How we can acquire a low-dimensional _et_a etr unlglotn |?.cat’e : t’e p(;) en '?j 0 mte;]anh_ot[ce. ¢ €

description for such non-stationary systems has been an ifiction termK; (t - t'; q(t'), g(t')) depends on the history of
the system. A possible physical interpretation of this term is

triguing contemporary problem yet to be resolved. L ) A
For the last decade there have been several attempts at %%"—"t the bath is kicked by the system at timand this kick

tablishing the non-stationary representation termed the irre1-_heCtS the_ bath ﬁonflguratlofn almd ":CS dyn]:';\mlcshaftgr t:]mﬁ
versible generalized Langevin equation (iGL)°* In par- en, at timet, the system feels a force from the bath that

ticular, the idea of generalized friction kerffel* dependent depends on the bath configuration at titmehe latter, in turn,

on time values in both the past and the present was propose. epending on the kick in the past (at tirtig by the system.
As the (non-stationary) bath relaxes to the equilibrium stat% the bath is in a statlonary_ dlstrl_butlon, this response of the
as time proceeds, the friction kernel is shown to converge t ath only de’penlgs_rc;]n the twgeff@r%nce,fhence we have the
the usual equilibrium one, which depends only on the timeargument—t in K. The time-dependent foreg(t) represents

difference. The generalization of the 1‘Iuctuati0n—dissipatiorfj‘nOther force from the bath that is purely determined by the

theorem was also proposed: the autocorrelation of the randof] |t|a(¢jl confd|t|0r: cg the bath. Th||s thk')rd termr:s the so-callzdd
force averaged over a given distribution of the initial condi- 'andom force’, because we only observe the system and do

tion of the bath degrees of freedom corresponds to the gene?—Ot "“OV.V the initial condition of the bat.h. :
The friction term may be expanded in a polynomial form

alized time-dependent friction ker&t® or an exponential-
damping correction ter#8” depending on how the iGLE is n
formulated. The i_GLE can be applied not only to phenomena K; (t —t’; q(t’), §(t')) = Zyjm(t -t) l_[ i (t)™ &g (/) ™+
subject to an outside force that changes the solvent resgbnse, m i=1

but also to systems whose non-stationarity is induced by the ?3)
dynamics of the system itsélf. The growth of polymer was ) ) ) )

taken as an example where the property of the environmerd¥im(t — t') is an expansion cdicient depending on the
changes with the increase of the polymer length. It can als§me differencet — t’ for each combination of powens =

be applied to temperature-ramped chemical reacomsere (M. M. ... M)], or in general by using a complete set of
the environment temperature changes with time due to heaRasis functionsg,}:

ing, for example, by a laser pulse. A further extension of ) .

IGLE® was provided to describe an ensemble of systems each Kj (=t d(t), d(t)) = > yjelt = V) (at), 4t)) . (4)

of which is subject to a dlierent random force and which are ¢

allowed to interact with each other. Approximation ofK; by truncating the summation and taking

In this article, we first review the GLE and its non- 4n)y the terms proportional to the velocity in these expansions
stationary extension in Sec. Il. Then in Sec.lll we d'SCUSSyieIds

the dynamics in the saddle region in the framework of the

Langevin equation, the memoryless limit of the GLE. The nor- K. (t =t at). at’)) ~ (= )G () 5
mal form theory for disentangling théfects of couplings will (= ra). 4 Z%J( a(®). ®)
be introduced. In Sec. IV, we discuss the extension of the nor- _

mal form theory into the GLE framework. The crux there is giving the approximated GLE

the introduction of variables that give affective description & ‘
of environmental motions. Finally, concluding remarks will —q = fi _f (=G ) + £, (6
e aven i Secy, gt = i@ - | Zy.,( )ait)dt + (). (6)

This is probably the most commonly used form of the GLE. In
Il. GENERALIZED LANGEVIN EQUATION this form of GLE, the cofficienty;;(t—t), which is a function
of the time diferencet — t’, is called the friction kernel. The

The nonlinear generalized Langevin Equation is givenfriction kernel and the random forcg(t) are related by the
by55:56 fluctuation-dissipation theorem:

t i(H)E(t)) = ke Tyt —t), 7
=10~ [ K-t aod 60, @ (6060) = kTt 1) "

0 where the bracket denotes the ensemble average over a sta-
whereq = (01, 02, - . ., On) IS a set of variables to describe the tionary distribution,kg is the Boltzmann constant, afidis
system, andfj(q) is called the mean force acting on tigh  the temperature.

d2
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By using the technique of projection operatbit has been  where (§%), is the ensemble average of squared veloc-
proved>%6that any Hamiltonian system can be projected ontdty at time t' over an initial distribution. The form of
its subsystem obeying the GLE in the form of Eq. (1), withoutEq. (11) is called the irreversible generalized Langevin equa-
any assumptions or approximations under a stationary distriion (iIGLE) 889497
bution of the bath degrees of freedom. On the other hand, the While Egs. (11) and (12) are prov¥&do hold generally,
form of Eq. (6) with the linear friction is shownto be exact, Refs. 88-94 proposed a modeling such that the non-stationary
when the bath is a collection of harmonic oscillators and theandom force is given by@me-dependergcaling of the equi-

coupling to the system is bilinear. Cortésal® went fur-  librium random force:

ther to show that, when the couplings are linear in the system

coordinate ¢) but nonlinear in the bath coordinates, the sys- () = g(E™(), (13)

tem still obeys Eq. (6) up to the first order in the system-bath i o

coupling strength. where the superscript ‘eq’ denotes the equilibrium state, and

When the time scale of the bath is much faster than that o8(t) IS the scaling factor. Combining Egs. (12) and (13), and
the system, the friction kernel, which expresses the respond&@nsidering the case of quasi-equilibritibetween the sys-

) i 2y i
of the environment to the motion of the system, may be ap{€M and the bath(q®)r ~ kgThat, WhereTparn is the bath
proximated by temperature, one sees that the friction kernel is also given by

scaling:

jt—t) =226t - ), 8
yit—t) = 2y36(t - t) ® L) = gyt - )g(t). (14)

Ref. 94 introduced a more generalized model for the fric-
tion kernel allowing for multiple heat baths and time dilatation

o? . in the arguments of the equilibrium friction kernels:
—a; = fi(@) = D 756 + (), )
i

wherey;:'s on the right hand side are constants, a(td- t’)
is Dirac’s delta function. In this limit one obtains

dt

Y — Tk(t) . ,edk) _ ’
Y60 = ) 5 (3OO O @O - ndt). - (19)

which is called the Langevin equation, with the fluctuation-

dissipation theorem wherek labels each heat bath afid is the time-dependent

e (1Y 0 1 “temperature” of thekth bath. The functiom(t) is a mono-
<§'(t)€'(t )> = 2Ty ot~ t), (10) tonically increasing function ot whose rate of increase
which means that the random forég) is a white noise. is time-dependent, reflecting the frequency modulation with

While there is a general proof for the validity of the GLE time for each bath. Whereas the iGLE [Eq. (11)] and the
[Eq. (1)], its usefulness hinges on our ability to predict, athon-stationary fluctuat|op—d|SS|pat|on theorem [Eq. (12)] hold
least statistically, the realization of the random force. ThelOF @ny general non-stationary systérEgs. (13)(15) were
fluctuation-dissipation theorem in the form of Eq. (7) con-found togggld only for a special class of the total Hamiltonian
cerns only with the ensemble average of the product of theystent? L
random force over an equilibrium (or more in general, station- When we change the description of the system from the
ary) distribution. When the bath cannot be assumed to be in Z&j€ctory level to the distributiop(q, g) level in the position-
stationary state, then we cannot even know the statistical profy€/ocity spac%%she Langevin equation (9) leads to the Fokker-
erty of the random force. To overcome thighdiulty, one can P lanck equati
resort to another formulation of the GLE for non-stationary P 5 P
battP*88-94.97(here we write the one-dimensional case forthe % _ _ N 2 _ _[ (a) — 0 ¢y

= A —p — | fi(a) Yiibi |p
sake of simplicity): ot ZJ: ' oq Z,: ag; Z n
2

o . t . 019
a=1@a0- fo YL +£0).  (12) +izj]7'lkBTaqiaqu' (16)

The key diference is the explicit dependence of the mearkramers? started with the Fokker-Planck equation of a one-
force on timet and the dependence of the friction kerp@lt’)  dimensional parabolic potential, and derived analytical ex-
on both the “initial” ¢’) and the “final” ¢) times. In stationary  pressions for barrier-crossing rates. In the low-friction regime,
state, the response of the bath to the motion of the system ifte rate-limiting step is the excitation in the well region, and
the past depends only on the timéfeiiencet — t'. Since the  the rate is proportional to the friction constant because the
property of the bath is changing in time for the non-stationaryexcitation is given by the random force, whose amplitude is
case, the response of the bath depends on both times, and ifaated to the friction kernel through Eq. (10). On the other
mean force that the system feels also changes with time. Inthgand, in the moderate- to high-friction regimes, the rate is
non-stationary case, the fluctuation-dissipation theorem holdgetermined by the steady-state flow through the barrier re-
in the following forn?”: gion. There the rate is given by an eigenvalue of the linear
, " , dynamics at the saddle point, which becomes inversely pro-
ML) = @yt 1), (12) portional to the friction constant for high friction. Mel'nikov
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and Meshko¥® pursued this analysis of the rate constant un-dict whether the system undergoes the reaction or not?” or,
der the assumption of high barrier height, and obtained a forin other words, “What determines the fate of reactions in a
mula that connects those two regions. Their method is basetiermally fluctuating environment?” When the system is pa-
on the use of an energy-action representation for writing theameterised by position coordinatgsthe reactant, which is
Fokker-Planck equation, which leads to the calculation of theéhe state before the reaction, and the product, which is the state
steady-state flow with the activation rate in the well regionafter the reaction, correspond to certain stable regions in the
correctly taken into account. The assumption of high bar-g-space, characterized by wells of the potential of mean force.
rier height compared with the temperature enabled a simpler many cases, there is a saddle point on the potential between
analytical expression for the Green function of the Fokkerthese two regions. The dynamics in the neighborhood of the
Planck equation. Lang® gave the multi-dimensional ver- saddle point plays a central (although not unequivocal) role in
sion of the rate formula in the moderate- to high-friction determining whether the system is going into the product re-
regimes, again with the parabolic approximation for the po-gion or back to the reactant region. We therefore concentrate
tential energy. The analysis proceeds similarly by obtainingour discussion in this section on the crossing dynamics in the
the steady-state solution of the Fokker-Planck equation, andeighborhood of the saddle point.

the rate is given by an eigenvalue of the linear dynamics in In Sec. lll A, we start our discussion with afiaiently sim-

the multi-dimensional space. The assumption of high enougple case, the Langevin equation with a linear mean force and
barrier made in the works cited above, in addition to facili- no random force. Thefiect of the random force is then incor-
tating the calculation, may ensure the existence of the ratgorated in Sec. Ill B. The problem of the nonlinearity in the
that is, single-exponential relaxation of the population, be-mean force, especially the couplings among the system co-
cause then the distribution would quickly thermalize in theordinates, will be taken into account in Sec. Ill C. The struc-
well region before crossing the barrier. One way to checkure of the dynamics is discussed in Sec. Il D based on the
whether the relaxation is actually single exponential is to calformulation presented in Secs. Il A-lII C. The extension to a
culate eigenvalues of the Fokker-Planck equation. If the lowgeneralized Langevin equation will be discussed in Sec. IV.
est eigenvalue is real and much smaller than the others, the

relaxation is then approximated by a single exponential ki-

netics with the rate equal to that eigenvalue. Voigtlaender A. Linear Dynamics in Saddle Region

and RiskeH used a matrix continued fractions method to

calculate the eigenvalues of the Fokker-Planck equation for a |et us start the discussion with a very simple case; a one-
one-dimensional double-well potential expressed by a quaimensional Langevin equation where the mean force is linear

tic polynomial. It is shown that the lowest nonzero eigen-in g and we tentatively neglect théfect of the random force:
value coincides with the Kramers formula in both the low-

and high-friction regions, and smoothly connects them. The 8 = wp2q — 0. a7
eigenfunction corresponding to the lowest eigenvalue spirals

in the phase space in the opposite direction to the stochasﬁ’tﬂfhere we changed the notation of the friction Giméent from
separatrix. Another way to check the exponential nature of° [see Eq. (9)] toy. This mean force can be obtained as a
the population relaxation is to calculate the number correladerivative— GU(Q)/aq of an inverted parabolic potential with
tion function. Zhod°! adopted the latter method in a similar curvaturewp? > 0

quartic potential. For high barrier height compared with the 1

temperature, the relaxation is single-exponential, whereas for u(q) = —5W 202, (18)
low barrier height it was found to be non-exponential as ex-

pected. Between these two regions, there exists aregion wheregq, (17) can be cast into matrix form

the relaxation is single-exponential but the rate is significantly

different from the Mel'nikov-Meshkov formula. In the case d (q) M (q)

of the GLE, where we have the memorffext, we can also dgela) ~\a)’

move to the distribution-level description. The time evolution 0o 1

of the distribution is, however, much more complicated? dgf(wbz _y). (19)

The diffusion term involves integration over the physical vari-

able as well as over the pasttime, reflecting the membege ) ing Ref. 63, we can introduce the eigenvectors of this

matrix as
Ill.  SADDLE REGION DYNAMICS OF THE LANGEVIN MV = A:Vs, (20)
EQUATION
where
This section is aimed at the investigation of chemical reac- 1 -
tions in the framework of the GLE and the iGLE presented in As =577 + 4wp® +77),
Sec. Il. Specifically, we ask the following question: “Given
an initial condition {.e., the values of the position and the ve- V, =+ ( 1 ) (21)
locity of the reacting system at a certain time), can we pre- A+
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Multi-dimensional cases can be treated similarly. Let us
consider a multi-dimensional linear system

N
= Gi= ) a&d- ) %, (24)
U, J i
where the mean force is given by a linear combinatioq ef

(a1, .. .,an) with codficientsa; and the friction is linear irg
with codficientsy;j. This can be written in a matrix form:
Z [ > ald) = (8)
/\ /YNQ def(0 1
A A M:(A —r)’ (25)

v\ 7 \
\\ \ \\
/_\\ , A\ wherel is then x n unit matrix,I' = (y;;) andA = (&j). The
/\ \\ \ \ coordinateu = (ug, Up, ..., Uz,)" is obtained by diagonalizing
\ \\\\ the matrix
= N\ VIMV =diag(ly, - - - , Aon),

Reactant «— Saddle region — Product
(g) - Vu. (26)
FIG. 1: Phase space flow in tlged plane in the case of linear mean
force without random force. It is seen that the trajectories with posi-Here we can reasonably assume that there is one positive real
tive u; go eventually to the right side (the product), while those with eigenvaluel; > 0 corresponding to the motion sliding down
negativeu; go to the left side (the reactant). the barrier, and the others haRe(1j) <0 (j = 2,...,2n).

After the diagonalization, the equation of motion becomes

Thus, by introducing a new coordinate system u,) by dgtuj =Au;. 27)
(q) = UV, + UpV_, (22) Sinceu; is the only unstable mode, just the knowledge of the
q sign of u; is suficient to tell the destination region of trajec-
the equations of motion become tories. The surface defined by = 0 acts as an impenetrable
boundary between reactive and non-reactive trajectories. The
g Uy =AUy word ‘impenetrable’ here means that no trajectory can cross

dt the boundary fromu; > 0to u; < O or vice versa, and, once

the system isnthat boundary, it remains there perpetually.
—Uy =A_Up. (23) y Y perp Yy

Since 1, is a positive number, the absolute valueusfin- B. Effect of Random Force — Time-dependent Shift of Origin
creases exponentially with time. This mode corresponds to a

motion sliding down the barrier. On the other hand, the motion
of u; (ngte/l, <0 correqunds tp a motion of approaching force is still assumed to be linear @ The equation is given
the barrier top and converging to it. by

Figure 1 shows a picture of the phase space flow in the
(g, g)-plane as well as the skewed coordinafes u,) intro- G= aidqi— Y yid+ &), 28
duced above. Suppose that the region with large negaise 4 Z]: i zll i + & (28)
identified as the reactant region and that with large posifive _ o )
as the product. It is seen that the trajectories with- 0 go ~ With the fluctuation-dissipation relation
to the product region, while those with < 0 go to the reac- (D (0)) = 2kaTrv:: S(t 29
tant region. This figure has a good correspondence with the (€0€0) = 2kaTy;o(0). (29)
preceding studies on the Hamiltonian systeft8—36where  In matrix form,
the canonical conjugate pd, p;) was used as the “reaction d
coordinate.” As stated above, the signuafcan be used to — (q) =M (q) +( 0 ) (30)
discriminate the destination of the trajectory, that is, whether dt\q 9/ \&(®
itis going to the product or returning back to the reactant. ASyith the same matri¥ as Eg. (25). By introducing the eigen-
soon as we just know the sign of in the saddle region, we ,odes in the same way as Eq. (26), we obtain
can immediately tell, without further numerical propagation, q
whether the.trajectory is going to the product region or to the =0y =40 + 51‘ ®), (31)
reactant region. dt

Next we consider theffect of random force, but the mean



whereé(t) = V( §(()t))' cOmes |
To consider the dynamical origin of the reactions that are —Xj =X} + fj(x,1),
subject to the random force, a set of new relative coordinates, dt
which we callx; here, was introduced recenfiy*-58 fi(x,t) = Zmzo fimOXG - - X, (36)
uj =S[4;, &](t) + % (32) where the cofficients fjn(t) are obtained by substitut-

ing the transformationg +— x into the nonlinear part
where we use the notatidhas in Refs. 5,52,76—79,103,104: (Z|m\22@j,mQTl“-Qﬂh of Eg. (35). The expansion cfie

o N cients fju(t) are now time-dependent because the transfor-
SILE (D) = L)o expAn)éi(t+)dr (Retj < 0) mation contains the timg—dependent shift [Eq. (32)]. Due to
A P e expA;7)éi(t+ )dr (Ret; > 0) the presence of the nonlinear terms, the dynamics of the reac-
0 (33) tive degree of freedory depends on all the other coordinates
X2, X3, ..., Xon @S well as on alf through the time dependence
in fj(x,t) that originates from that of the random forgg).
To incorporate the fect of nonlinear terms in Eq. (36),
we employ non-Hamiltonian normal form (NF) thed§to
i = X (34)  introduce a nonlinear transformation froxto y so that the
equation of motion foy, contains no coupling with the other
In the shifted coordinate system) the equation of motion coordinates. The calculation proceeds in a similar way to Lie
for x; does not depend on the random force any more. Asanonical perturbation thedff1%7(a classical analog of Van
in Sec. lll A, we assume that one and only one eigenvalue Vleck perturbation theory). By the transformation
has positive real part. Therefore the system would move away
from the barrier region asincreases, with the direction deter- Xj =Y+ Wiy, 1), (37)
mined solely by the sign of;. Note that, in the definition of
Eqg. (33), it is necessary to know the time evolutior f) for
each instance in advance in order to calculate the shift. There- d
fore, Eq. (34) is formally correct, but in practice we need to pTd =4jyj + ¢i(y. 1), (38)
replace this hypothetical requirement by the statistical prop-

erties of the random force, which will be discussed in Secwhere the two unknown functions;(andw;) are to be deter-
HD. mined so that the resultant equations of motion for the new

coordinatey [Eq. (38)] are in as simple a form as possible,
and the transformation [Eq. (37)] has a good convergence at
the same time.

Expanding the two functions in power series

Then the equation of motion foris given by

the equation of motion ix [Eq. (36)] is cast into

C. Effects of Nonlinearity — Normal Form Theory

In realistic situations, the system is often subject to nonlin- ci(y.1) = Z Cim(®yL™ - - - o™,
earity in the force. As we will see later in this section, the non- m
linearity induces couplings among the shifted coordinajes wi(y,t) = Z:mwj‘m(t)ylm1 Yo TN, (39)

Then the motion ok; is subject to the other modes as well as
the random external force, which prevents us from predictingind performing some involved algebfaye arrive at an equa-

the destination of the reaction independently frggmxs,....  tion of the following form:
However, we will see that, by introducing a nonlinear trans- g
formation, we can still extract a single reaction coordinate that
' . ; - . A,m — A + — Wi m(t) =gjm(t) — Cjm(t), 40
enables us to predict the fate of the reaction without referring (< )=ty ) jm(®) =G3m(D) = Cjam(®) (40)

to the other coordinate¥.’6-"8 f
The nonlinear force can be expanded in a power series aswhere (4, m)dé3 2521 A and gim(t) are the cofficients

of the polynomial expansion otgj(y,t)déffj(y+w,t) -

A — 0 ) MM A
G —Z &jq; + ZZQJ-mql G"Oh 2 Gy, t)"W(;;y’t). As is shown in a previous papét;n the
. _ m process of determining;, m(t) andw; m(t) perturbationally or-
- Zyijqj + &), (35)  der by ordergjm(t) is known from the results of the lower
j

orders. There thus exist two unknown quantitigs(t) and
_ ) ) Wi m(t) with the knowng; m(t) at each order. One can then de-
with the expansion cdBcients ajm for each powerm = termine either of the two unknown quantities as one wishes.
(Mg, mp,....my).  The nonlinear part contains terms of 1o simplify the equation of motion for the new variablg
guadratic and higher order, that|im|d§fml+mz+~ My > 2, one can eliminate; (t) order by order by setting
Introducing the linear transformation (Sec. 11l A) and the

time-dependent shift (Sec. 11l B) the equation of motion be- Wi m(t) = S[d1 = (4, M), gum] (1), (41)



using theS-symbol as in Eqgs. (32) and (33). The varialgle  which can usually be expected to hold. Then we have
obeying a simplified equation of motion can then be regarded

as a new reactive mode coordinate, while all tieats of non- i _ { +00 (yi(to) > 0)
. . o ) im yi(t) =

linear couplings, friction and random forces are incorporated t+oo —oco (y1(to) < 0)
in the transformation from the original coordinatgt y.

In order to simplify the equation of motion for, making ~ The increase of:(t)l means that the system departs from the
cim(t) = 0 may be the best choice. However, if we try to vicinity of the saddle point, going either to the product side or
cancel as many; u(t)’'s as possible by Eq. (40), the transfor- t0 the reactant side. The o_Iirection of thi_s departing motion is
mation w;(y, t)] contains more and more terms, which pos-determined solely by the sign pf at any timeto.
sibly causes divergence in the series expansion of the trans- The mostimportant consequence of the partial normal form
formation. In order to make a well-behaved transformationjs that the motion along thg; mode is independent of the
therefore, we keep some terms in the equation of motion foPther modesyp, ..., yzn). Sincey, is the only relevant vari-

y and yet make the equation easily solvable to investigate thable to tell the destination of the reaction, we can describe the
dynamics. More precisely, we have two chof®®$:"%for the ~ process of chemical reaction with a single dynamical variable
final form of the equation of motion foy that result in difer- Y1, which we now call the “reaction coordinate”. As a conse-
ent convergence properties. In the next section we look intéluence of this independenceaf just the knowledge of the
these two choices and their dynamical structures. sign ofy, at any one moment in the saddle region ifisient

to tell the fate of the reaction.

(44)

D. Two types of normal form n
2. minimal normal form

1. partial normal form .
Another type of normal form has been recognized

ecently®>52 This is termed here as ‘minimal normal form,

. - . nd ensures the existence of an impenetrable boundary be-
only to know the motlon_along the unstable d'reCt_!Q'Wh'Ch tween the reactive and nonreactive trajectories, even when the
corresponds to the motion sliding down the barrier. Thu$ Weonlinear couplings and the random force are significantly so
can _make the equation 9f decoupled from the others, while large that obtaining the reaction coordinate independent of the
leaving other modes as they are: other coordinates is not possible. The equation of motion after
the transformation is given as

For the purpose of telling the fate of the reaction, we nee

1 =[1+c(®)] y1 + O™

Y2 =fa(y) y1 =[A1+ &y, )] y2 + O
y3 =f3(y) y2 =fa(y)
: y3 =f3(y)
Yon =Ton(Y). (42) :
Von =fan(y), (45)

We call this ‘partial normal form,’ in contrast to the ‘full nor-
mal form” where the equations of motion for all the modesyhereg, can now be a function of in addition to timet. In

are made independent and the motiorypflepends only on  gther words, we keep in the equationyafall the terms that
yjforall j =1,2,....2n. In the case of the neighborhood of are |inear or higher order of,. Only the terms that do not

the rank-one saddle point, where we have only one eigenvalugntainy; are removed by the transformation. The solution is
with positive real part, it was fourifithat the full normal form formally given by

is impossible to construct, in contrast to Hamiltonian systems

in which the full normal form can exist in a certain range of t PR

total energy above the sad@ié20-39:45:46 y1(t) = ya(to) exp f (4 +C(y(t),t))dt|.  (46)
From Eqg. (42), the solution for the motion wf is given by o

This solution is only formal in the sense that the right hand
+ 0N 43) side containg/(t’) which. would haye to be solved according
’ to the very same equation of motion [Eq. (45)]. However, the
important point is thay; = 0 forms an invariant set just as in
wherety is a certain time giving the initial condition for.  the case of partial normal form (i.edy;/dt = 0 if y; = 0).
Here, 1; comes from the linear approximation and the otherThis implies that once the system is in the manifolgo£ 0,
termc; (t) originates from theffect of nonlinearity, which be-  the system should remain to reside theretfer +c0. In other
gins with a first-order perturbation term. words, no trajectory canrossthe manifoldy; = O from the
Of particular importance is the behaviortas> +c0. The  regiony; > 0toy; < 0, or vice versa. Consequently, once we
exponent in Eqg. (43) goes to infinity &s» +oo if the long-  know the sign ofy;(tg) at any instanty in the saddle region, it
time average of the perturbative termscift) is less tham;,  fixes the sign of; fort — oo, telling us the final destination of

t
ya(t) = ya(to) exp[ [ ey




the reaction. The minimal normal form was shé&/*?to have In summary, we have introduced a new reaction coordinate
better convergence property because it contains less termsyg, that is,y‘l) or y', through a transformation that incorpo-
the transformation. rates all the fects of the random force and the nonlinear cou-

Figure 2 shows schematic pictures for the flow of trajecto-Plings. In both the partial and minimal normal forms, the sign
ries in the extended phase space. When there is no (or neghf Y1 solely determines the destination of the reaction. The
gible) random force or nonlinearity, the normal mode reactiordifference in the two normal forms is that, as seen in Fig. 2,
coordinateu; introduced as in Fig. 1 [see Sec. Il A] obeys the partial normal form is designed to have the reaction co-
the simple equation [Eq. (23)] and the trajectories plotted irprdinatey’i decoupled from all the others, whereas the mini-
the (t, uy)-plane follow exponential curves [Fig. 2 (a)]. Since mal normal form ensures only the existence of the reactivity
the equation of motion fou; is independent of the other co- boundaryyy' = 0, andnot the independence of the reaction
ordinatesu,, . . ., Uz, the time propagation afy is uniquely ~ coordinatey! from the others. It was fourté>3that the mini-
determined once the value of at a certain time is spec- mal normal form has a better convergence in the perturbation
ified. This is why no two trajectories can cross with eachtheory than the partial normal forrmplying that the impen-
other in Fig. 2 (a). The invariant s¢tq, §)ju; = 0}, or de-  etrable boundary persists to exist up to a higher temperature
noted simply by{u; = 0}, serves as an impenetrable reactivity (i.e., higher energy) region although the concept of the reac-
boundary that separates trajectories going to the product sid®n coordinate decoupled from the other coordinates is no
and those going to the reactant side. When the random fordenger applicable there.

and the nonlinearity are considered,is no longer an inde-  The transformation constructed above to obtain the reaction
pendent coordinate. Even if we specify the values,cdindt  coordinatey; depends on the random force. When we fix the
for a given realization of the random for¢¢), the future of  instance of the random force, the transformation is fixed and
the trajectory can diier according to the values of the other the sign ofy; tells us the fate of the reaction uniquely. In the
coordinates due to the couplings. The situation is plotted irtase we consider the ensemble of the random force, which is
Fig. 2 (b). Several trajectories cross each other inthe)-  more realistic, we have statistics fgy corresponding to the
plane. The sefu; = 0} is no longer invariant and cannot tell distribution of the random force. The reaction probability is
us anything about the destination of the reaction. In a certaithen given as the probability to haye > 0, for which the
range of the magnitude of the random force and the nonlinanalytical formula was also give.For given values ofj and
earity, the remainder of the partial normal form [denoted byg, we can calculate the average valye) of y; over the dis-
O("*!) in Eq. (42)] can be made ficiently small by pro- tribution of the random force. Roughly, {§1) > 0, there is
ceeding with the calculation up to a certain ortlerThen the  |arger probability for the system to go into the product region
equation of motion given by Eq. (42) gives a good approxi-than if (y;) < 0. The curve given byy:) = 0in the (g, ¢)-
mate description of the dynamics of the system. In this cas&pace can thus be regarded as the boundary between the region
the structure of the dynamics can be best captured by the plgiith higher reaction probability and that with lower probabil-
with the partial normal form reaction coordingfﬁerather than jty. Note that(y;) = 0 implies the reaction probability being

u;. The trajectories plotted in thg, yﬁ)—space exhibit a lam- exactly one half if the probability distribution of is Gaus-

inar flow as in Fig. 2 (c). Here ‘laminar’ means that no two sian, but not in general. A physical interpretation about what
trajectories can cross each other. This is because the motionakes the reaction happen can also be obtained by expressing
of y‘l’ is independent of the others in the partial normal formthe reaction coordinatg in terms of the original coordinates
[Eq. (42)]. Specifying the value dt, y‘I) at any point is suf- ¢, the velocityg and the random forcé(t). In Refs. 76 and
ficient to tell the future time evolution of]. In contrast to 78, the éfects were classified as a diredfset of the environ-

Fig. 2 (a), the time evolution Qfg is not exactly an exponen- ment, dfects of nonlinearity, and combinedfects of these
tial function because of the existenceopft) in Eq. (43). As  tWo.

the random force and the nonlinearity become larger, the par-

tial normal form may not be convergent and then we can no

longer extract an independent reaction coordinate. It is still

possible that the minimal normal form gives a good approxi- V. FROM GLE TO MEMORYLESS EQUATIONS OF

mation, while the partial normal form does not. Figure 2 (d) MOTION : EFFECTIVELY EXPRESSED

shows a phase space flow schematically for the case where ENVIRONMENTAL MODES

the minimal normal form gives an appropriate description of

the system. Due to the coupling between the minimal normal A peculiar feature of the GLE, compared to the Langevin
form reaction coordinatg]’ and the others, the time evolu- equation, is that it contains the memory term. This formally
tion of yI'" is not unique even for the same values(o#") prohibits the direct application of the normal form theory pre-
at a certain point. Thus crossings among the trajectories amented in Sec. Ill to the GLE. In order to discuss the dynamics
seen in the plot of trajectories in tifg yT")-space. However, and phase space structures of the GLE, there have been several
the set{y]" = 0} is an invariant manifold as was discussed inattempt§%:636267."%0 derive an equivalent memoryless equa-
Sec. llID 2. This means that no trajectories can cross the seion of motion from the GLE. Here we follow a procedure that
{y7" = 0} from one side to the other. One can therefore tell theis basically adopted from Ref. 63. We treat mainly the case of
destination of the trajectory once the sigrnyifis specified at  linear friction [Eq. (6)], and the generalization to the nonlinear
a certain time. friction case [Eq. (1)] will be discussed later. We also confine
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FIG. 2: Schematic pictures for the flow of trajectories in several regimes plotted in various coordinates and time. (a) When the random for
and the nonlinearity is negligible, the trajectories plottedtjm ) follow simple exponential curves. (b) Under theet of the random force

and the nonlinearity, the time propagationwuafis no longer as simple as in (a). (c) For a range of the magnitudes of the random force and
the nonlinearity, the partial normal form transformation provides a much better description of the system dynamics. The time propagation
the coordinatey‘; shows a laminar flow. There is no crossing between any two trajectories. The impenetrable bgﬁlﬁdﬂrgeparates the
trajectories going to the product region and those going to the reactant region. (d) For yet stronger random force and nonlinearity, it is
longer possible to construct an independent reaction coordinate. The reactivity boundary can still exist and beyffive oyterms of the
minimal normal form coordinate. The existence of crossings among trajectories shows the depenyi@icetioé other coordinates.

our attention to the one-dimensional case These parameters can be complex-valued in the case where
R t the friction kernel is an exponentially decaying oscillatory

g2d= 1@~ f y(t—t)gt")dt’ + £(), (47)  function. We then define new variablgg) by

0

for simplicity, and the extension to the multi-dimensional
cases is straightforward. First we express the friction kernel
in a multi-exponential function:

Y1) = ) acexp(—pu). (48)
k

t
The amplitudes, and the time constapk may be obtained by dfff aw exp(—u(t — t')) gt')dt’. 49
fitting1®81%the given friction kernel to the form of Eq. (48). b PCalt =) 4(t) (“49)
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Then the GLE (47) is equivalent to the following set of equa-system other than those described by the system varigbles
tions Whenq describe some limited number of structural variables
2 (such as nuclear distances) of the solute, the ‘environment’ in-
—q="Ff(q) - Z G+ £, cludes all the other degrees of freedom in the solute molecule
dt2 as well as the motion of the solvent molecules. The friction
d _ term can be interpreted as a response of the environmental
a(k = — ik + &0, (50)  degrees of freedom to the system describedjbiore pre-
cisely, the system interacts with the environment, and then the
with the initial conditiongj = O. configuration of the environment is changed due to the kick
By expanding thef (d) asbq+ X1 amd™ and introducing  from the system. Then the force exerted by the environment
vector notation as in Eq. (25), to the system depends on the kick from the system accumu-
lated over all the past times, giving rise to the memory term
aq 01 0 .- O aq that contains the past values of the system variables. In the
d q b0 -1 -1/q above procedure, we replaced the memory term by a set of
al=|0a —m - 0|4 extra variables. As such, the newly added variables can be in-
- : terpreted as describing the environmental motions. In reality,
g; 0 a' 0 o ) the environmental motion may be a collection of atomic coor-
K K i) \k . .
dinates in the total system (the solute as well as the solvents).
Om What we have done is to introduce some limited number of
Y1 amd™ + £(t) variables that @ectively describe such collective motion in
+ 0 , (51) the environment, in a top-down way from the GLE obeyed by
: the systenq, rather than constructing them from the atomic
0 potentials. Moreover, the friction kernel does not necessarily
contain all the motions of the solvent molecules but includes
where K is the total number of exponential terms used inthose which are féectively coupled with the system. There-
Eq. (48). Then, by diagonalizing the matrix in the first termfore the above procedure is a way of extracting tifeative
and introducing the shift as in Sec. lll B, we obtain equationdinite degrees of freedom from the vast (practically infinite)
in the form of Eq. (36), which can then be rendered into thedimensions of the environment.
normal form by the same procedure as presented in Sec. lll C. The extension to the non-stationary case [Eq. (11)] can also
The generalization to the nonlinear friction case [Eq. (1)]be obtained. In this case, we fit the non-stationary friction
may readily be obtained by the expansion in basis functions agernel to the following form:
in Eq. (4), and fitting each cdiécient to multi-exponentials:

Q.
=

b e , N e YY) = ) e®yt). (55)
K (t-t:qt).at)) = Y yelt - t)de (alt)). o). ; R
4
Ye(7) :Zafkexp(_wﬂ)_ (52) Note that the multiexponential fit in the stationary case
[Eq. (48)] can be regarded as a special case of Eq. (55), by
uttin
Then by defining’s similarly to Eq. (49), P g
def [ , N ok(t) =ak exppt),
{uc= fo a exp(—pa(t = ') g (q(t'), q(t)) dt’,  (53) wi(t)) = explu’). (56)

the GLE [Eq. (1)] is equivalent to the following set of equa- The form of Eq. (15) proposed by Ref. 94 also falls into the
tions form of Eq. (55), by first fitting the equilibrium kernel of each
bath to multiexponential form

L 3 s €0

dt? ,
7 @0 = n) = 3] expl il (0w
aézk = — Mok + e (0, ), (54) (57)
with the initial condition/y = and then setting
In our opinion, the above procedure is not only a mathe-
matical tool to cast the GLE into a form that admits the ap- (kI) Te(®) ) (KD
plication of NF theory, but we can also extract an interesting = = (O)g k(Daj; exp[ —Hjj Tk(t)],
physical picture from it. Note that the friction term depending (kl) K)o
on the history of the system arises from dynamical interac- (t") =gk(t’ )exp[p” i(t )]. (58)

tions between the system and the environment. Here we use
the word ‘environment’ to mean all the motions in the total With the form of the non-stationary friction kernel given by
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Eq. (55), the iGLE becomes equivalent to and MD simulationg%8:19%.111|t js found there that the fric-
) tion kernel can be fitted by a significantly limited number of
as . terms compared to the infinitely many degrees of freedom of
Eq =f@a0- Zk:‘(k +£), the solute plus the solvent. Thus a significant reduction of
d 2(0) the description is possible by “summarizing” the motion of
— :(’Dk—gk + o(Oui(t)g, (59) the environment. Comparing the results of these atomic level
t ) i &08-111 i ;
d Pk calculationd and the environmental variables extracted

in the present method would give significant insights into the
condensed phase reaction dynamics by elucidating which de-
def [ N grees of freedom in the environment are ableffec the re-
dic= fo POyi(t)qt)dr’, (60) acting system, what could characterize the aspects of the en-
vironment that can “kick” the system, and so forth.
with the initial condition{k = 0. Here we see that the time  After reducing the huge total system of the condensed phase
constantpk(t)/¢«(t) of the environmental mode and the cou- reaction into a relatively low-dimensional dynamical system
pling strengthpi(t)y«(t) are now time-dependent in contrast to with the efective environmental variables, the equation of
the stationary case [Eq. (50)]. This implies that the timescalegotion still contains couplings between the system variable(s)
of environmental modes and the coupling strength betweeand these environmental modes, as well as the random force.
the environment and the system are modulated in time. Wghen the normal form procedure reviewed in Sec. Il can take
will provide some numerical examples elsewhere. away thesefects and extract a single reaction coordinate that
is decoupled from all the rest. We can thus unveil what deter-
mines the fate of the reaction in “thermally” fluctuating envi-
V. SUMMARY AND OUTLOOK ronments.
The question of what role “thermal” fluctuation actually
Including the solvent molecules, condensed phase chempiays in allowing biological systems to function robustly is
cal reactions involve a large (practically infinite) number of one of the most crucial, yet unresolved subjects in biology.
degrees of freedom. While, in principle, the reaction proces®ur theory can tell us the existence of an analytical expression
can be described in a space taking the positions and momenfigr the reaction coordinate that guides the system to react as
of all the atoms as coordinatesyractically infinite dimen-  a nonlinear functional of the original position coordinates and
sional phase space), it is almost impossible to obtain physicahe velocities, friction kernel, and random force. However, in
insights in such a huge-dimensional space. One thus has taost cases, one can know neither the equation of motion of
pick up a small number of variables that represent the progressiological systems nor the information of the full degrees of
of the reaction, usually some coordinates relevant to the reacfreedom of the total system. In experiments at single molecule
ing system and to project the equation of motion onto the GLEevel, one can monitor only one or a few observabl&{s
of those variables. Then the equation is no longer a Hamilcrucial approach toward revealing the role of thermal fluctua-
tonian system and there arise two kinds @eets from the tjon in the realm of biology would be to extract the underlying
environment: friction and random force. The friction can ex-GLE or iGLE from observed single molecule time series and
hibit a memory é&ect due to the response of the environmentto ook into the question of what reaction coordinate actually
to the system, whereas the thermal fluctuation, the StOChaStglJides the biological system to react or function in a noisy
behaviour of the random force, arises from the fact that we denvironment by using the theoretical frameworks presented in
not know the initial condition of the environment (in the full this article.
phase space).
In Secs. Il and IV of this article we have reviewed recent
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