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Why and how do systems react in thermally fluctuating environments?

Shinnosuke Kawai1 and Tamiki Komatsuzaki1

1Molecule& Life Nonlinear Sciences Laboratory, Research Institute for Electronic Science,
Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo 001-0020, Japan

Complicated trajectories of chemical reaction in multi-dimensional molecular systems with thermally fluctuating environments are
disentangled into simple forms.

Many chemical reactions, including those of biological importance, take place in thermally fluctuating en-
vironments. Compared to isolated systems, there arise markedly different features due to the effects of energy
dissipation through friction and stochastic driving by random forces reflecting the fluctuation of the environ-
ment. Investigation of how robustly the system reacts under the influence of thermal fluctuation, and elucidating
the role of thermal fluctuation in the reaction are significant subjects in the study of chemical reactions. In
this article, we start with overviewing the generalized Langevin equation (GLE), which has long been used
and continues to be a powerful tool to describe a system surrounded by a thermal environment. It has been
also generalized further to treat a nonstationary environment, in which the conventional fluctuation-dissipation
theorem no longer holds. Then, within the framework of the Langevin equation we present a method recently
developed to extract a new reaction coordinate that is decoupled from all the other coordinates in the region of
a rank-one saddle linking the reactant and the product. The reaction coordinate is buried in nonlinear couplings
among the original coordinates and the influence of stochastic random force. It was ensured that the sign of this
new reaction coordinate (=a nonlinear functional of the original coordinates, velocities, friction, and random
force) at any instant is sufficient to determine in which region, the reactant or the product, the system finally
arrives. We also discuss how one can extend the method to extract such a coordinate from the GLE framework
in stationary and nonstationary environments, where memory effects exist in dynamics of the reaction.

I. INTRODUCTION

Understanding of reactions, or more generally the change
of states in a multi-body system, is of pivotal importance in a
wide range of scientific studies including not just reactions in
chemistry,1–5 but also ionization of a hydrogen atom in exter-
nal fields,6 isomerization of clusters,7 the escape of asteroids,8

the diffusion of impurities in crystalline materials,9 and the
folding/unfolding of proteins.10 A reaction can be regarded as
a motion of atoms, or more generally of a motion of a point in
an appropriate phase space, starting in a certain (phase space)
region corresponding to the ‘reactants’, and going into another
region called the ‘products’. A main goal in the study of reac-
tion dynamics is to predict, given the present state (the values
of position coordinates and momenta) of the system, whether
the system will evolve into the products region or the reactants
region. In many cases, each of the two regions corresponds to
a valley of the potential energy surface of the system. Between

the two valleys, there is often a rank-one saddle point, where
the potential is maximum along the direction connecting the
reactants and the products regions but is minimum along all
the other directions. (Note, however, that some reactions, es-
pecially highly exothermic reactions, do not possess a saddle
point11.) The vicinity of the saddle point is sometimes called
“the region of the saddle” or “the saddle region.” When there
is a rank-one saddle point and the energy is not very high, all
reactive trajectories necessarily pass from the reactant (prod-
uct) to the product (reactant) regions through the region of the
saddle. Therefore, the dynamics in the saddle region is very
crucial for unveiling the cause of reactions, namely, what de-
termines the fate of reactions.

The dynamics in the saddle region has been extensively
studied.6,7,12–51A brief (and probably not sufficient) summary
may be given by pointing out the importance of two geo-
metrical concepts in the phase space. One is called “Tran-
sition State (TS)”, defined originally by Wigner as a hyper-
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surface in thephasespace between the reactants and the prod-
ucts regions, such that once the system crosses that surface it
will fall into the products region without recrossing that sur-
face. The TS has long been postulated to exist12–19 but it was
just recently that the TS was proved to exist robustly with a
firm mathematical ground6,7,20–39 following several develop-
ments in experiments40,41 and theories.42–51 Another impor-
tant object is an invariant manifold, of which there are sev-
eral kinds.37–39 An invariant manifold is a set of points in the
phase space such that any point in that set will perpetually re-
main in that set during the time evolution. As a consequence,
if an invariant manifold divides the whole phase space into
two disjoint regions, the system can never cross the invariant
manifold from one region to the other. An important invariant
manifold in the context of reaction dynamics is the one that
separates the trajectories going into the product region from
those going into the reactant region. Once we know which
side of the manifold a given initial condition is, we can tell
without any further time propagation whether the reaction oc-
curs or not. In what follows, this manifold between the re-
active and the non-reactive trajectories will be called a “reac-
tivity boundary”, distinguishing it from a “reaction boundary”
which may signify the TS, the no-recrossing surface between
the reactants and the products. Recently it was shown that the
invariant manifold dividing the trajectories into reactive and
nonreactive ones can be extracted analytically even when the
nonlinearity of the system is so large that the concept of no-
return TS is not applicable.52,53

Many important reactions in biology and industry occur in
condensed phase. A characteristic feature of condensed phase
reactions is that they involve a huge number of atoms, includ-
ing the atoms in the solvent molecules. Although numerical
simulation on the all-atom basis is becoming possible through
the development of computational technology, it is desirable
to find a low-dimensional description for the purpose of un-
derstanding. A representation called the generalized Langevin
equation (GLE) has thus been developed,54–56 in which the to-
tal system is decomposed into asystemwith a small number
of selected variables and abath (or environment) that repre-
sents the collection of all the other degrees of freedom. There
the system is described by an equation of motion (GLE) in
which the dynamical effects of the environment appear as fric-
tion and random force. The friction in the GLE represents a
memory effect in the dynamics in the sense that it depends on
the values of the system variables in thepastrather than just
only their present values. The physical interpretation of this
memory effect is that the present position of the environment,
on which the force felt by the system depends, reflects an ac-
tion from the system in the past. The GLE has provided us
with several insights in understanding reactions in condensed
phase.5,57–68

When the dynamics in the condensed phase is described by
the GLE, a striking difference from gas phase arises from the
fact that the system is always subject to external stochastic
forces exerted by the environment. Even for a fixed initial
condition of all the variables in the system, the final destina-
tion is not necessarily unique. Thus, concepts like the reso-
nance overlap,69 based on the Hamiltonian formalism, or the

deterministic area-preserving Poincaré map70 are not feasible
for systems with dissipation and stochastic, external driving
force that fluctuates thermally. To define an appropriate “TS”
in a fluctuating media, some people have developed the so-
called variational TS theory (VTST)18,19 which optimizes a
configurational “dividing” surface by minimizing the num-
ber of recrossings. The VTST has been applied with explicit
harmonic bath modes.71–73 The VTST has provided excellent
physical insights about the location of the dividing surface
as well as improved expressions for rate constants. In prac-
tice, VTST needs a certain small number of selected variables
to parametrise the dividing surface [usually position coordi-
nate(s) of the system (e.g., solute)]. However, as indicated by
Van der Zwan and Hynes74 and later by Pollak75 using a har-
monic bath Hamiltonian system, the reaction coordinate must
be, in principle, a function of all the position coordinates and
velocities of the reacting system and all the effects exerted by
the surroundings. It is far from trivial to identify which de-
grees of freedom are actually required to be involved.

Recent developments in reaction dynamics the-
ories under the existence of thermally fluctuating
environments5,52,64–68,76–79 have made great progress in
understanding the origins of reactions, that is, what type of
initial conditions can bring the system to the reactant or the
product. It was shown5,64–68that, by introducing a coordinate
shift for a given realization (i.e., time sequence) of the
random force, the phase space structure dividing reactive and
nonreactive trajectories can be extracted exactly in the case
of a quadratic barrier without any nonlinear couplings among
the modes. The theory has recently been generalized to a
much wider class of systems in which multiple modes of the
system generally interact with each other nonlinearly.52,76–79

Even with the existence of both the random force and non-
linear couplings among the modes, under the assumption of
moderate magnitude of nonlinearity, a single coordinate still
can be extracted which is decoupled from the others and its
sign solely determines the destination region of the trajectory
i.e., either the region of the reactant or the product. This new
reaction coordinate is generally a nonlinear functional of all
the position coordinates and velocities of the system plus the
time-dependent external force.

When we know, or can reasonably assume, the statis-
tical properties of the random force, we can calculate,
for example, reaction rates57,58,66,78 from the statistics of
the above-mentioned reaction coordinate, and the stochastic
separatrix,63,77,80,81which can be considered as the boundary
between a phase space region with high reaction probability
and that with low probability. Thus an equilibrium distribu-
tion of the bath is usually assumed when the GLE is used.56

An example of such a statistical property of the random force
is the fluctuation-dissipation theorem, where the autocorrela-
tion function of the random force is related to the friction ker-
nel. The statistical property of the random force is derived by
assuming a thermal equilibrium (or more generally, a station-
ary distribution) of the bath degrees of freedom. More pre-
cisely, the distribution is assumed to be a so-called constrained
equilibrium,56 where the initial condition of the system can
be specified arbitrarily but the distribution of the other modes
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(bath) is in equilibrium. However, one can often encounter
many nonequilibrium molecular phenomena occurring with a
non-stationary initial distribution of the bath. For example, in
photo-excited reactions the initial distribution is determined
by the response of the system to the light and thus can be
different from the stationary one even along the coordinates
other than the naïve “reaction coordinate.” Sometimes one
also excites the bath mode vibrations to obtain different re-
action products.82–84 How we can acquire a low-dimensional
description for such non-stationary systems has been an in-
triguing contemporary problem yet to be resolved.

For the last decade there have been several attempts at es-
tablishing the non-stationary representation termed the irre-
versible generalized Langevin equation (iGLE).85–94 In par-
ticular, the idea of generalized friction kernel88,94 dependent
on time values in both the past and the present was proposed.
As the (non-stationary) bath relaxes to the equilibrium state
as time proceeds, the friction kernel is shown to converge to
the usual equilibrium one, which depends only on the time
difference. The generalization of the fluctuation-dissipation
theorem was also proposed: the autocorrelation of the random
force averaged over a given distribution of the initial condi-
tion of the bath degrees of freedom corresponds to the gener-
alized time-dependent friction kernel88–94 or an exponential-
damping correction term,85–87 depending on how the iGLE is
formulated. The iGLE can be applied not only to phenomena
subject to an outside force that changes the solvent response,88

but also to systems whose non-stationarity is induced by the
dynamics of the system itself.90 The growth of polymer was
taken as an example where the property of the environment
changes with the increase of the polymer length. It can also
be applied to temperature-ramped chemical reactions91 where
the environment temperature changes with time due to heat-
ing, for example, by a laser pulse. A further extension of
iGLE92 was provided to describe an ensemble of systems each
of which is subject to a different random force and which are
allowed to interact with each other.

In this article, we first review the GLE and its non-
stationary extension in Sec. II. Then in Sec.III we discuss
the dynamics in the saddle region in the framework of the
Langevin equation, the memoryless limit of the GLE. The nor-
mal form theory for disentangling the effects of couplings will
be introduced. In Sec. IV, we discuss the extension of the nor-
mal form theory into the GLE framework. The crux there is
the introduction of variables that give an effective description
of environmental motions. Finally, concluding remarks will
be given in Sec V.

II. GENERALIZED LANGEVIN EQUATION

The nonlinear generalized Langevin Equation is given
by55,56

d2

dt2
q j = f j(q) −

∫ t

0
K j

(
t − t′; q(t′), q̇(t′)

)
dt′ + ξ j(t), (1)

whereq = (q1,q2, . . . ,qn) is a set of variables to describe the
system, andf j(q) is called the mean force acting on thejth

variable, which is the average of the accelerationq̈ j of the
system for a fixed value ofq over the probability distribution
of the bath. When the mean force is obtained as a gradient of
a certain functionU(q),

f j(q) = −∂U(q)
∂q j

, (2)

the latter function is called the potential of mean force. The
friction term K j (t − t′; q(t′), q̇(t′)) depends on the history of
the system. A possible physical interpretation of this term is
that the bath is kicked by the system at timet′ and this kick
affects the bath configuration and its dynamics after timet′.
Then, at timet, the system feels a force from the bath that
depends on the bath configuration at timet, the latter, in turn,
depending on the kick in the past (at timet′) by the system.
If the bath is in a stationary distribution, this response of the
bath only depends on the time difference, hence we have the
argumentt−t′ in K. The time-dependent forceξ j(t) represents
another force from the bath that is purely determined by the
initial condition of the bath. This third term is the so-called
“random force”, because we only observe the system and do
not know the initial condition of the bath.

The friction term may be expanded in a polynomial form

K j
(
t − t′; q(t′), q̇(t′)

)
=

∑

m

γ jm(t − t′)
n∏

i=1

qi(t
′)mi q̇i(t

′)mn+i

(3)

[γ jm(t − t′) is an expansion coefficient depending on the
time differencet − t′ for each combination of powersm =

(m1,m2, . . . ,m2n)], or in general by using a complete set of
basis functions{φ`}:

K j
(
t − t′; q(t′), q̇(t′)

)
=

∑

`

γ j`(t − t′)φ`
(
q(t′), q̇(t′)

)
. (4)

Approximation ofK j by truncating the summation and taking
only the terms proportional to the velocity in these expansions
yields

K j
(
t − t′; q(t′), q̇(t′)

) ≈
∑

i

γi j (t − t′)q̇i(t
′), (5)

giving the approximated GLE

d2

dt2
q j = f j(q) −

∫ t

0

∑

i

γi j (t − t′)q̇i(t
′)dt′ + ξ j(t). (6)

This is probably the most commonly used form of the GLE. In
this form of GLE, the coefficientγi j (t− t′), which is a function
of the time differencet − t′, is called the friction kernel. The
friction kernel and the random forceξi(t) are related by the
fluctuation-dissipation theorem:

〈
ξi(t)ξ j(t

′)
〉

= kBTγi j (t − t′), (7)

where the bracket denotes the ensemble average over a sta-
tionary distribution,kB is the Boltzmann constant, andT is
the temperature.
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By using the technique of projection operator,54 it has been
proved55,56 that any Hamiltonian system can be projected onto
its subsystem obeying the GLE in the form of Eq. (1), without
any assumptions or approximations under a stationary distri-
bution of the bath degrees of freedom. On the other hand, the
form of Eq. (6) with the linear friction is shown95 to be exact,
when the bath is a collection of harmonic oscillators and the
coupling to the system is bilinear. Cortéset al.96 went fur-
ther to show that, when the couplings are linear in the system
coordinate (q) but nonlinear in the bath coordinates, the sys-
tem still obeys Eq. (6) up to the first order in the system-bath
coupling strength.

When the time scale of the bath is much faster than that of
the system, the friction kernel, which expresses the response
of the environment to the motion of the system, may be ap-
proximated by

γi j (t − t′) = 2γ0
i jδ(t − t′), (8)

whereγ0
i j ’s on the right hand side are constants, andδ(t − t′)

is Dirac’s delta function. In this limit one obtains

d2

dt2
q j = f j(q) −

∑

i

γ0
i j q̇i + ξ j(t), (9)

which is called the Langevin equation, with the fluctuation-
dissipation theorem

〈
ξi(t)ξ j(t

′)
〉

= 2kBTγ0
i jδ(t − t′), (10)

which means that the random forceξ(t) is a white noise.
While there is a general proof for the validity of the GLE

[Eq. (1)], its usefulness hinges on our ability to predict, at
least statistically, the realization of the random force. The
fluctuation-dissipation theorem in the form of Eq. (7) con-
cerns only with the ensemble average of the product of the
random force over an equilibrium (or more in general, station-
ary) distribution. When the bath cannot be assumed to be in a
stationary state, then we cannot even know the statistical prop-
erty of the random force. To overcome this difficulty, one can
resort to another formulation of the GLE for non-stationary
bath54,88–94,97(here we write the one-dimensional case for the
sake of simplicity):

d2

dt2
q = f (q, q̇, t) −

∫ t

0
γ(t, t′)q̇(t′)dt′ + ξ(t). (11)

The key difference is the explicit dependence of the mean
force on timet and the dependence of the friction kernelγ(t, t′)
on both the “initial” (t′) and the “final” (t) times. In stationary
state, the response of the bath to the motion of the system in
the past depends only on the time differencet − t′. Since the
property of the bath is changing in time for the non-stationary
case, the response of the bath depends on both times, and the
mean force that the system feels also changes with time. In the
non-stationary case, the fluctuation-dissipation theorem holds
in the following form97:

〈ξ(t)ξ(t′)〉 = 〈q̇2〉t′γ(t, t′), (12)

where 〈q̇2〉t′ is the ensemble average of squared veloc-
ity at time t′ over an initial distribution. The form of
Eq. (11) is called the irreversible generalized Langevin equa-
tion (iGLE).88–94,97

While Eqs. (11) and (12) are proved97 to hold generally,
Refs. 88–94 proposed a modeling such that the non-stationary
random force is given by atime-dependentscaling of the equi-
librium random force:

ξ(t) = g(t)ξeq(t), (13)

where the superscript ‘eq’ denotes the equilibrium state, and
g(t) is the scaling factor. Combining Eqs. (12) and (13), and
considering the case of quasi-equilibrium88 between the sys-
tem and the bath,〈q̇2〉t′ ≈ kBTbath, whereTbath is the bath
temperature, one sees that the friction kernel is also given by
scaling:

γ(t, t′) = g(t)γeq(t − t′)g(t′). (14)

Ref. 94 introduced a more generalized model for the fric-
tion kernel allowing for multiple heat baths and time dilatation
in the arguments of the equilibrium friction kernels:

γ(t, t′) =
∑

k

Tk(t)
Tk(0)

gk(t)gk(t
′)γeq(k) (τk(t) − τk(t

′)
)
, (15)

wherek labels each heat bath andTk is the time-dependent
“temperature” of thekth bath. The functionτk(t) is a mono-
tonically increasing function oft whose rate of increase
is time-dependent, reflecting the frequency modulation with
time for each bath. Whereas the iGLE [Eq. (11)] and the
non-stationary fluctuation-dissipation theorem [Eq. (12)] hold
for any general non-stationary system97, Eqs. (13)–(15) were
found to hold only for a special class of the total Hamiltonian
system.89,93

When we change the description of the system from the
trajectory level to the distributionρ(q, q̇) level in the position-
velocity space, the Langevin equation (9) leads to the Fokker-
Planck equation56

∂ρ

∂t
= −

∑

j

q̇ j
∂

∂q j
ρ −

∑

j

∂

∂q̇ j

 f j(q) −
∑

i

γ0
i j q̇i

 ρ

+
∑

i j

γ0
i j kBT

∂2

∂q̇i∂q̇ j
ρ. (16)

Kramers57 started with the Fokker-Planck equation of a one-
dimensional parabolic potential, and derived analytical ex-
pressions for barrier-crossing rates. In the low-friction regime,
the rate-limiting step is the excitation in the well region, and
the rate is proportional to the friction constant because the
excitation is given by the random force, whose amplitude is
related to the friction kernel through Eq. (10). On the other
hand, in the moderate- to high-friction regimes, the rate is
determined by the steady-state flow through the barrier re-
gion. There the rate is given by an eigenvalue of the linear
dynamics at the saddle point, which becomes inversely pro-
portional to the friction constant for high friction. Mel’nikov
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and Meshkov98 pursued this analysis of the rate constant un-
der the assumption of high barrier height, and obtained a for-
mula that connects those two regions. Their method is based
on the use of an energy-action representation for writing the
Fokker-Planck equation, which leads to the calculation of the
steady-state flow with the activation rate in the well region
correctly taken into account. The assumption of high bar-
rier height compared with the temperature enabled a simple
analytical expression for the Green function of the Fokker-
Planck equation. Langer99 gave the multi-dimensional ver-
sion of the rate formula in the moderate- to high-friction
regimes, again with the parabolic approximation for the po-
tential energy. The analysis proceeds similarly by obtaining
the steady-state solution of the Fokker-Planck equation, and
the rate is given by an eigenvalue of the linear dynamics in
the multi-dimensional space. The assumption of high enough
barrier made in the works cited above, in addition to facili-
tating the calculation, may ensure the existence of the rate,
that is, single-exponential relaxation of the population, be-
cause then the distribution would quickly thermalize in the
well region before crossing the barrier. One way to check
whether the relaxation is actually single exponential is to cal-
culate eigenvalues of the Fokker-Planck equation. If the low-
est eigenvalue is real and much smaller than the others, the
relaxation is then approximated by a single exponential ki-
netics with the rate equal to that eigenvalue. Voigtlaender
and Risken100 used a matrix continued fractions method to
calculate the eigenvalues of the Fokker-Planck equation for a
one-dimensional double-well potential expressed by a quar-
tic polynomial. It is shown that the lowest nonzero eigen-
value coincides with the Kramers formula in both the low-
and high-friction regions, and smoothly connects them. The
eigenfunction corresponding to the lowest eigenvalue spirals
in the phase space in the opposite direction to the stochastic
separatrix. Another way to check the exponential nature of
the population relaxation is to calculate the number correla-
tion function. Zhou101 adopted the latter method in a similar
quartic potential. For high barrier height compared with the
temperature, the relaxation is single-exponential, whereas for
low barrier height it was found to be non-exponential as ex-
pected. Between these two regions, there exists a region where
the relaxation is single-exponential but the rate is significantly
different from the Mel’nikov-Meshkov formula. In the case
of the GLE, where we have the memory effect, we can also
move to the distribution-level description. The time evolution
of the distribution is, however, much more complicated.56,102

The diffusion term involves integration over the physical vari-
able as well as over the past time, reflecting the memory effect.

III. SADDLE REGION DYNAMICS OF THE LANGEVIN
EQUATION

This section is aimed at the investigation of chemical reac-
tions in the framework of the GLE and the iGLE presented in
Sec. II. Specifically, we ask the following question: “Given
an initial condition (i.e., the values of the position and the ve-
locity of the reacting system at a certain time), can we pre-

dict whether the system undergoes the reaction or not?” or,
in other words, “What determines the fate of reactions in a
thermally fluctuating environment?” When the system is pa-
rameterised by position coordinatesq, the reactant, which is
the state before the reaction, and the product, which is the state
after the reaction, correspond to certain stable regions in the
q-space, characterized by wells of the potential of mean force.
In many cases, there is a saddle point on the potential between
these two regions. The dynamics in the neighborhood of the
saddle point plays a central (although not unequivocal) role in
determining whether the system is going into the product re-
gion or back to the reactant region. We therefore concentrate
our discussion in this section on the crossing dynamics in the
neighborhood of the saddle point.

In Sec. III A, we start our discussion with a sufficiently sim-
ple case, the Langevin equation with a linear mean force and
no random force. The effect of the random force is then incor-
porated in Sec. III B. The problem of the nonlinearity in the
mean force, especially the couplings among the system co-
ordinates, will be taken into account in Sec. III C. The struc-
ture of the dynamics is discussed in Sec. III D based on the
formulation presented in Secs. III A–III C. The extension to a
generalized Langevin equation will be discussed in Sec. IV.

A. Linear Dynamics in Saddle Region

Let us start the discussion with a very simple case; a one-
dimensional Langevin equation where the mean force is linear
in q and we tentatively neglect the effect of the random force:

q̈ = ωb
2q− γq̇. (17)

where we changed the notation of the friction coefficient from
γ0 [see Eq. (9)] toγ. This mean force can be obtained as a
derivative−∂U(q)/∂q of an inverted parabolic potential with
curvatureωb

2 > 0

U(q) = −1
2
ωb

2q2. (18)

Eq. (17) can be cast into matrix form

d
dt

(
q
q̇

)
=M

(
q
q̇

)
,

M
def
=

(
0 1
ωb

2 −γ
)
. (19)

Following Ref. 63, we can introduce the eigenvectors of this
matrix as

Mv± = λ±v±, (20)

where

λ± =
1
2

(
−γ ±

√
4ωb

2 + γ2

)
,

v± = ±
(

1
λ±

)
. (21)
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FIG. 1: Phase space flow in theq-q̇ plane in the case of linear mean
force without random force. It is seen that the trajectories with posi-
tive u1 go eventually to the right side (the product), while those with
negativeu1 go to the left side (the reactant).

Thus, by introducing a new coordinate system(u1,u2) by
(
q
q̇

)
= u1v+ + u2v−, (22)

the equations of motion become

d
dt

u1 =λ+u1,

d
dt

u2 =λ−u2. (23)

Sinceλ+ is a positive number, the absolute value ofu1 in-
creases exponentially with time. This mode corresponds to a
motion sliding down the barrier. On the other hand, the motion
of u2 (noteλ− < 0) corresponds to a motion of approaching
the barrier top and converging to it.

Figure 1 shows a picture of the phase space flow in the
(q, q̇)-plane as well as the skewed coordinates(u1,u2) intro-
duced above. Suppose that the region with large negativeq is
identified as the reactant region and that with large positiveq
as the product. It is seen that the trajectories withu1 > 0 go
to the product region, while those withu1 < 0 go to the reac-
tant region. This figure has a good correspondence with the
preceding studies on the Hamiltonian systems6,7,20–36where
the canonical conjugate pair(q̄1, p̄1) was used as the “reaction
coordinate.” As stated above, the sign ofu1 can be used to
discriminate the destination of the trajectory, that is, whether
it is going to the product or returning back to the reactant. As
soon as we just know the sign ofu1 in the saddle region, we
can immediately tell, without further numerical propagation,
whether the trajectory is going to the product region or to the
reactant region.

Multi-dimensional cases can be treated similarly. Let us
consider a multi-dimensional linear system

q̈i =
∑

j

ai j q j −
∑

j

γi j q̇ j , (24)

where the mean force is given by a linear combination ofq =

(q1, . . . , qn) with coefficientsai j and the friction is linear iṅq
with coefficientsγi j . This can be written in a matrix form:

d
dt

(
q
q̇

)
=M

(
q
q̇

)
,

M
def
=

(
0 1
A −Γ

)
, (25)

where1 is then× n unit matrix,Γ = (γi j ) andA = (ai j ). The
coordinateu = (u1,u2, . . . , u2n)T is obtained by diagonalizing
the matrix

V−1MV =diag(λ1, · · · , λ2n),(
q
q̇

)
= Vu. (26)

Here we can reasonably assume that there is one positive real
eigenvalueλ1 > 0 corresponding to the motion sliding down
the barrier, and the others haveRe(λ j) ≤ 0 ( j = 2, . . . , 2n).

After the diagonalization, the equation of motion becomes

d
dt

u j =λ ju j . (27)

Sinceu1 is the only unstable mode, just the knowledge of the
sign ofu1 is sufficient to tell the destination region of trajec-
tories. The surface defined byu1 = 0 acts as an impenetrable
boundary between reactive and non-reactive trajectories. The
word ‘impenetrable’ here means that no trajectory can cross
the boundary fromu1 > 0 to u1 < 0 or vice versa, and, once
the system ison that boundary, it remains there perpetually.

B. Effect of Random Force – Time-dependent Shift of Origin

Next we consider the effect of random force, but the mean
force is still assumed to be linear inq. The equation is given
by

q̈i =
∑

j

ai j q j −
∑

j

γi j q̇ j + ξi(t), (28)

with the fluctuation-dissipation relation

〈ξi(t)ξ j(0)〉 = 2kBTγi jδ(t). (29)

In matrix form,

d
dt

(
q
q̇

)
=M

(
q
q̇

)
+

(
0
ξ(t)

)
, (30)

with the same matrixM as Eq. (25). By introducing the eigen-
modes in the same way as Eq. (26), we obtain

d
dt

u j =λ ju j + ξ̃ j(t), (31)
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whereξ̃(t) = V
(

0
ξ(t)

)
.

To consider the dynamical origin of the reactions that are
subject to the random force, a set of new relative coordinates,
which we callx j here, was introduced recently:5,64–68

u j =S[λ j , ξ̃ j ](t) + x j (32)

where we use the notationS as in Refs. 5,52,76–79,103,104:

S[λ j , ξ̃ j ](t) =


∫ 0

−∞ exp(−λ jτ)ξ̃ j(t + τ)dτ (Reλ j < 0)
−

∫ +∞
0

exp(−λ jτ)ξ̃ j(t + τ)dτ (Reλ j > 0)
.

(33)

Then the equation of motion forx is given by

d
dt

x j = λ j x j . (34)

In the shifted coordinate systemx, the equation of motion
for x j does not depend on the random force any more. As
in Sec. III A, we assume that one and only one eigenvalueλ1

has positive real part. Therefore the system would move away
from the barrier region ast increases, with the direction deter-
mined solely by the sign ofx1. Note that, in the definition of
Eq. (33), it is necessary to know the time evolution ofξ j(t) for
each instance in advance in order to calculate the shift. There-
fore, Eq. (34) is formally correct, but in practice we need to
replace this hypothetical requirement by the statistical prop-
erties of the random force, which will be discussed in Sec.
III D.

C. Effects of Nonlinearity – Normal Form Theory

In realistic situations, the system is often subject to nonlin-
earity in the force. As we will see later in this section, the non-
linearity induces couplings among the shifted coordinatesx j .
Then the motion ofx1 is subject to the other modes as well as
the random external force, which prevents us from predicting
the destination of the reaction independently fromx2, x3, . . ..
However, we will see that, by introducing a nonlinear trans-
formation, we can still extract a single reaction coordinate that
enables us to predict the fate of the reaction without referring
to the other coordinates.52,76–78

The nonlinear force can be expanded in a power series as

q̈i =
∑

j

ai j q j +
∑

|m|≥2

α j,mqm1
1 qm2

2 · · · qmn
n

−
∑

j

γi j q̇ j + ξi(t), (35)

with the expansion coefficients α j,m for each powerm =

(m1,m2, . . . ,mn). The nonlinear part contains terms of

quadratic and higher order, that is,|m|def
= m1+m2+ · · ·+mn ≥ 2.

Introducing the linear transformation (Sec. III A) and the
time-dependent shift (Sec. III B) the equation of motion be-

comes

d
dt

x j =λ j x j + f j(x, t),

f j(x, t) =
∑
|m|≥0

f j,m(t)xm1
1 xm2

2 · · · xm2n

2n , (36)

where the coefficients f j,m(t) are obtained by substitut-
ing the transformationq 7→ x into the nonlinear part(∑
|m|≥2α j,mqm1

1 · · · qmn
n

)
of Eq. (35). The expansion coeffi-

cients f j,m(t) are now time-dependent because the transfor-
mation contains the time-dependent shift [Eq. (32)]. Due to
the presence of the nonlinear terms, the dynamics of the reac-
tive degree of freedomx1 depends on all the other coordinates
x2, x3, . . . , x2n as well as on all̃ξ through the time dependence
in f j(x, t) that originates from that of the random forceξ(t).

To incorporate the effect of nonlinear terms in Eq. (36),
we employ non-Hamiltonian normal form (NF) theory105 to
introduce a nonlinear transformation fromx to y so that the
equation of motion fory1 contains no coupling with the other
coordinates. The calculation proceeds in a similar way to Lie
canonical perturbation theory106,107(a classical analog of Van
Vleck perturbation theory). By the transformation

x j = y j + w j(y, t), (37)

the equation of motion inx [Eq. (36)] is cast into

d
dt

y j =λ jy j + c j(y, t), (38)

where the two unknown functions (c j andw j) are to be deter-
mined so that the resultant equations of motion for the new
coordinatey [Eq. (38)] are in as simple a form as possible,
and the transformation [Eq. (37)] has a good convergence at
the same time.

Expanding the two functions in power series

c j(y, t) =
∑

m
c j,m(t)y1

m1 · · · y2n
m2n,

w j(y, t) =
∑

m
w j,m(t)y1

m1 · · · y2n
m2n, (39)

and performing some involved algebra,76 we arrive at an equa-
tion of the following form:

(
〈λ,m〉 − λ j +

d
dt

)
w j,m(t) =g j,m(t) − c j,m(t), (40)

where 〈λ,m〉def
=

∑2n
k=1 λkmk and g j,m(t) are the coefficients

of the polynomial expansion ofg j(y, t)
def
= f j(y + w, t) −∑2n

i=1 ci(y, t)
∂w j (y,t)
∂yi

. As is shown in a previous paper,76 in the
process of determiningc j,m(t) andw j,m(t) perturbationally or-
der by order,g j,m(t) is known from the results of the lower
orders. There thus exist two unknown quantitiesc j,m(t) and
w j,m(t) with the knowng j,m(t) at each order. One can then de-
termine either of the two unknown quantities as one wishes.
To simplify the equation of motion for the new variabley1,
one can eliminatec1,m(t) order by order by setting

w1,m(t) = S
[
λ1 − 〈λ,m〉,g1,m

]
(t), (41)
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using theS-symbol as in Eqs. (32) and (33). The variabley1

obeying a simplified equation of motion can then be regarded
as a new reactive mode coordinate, while all the effects of non-
linear couplings, friction and random forces are incorporated
in the transformation from the original coordinatesq to y.

In order to simplify the equation of motion fory, making
c j,m(t) = 0 may be the best choice. However, if we try to
cancel as manyc j,m(t)’s as possible by Eq. (40), the transfor-
mation [w j(y, t)] contains more and more terms, which pos-
sibly causes divergence in the series expansion of the trans-
formation. In order to make a well-behaved transformation,
therefore, we keep some terms in the equation of motion for
y and yet make the equation easily solvable to investigate the
dynamics. More precisely, we have two choices52,53,76for the
final form of the equation of motion fory that result in differ-
ent convergence properties. In the next section we look into
these two choices and their dynamical structures.

D. Two types of normal form

1. partial normal form

For the purpose of telling the fate of the reaction, we need
only to know the motion along the unstable directiony1 which
corresponds to the motion sliding down the barrier. Thus we
can make the equation ofẏ1 decoupled from the others, while
leaving other modes as they are:

ẏ1 = [λ1 + c1(t)] y1 + O(εN+1)

ẏ2 = f2(y)

ẏ3 = f3(y)

...

ẏ2n = f2n(y). (42)

We call this ‘partial normal form,’ in contrast to the ‘full nor-
mal form’ where the equations of motion for all the modes
are made independent and the motion ofy j depends only on
y j for all j = 1,2, . . . ,2n. In the case of the neighborhood of
the rank-one saddle point, where we have only one eigenvalue
with positive real part, it was found76 that the full normal form
is impossible to construct, in contrast to Hamiltonian systems
in which the full normal form can exist in a certain range of
total energy above the saddle.6,7,20–39,45,46

From Eq. (42), the solution for the motion ofy1 is given by

y1(t) = y1(t0) exp

[∫ t

t0

(
λ1 + c1(t′)

)
dt′

]
+ O(εN+1), (43)

wheret0 is a certain time giving the initial condition fory1.
Here,λ1 comes from the linear approximation and the other
termc1(t) originates from the effect of nonlinearity, which be-
gins with a first-order perturbation term.

Of particular importance is the behavior ast → +∞. The
exponent in Eq. (43) goes to infinity ast → +∞ if the long-
time average of the perturbative terms inc1(t) is less thanλ1,

which can usually be expected to hold. Then we have

lim
t→+∞

y1(t) =

{
+∞ (y1(t0) > 0)
−∞ (y1(t0) < 0) (44)

The increase of|y1(t)| means that the system departs from the
vicinity of the saddle point, going either to the product side or
to the reactant side. The direction of this departing motion is
determined solely by the sign ofy1 at any timet0.

The most important consequence of the partial normal form
is that the motion along they1 mode is independent of the
other modes (y2, . . . , y2n). Sincey1 is the only relevant vari-
able to tell the destination of the reaction, we can describe the
process of chemical reaction with a single dynamical variable
y1, which we now call the “reaction coordinate”. As a conse-
quence of this independence ofy1, just the knowledge of the
sign ofy1 at any one moment in the saddle region is sufficient
to tell the fate of the reaction.

2. minimal normal form

Another type of normal form has been recognized
recently.52,53 This is termed here as ‘minimal normal form,’
and ensures the existence of an impenetrable boundary be-
tween the reactive and nonreactive trajectories, even when the
nonlinear couplings and the random force are significantly so
large that obtaining the reaction coordinate independent of the
other coordinates is not possible. The equation of motion after
the transformation is given as

ẏ1 =
[
λ1 + c̃1(y, t)

]
y1 + O(εN+1)

ẏ2 = f2(y)

ẏ3 = f3(y)

...

ẏ2n = f2n(y), (45)

wherec̃1 can now be a function ofy in addition to timet. In
other words, we keep in the equation ofẏ1 all the terms that
are linear or higher order ofy1. Only the terms that do not
containy1 are removed by the transformation. The solution is
formally given by

y1(t) = y1(t0) exp

[∫ t

t0

(
λ1 + c̃1(y(t′), t′)

)
dt′

]
. (46)

This solution is only formal in the sense that the right hand
side containsy(t′) which would have to be solved according
to the very same equation of motion [Eq. (45)]. However, the
important point is thaty1 = 0 forms an invariant set just as in
the case of partial normal form (i.e.,dy1/dt = 0 if y1 = 0).
This implies that once the system is in the manifold ofy1 = 0,
the system should remain to reside there fort → ±∞. In other
words, no trajectory cancrossthe manifoldy1 = 0 from the
regiony1 > 0 to y1 < 0, or vice versa. Consequently, once we
know the sign ofy1(t0) at any instantt0 in the saddle region, it
fixes the sign ofy1 for t → ∞, telling us the final destination of
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the reaction. The minimal normal form was shown52,53to have
better convergence property because it contains less terms in
the transformation.

Figure 2 shows schematic pictures for the flow of trajecto-
ries in the extended phase space. When there is no (or negli-
gible) random force or nonlinearity, the normal mode reaction
coordinateu1 introduced as in Fig. 1 [see Sec. III A] obeys
the simple equation [Eq. (23)] and the trajectories plotted in
the(t,u1)-plane follow exponential curves [Fig. 2 (a)]. Since
the equation of motion foru1 is independent of the other co-
ordinatesu2, . . . , u2n, the time propagation ofu1 is uniquely
determined once the value ofu1 at a certain timet is spec-
ified. This is why no two trajectories can cross with each
other in Fig. 2 (a). The invariant set{(q, q̇)|u1 = 0}, or de-
noted simply by{u1 = 0}, serves as an impenetrable reactivity
boundary that separates trajectories going to the product side
and those going to the reactant side. When the random force
and the nonlinearity are considered,u1 is no longer an inde-
pendent coordinate. Even if we specify the values ofu1 andt
for a given realization of the random forceξ(t), the future of
the trajectory can differ according to the values of the other
coordinates due to the couplings. The situation is plotted in
Fig. 2 (b). Several trajectories cross each other in the(t,u1)-
plane. The set{u1 = 0} is no longer invariant and cannot tell
us anything about the destination of the reaction. In a certain
range of the magnitude of the random force and the nonlin-
earity, the remainder of the partial normal form [denoted by
O(εN+1) in Eq. (42)] can be made sufficiently small by pro-
ceeding with the calculation up to a certain orderN. Then the
equation of motion given by Eq. (42) gives a good approxi-
mate description of the dynamics of the system. In this case,
the structure of the dynamics can be best captured by the plot
with the partial normal form reaction coordinateyp

1 rather than
u1. The trajectories plotted in the(t, yp

1)-space exhibit a lam-
inar flow as in Fig. 2 (c). Here ‘laminar’ means that no two
trajectories can cross each other. This is because the motion
of yp

1 is independent of the others in the partial normal form
[Eq. (42)]. Specifying the value of(t, yp

1) at any point is suf-
ficient to tell the future time evolution ofyp

1. In contrast to
Fig. 2 (a), the time evolution ofyp

1 is not exactly an exponen-
tial function because of the existence ofc1(t) in Eq. (43). As
the random force and the nonlinearity become larger, the par-
tial normal form may not be convergent and then we can no
longer extract an independent reaction coordinate. It is still
possible that the minimal normal form gives a good approxi-
mation, while the partial normal form does not. Figure 2 (d)
shows a phase space flow schematically for the case where
the minimal normal form gives an appropriate description of
the system. Due to the coupling between the minimal normal
form reaction coordinateym

1 and the others, the time evolu-
tion of ym

1 is not unique even for the same values of(t, ym
1 )

at a certain point. Thus crossings among the trajectories are
seen in the plot of trajectories in the(t, ym

1 )-space. However,
the set{ym

1 = 0} is an invariant manifold as was discussed in
Sec. III D 2. This means that no trajectories can cross the set
{ym

1 = 0} from one side to the other. One can therefore tell the
destination of the trajectory once the sign ofym

1 is specified at
a certain time.

In summary, we have introduced a new reaction coordinate
y1, that is,yp

1 or ym
1 , through a transformation that incorpo-

rates all the effects of the random force and the nonlinear cou-
plings. In both the partial and minimal normal forms, the sign
of y1 solely determines the destination of the reaction. The
difference in the two normal forms is that, as seen in Fig. 2,
the partial normal form is designed to have the reaction co-
ordinateyp

1 decoupled from all the others, whereas the mini-
mal normal form ensures only the existence of the reactivity
boundaryym

1 = 0, andnot the independence of the reaction
coordinateym

1 from the others. It was found52,53 that the mini-
mal normal form has a better convergence in the perturbation
theory than the partial normal form,implying that the impen-
etrable boundary persists to exist up to a higher temperature
(i.e., higher energy) region although the concept of the reac-
tion coordinate decoupled from the other coordinates is no
longer applicable there.

The transformation constructed above to obtain the reaction
coordinatey1 depends on the random force. When we fix the
instance of the random force, the transformation is fixed and
the sign ofy1 tells us the fate of the reaction uniquely. In the
case we consider the ensemble of the random force, which is
more realistic, we have statistics fory1 corresponding to the
distribution of the random force. The reaction probability is
then given as the probability to havey1 > 0, for which the
analytical formula was also given.78 For given values ofq and
q̇, we can calculate the average value〈y1〉 of y1 over the dis-
tribution of the random force. Roughly, if〈y1〉 > 0, there is
larger probability for the system to go into the product region
than if 〈y1〉 < 0. The curve given by〈y1〉 = 0 in the (q, q̇)-
space can thus be regarded as the boundary between the region
with higher reaction probability and that with lower probabil-
ity. Note that〈y1〉 = 0 implies the reaction probability being
exactly one half if the probability distribution ofy1 is Gaus-
sian, but not in general. A physical interpretation about what
makes the reaction happen can also be obtained by expressing
the reaction coordinatey1 in terms of the original coordinates
q, the velocityq̇ and the random forceξ(t). In Refs. 76 and
78, the effects were classified as a direct effect of the environ-
ment, effects of nonlinearity, and combined effects of these
two.

IV. FROM GLE TO MEMORYLESS EQUATIONS OF
MOTION : EFFECTIVELY EXPRESSED

ENVIRONMENTAL MODES

A peculiar feature of the GLE, compared to the Langevin
equation, is that it contains the memory term. This formally
prohibits the direct application of the normal form theory pre-
sented in Sec. III to the GLE. In order to discuss the dynamics
and phase space structures of the GLE, there have been several
attempts60,63,65,67,79to derive an equivalent memoryless equa-
tion of motion from the GLE. Here we follow a procedure that
is basically adopted from Ref. 63. We treat mainly the case of
linear friction [Eq. (6)], and the generalization to the nonlinear
friction case [Eq. (1)] will be discussed later. We also confine
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(a) (b)

(c) (d)

FIG. 2: Schematic pictures for the flow of trajectories in several regimes plotted in various coordinates and time. (a) When the random force
and the nonlinearity is negligible, the trajectories plotted in (t,u1) follow simple exponential curves. (b) Under the effect of the random force
and the nonlinearity, the time propagation ofu1 is no longer as simple as in (a). (c) For a range of the magnitudes of the random force and
the nonlinearity, the partial normal form transformation provides a much better description of the system dynamics. The time propagation of
the coordinateyp

1 shows a laminar flow. There is no crossing between any two trajectories. The impenetrable boundaryyp
1 = 0 separates the

trajectories going to the product region and those going to the reactant region. (d) For yet stronger random force and nonlinearity, it is no
longer possible to construct an independent reaction coordinate. The reactivity boundary can still exist and be given byym

1 = 0 in terms of the
minimal normal form coordinate. The existence of crossings among trajectories shows the dependence ofẏm

1 on the other coordinates.

our attention to the one-dimensional case

d2

dt2
q = f (q) −

∫ t

0
γ(t − t′)q̇(t′)dt′ + ξ(t), (47)

for simplicity, and the extension to the multi-dimensional
cases is straightforward. First we express the friction kernel
in a multi-exponential function:

γ(τ) =
∑

k

ak exp(−µkτ) . (48)

The amplitudeak and the time constantµk may be obtained by
fitting108,109 the given friction kernel to the form of Eq. (48).

These parameters can be complex-valued in the case where
the friction kernel is an exponentially decaying oscillatory
function. We then define new variables{ζk} by

ζk
def
=

∫ t

0
ak exp

(−µk(t − t′)
)
q̇(t′)dt′. (49)
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Then the GLE (47) is equivalent to the following set of equa-
tions

d2

dt2
q = f (q) −

∑

k

ζk + ξ(t),

d
dt
ζk = − µkζk + akq̇, (50)

with the initial conditionζk = 0.
By expanding thef (q) asbq+

∑
m>1αmqm and introducing

vector notation as in Eq. (25),

d
dt



q
q̇
ζ1
...
ζK


=



0 1 0 · · · 0
b 0 −1 · · · −1
0 a1 −µ1 · · · 0
...

...
...

. . .
...

0 aK 0 · · · −µK





q
q̇
ζ1
...
ζK



+



0∑
m>1αmqm + ξ(t)

0
...
0


, (51)

where K is the total number of exponential terms used in
Eq. (48). Then, by diagonalizing the matrix in the first term
and introducing the shift as in Sec. III B, we obtain equations
in the form of Eq. (36), which can then be rendered into the
normal form by the same procedure as presented in Sec. III C.

The generalization to the nonlinear friction case [Eq. (1)]
may readily be obtained by the expansion in basis functions as
in Eq. (4), and fitting each coefficient to multi-exponentials:

K
(
t − t′; q(t′), q̇(t′)

)
=

∑

`

γ`(t − t′)φ`
(
q(t′), q̇(t′)

)
,

γ`(τ) =
∑

k

a`k exp(−µ`kτ) . (52)

Then by definingζ’s similarly to Eq. (49),

ζ`k
def
=

∫ t

0
a`k exp

(−µ`k(t − t′)
)
φ`

(
q(t′), q̇(t′)

)
dt′, (53)

the GLE [Eq. (1)] is equivalent to the following set of equa-
tions

d2

dt2
q = f (q) −

∑

`,k

ζ`k + ξ(t),

d
dt
ζ`k = − µ`kζ`k + a`kφ` (q, q̇) , (54)

with the initial conditionζ`k = 0.
In our opinion, the above procedure is not only a mathe-

matical tool to cast the GLE into a form that admits the ap-
plication of NF theory, but we can also extract an interesting
physical picture from it. Note that the friction term depending
on the history of the system arises from dynamical interac-
tions between the system and the environment. Here we use
the word ‘environment’ to mean all the motions in the total

system other than those described by the system variablesq.
Whenq describe some limited number of structural variables
(such as nuclear distances) of the solute, the ‘environment’ in-
cludes all the other degrees of freedom in the solute molecule
as well as the motion of the solvent molecules. The friction
term can be interpreted as a response of the environmental
degrees of freedom to the system described byq. More pre-
cisely, the system interacts with the environment, and then the
configuration of the environment is changed due to the kick
from the system. Then the force exerted by the environment
to the system depends on the kick from the system accumu-
lated over all the past times, giving rise to the memory term
that contains the past values of the system variables. In the
above procedure, we replaced the memory term by a set of
extra variables. As such, the newly added variables can be in-
terpreted as describing the environmental motions. In reality,
the environmental motion may be a collection of atomic coor-
dinates in the total system (the solute as well as the solvents).
What we have done is to introduce some limited number of
variables that effectively describe such collective motion in
the environment, in a top-down way from the GLE obeyed by
the systemq, rather than constructing them from the atomic
potentials. Moreover, the friction kernel does not necessarily
contain all the motions of the solvent molecules but includes
those which are effectively coupled with the system. There-
fore the above procedure is a way of extracting the effective
finite degrees of freedom from the vast (practically infinite)
dimensions of the environment.

The extension to the non-stationary case [Eq. (11)] can also
be obtained. In this case, we fit the non-stationary friction
kernel to the following form:

γ(t, t′) =
∑

k

ϕk(t)ψk(t
′). (55)

Note that the multiexponential fit in the stationary case
[Eq. (48)] can be regarded as a special case of Eq. (55), by
putting

ϕk(t) =ak exp(−µkt),

ψk(t
′) = exp(µkt

′). (56)

The form of Eq. (15) proposed by Ref. 94 also falls into the
form of Eq. (55), by first fitting the equilibrium kernel of each
bath to multiexponential form

γ
eq(k)
i j

(
τk(t) − τk(t

′)
)

=
∑

l

a(kl)
i j exp

[
−µ(kl)

i j

{
τk(t) − τk(t

′)
}]
,

(57)

and then setting

ϕ(kl)
i j (t) =

Tk(t)
Tk(0)

gk(t)a
(kl)
i j exp

[
−µ(kl)

i j τk(t)
]
,

ψ(kl)
i j (t′) =gk(t

′) exp
[
µ(kl)

i j τk(t
′)
]
. (58)

With the form of the non-stationary friction kernel given by
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Eq. (55), the iGLE becomes equivalent to

d2

dt2
q = f (q, q̇, t) −

∑

k

ζk + ξ(t),

d
dt
ζk =

ϕ̇k(t)
ϕk(t)

ζk + ϕk(t)ψk(t)q̇, (59)

where

ζk
def
=

∫ t

0
ϕk(t)ψk(t

′)q̇(t′)dt′, (60)

with the initial conditionζk = 0. Here we see that the time
constantϕ̇k(t)/ϕk(t) of the environmental mode and the cou-
pling strengthϕk(t)ψk(t) are now time-dependent in contrast to
the stationary case [Eq. (50)]. This implies that the timescales
of environmental modes and the coupling strength between
the environment and the system are modulated in time. We
will provide some numerical examples elsewhere.

V. SUMMARY AND OUTLOOK

Including the solvent molecules, condensed phase chemi-
cal reactions involve a large (practically infinite) number of
degrees of freedom. While, in principle, the reaction process
can be described in a space taking the positions and momenta
of all the atoms as coordinates (=practically infinite dimen-
sional phase space), it is almost impossible to obtain physical
insights in such a huge-dimensional space. One thus has to
pick up a small number of variables that represent the progress
of the reaction, usually some coordinates relevant to the react-
ing system and to project the equation of motion onto the GLE
of those variables. Then the equation is no longer a Hamil-
tonian system and there arise two kinds of effects from the
environment: friction and random force. The friction can ex-
hibit a memory effect due to the response of the environment
to the system, whereas the thermal fluctuation, the stochastic
behaviour of the random force, arises from the fact that we do
not know the initial condition of the environment (in the full
phase space).

In Secs. II and IV of this article we have reviewed recent
theoretical developments in the framework of several GLE
formalisms and a new scheme was presented to transform the
GLE in stationary and non-stationary environments into mem-
oryless equations of motions. The information contained in
the friction kernel was used to extract effective variables that
represent the effects of the environment. The environmental
variables introduced here do not describe all the details of the
thermal reservoir but represent only those parts which con-
tribute significantly to the motion of the variable(s) in con-
sideration. Note that it is now possible to obtain the func-
tional form of the friction kernel fromab initio calculations110

and MD simulations.108,109,111It is found there that the fric-
tion kernel can be fitted by a significantly limited number of
terms compared to the infinitely many degrees of freedom of
the solute plus the solvent. Thus a significant reduction of
the description is possible by “summarizing” the motion of
the environment. Comparing the results of these atomic level
calculations108–111and the environmental variables extracted
in the present method would give significant insights into the
condensed phase reaction dynamics by elucidating which de-
grees of freedom in the environment are able to affect the re-
acting system, what could characterize the aspects of the en-
vironment that can “kick” the system, and so forth.

After reducing the huge total system of the condensed phase
reaction into a relatively low-dimensional dynamical system
with the effective environmental variables, the equation of
motion still contains couplings between the system variable(s)
and these environmental modes, as well as the random force.
Then the normal form procedure reviewed in Sec. III can take
away these effects and extract a single reaction coordinate that
is decoupled from all the rest. We can thus unveil what deter-
mines the fate of the reaction in “thermally” fluctuating envi-
ronments.

The question of what role “thermal” fluctuation actually
plays in allowing biological systems to function robustly is
one of the most crucial, yet unresolved subjects in biology.
Our theory can tell us the existence of an analytical expression
for the reaction coordinate that guides the system to react as
a nonlinear functional of the original position coordinates and
the velocities, friction kernel, and random force. However, in
most cases, one can know neither the equation of motion of
biological systems nor the information of the full degrees of
freedom of the total system. In experiments at single molecule
level, one can monitor only one or a few observable(s).112 A
crucial approach toward revealing the role of thermal fluctua-
tion in the realm of biology would be to extract the underlying
GLE or iGLE from observed single molecule time series and
to look into the question of what reaction coordinate actually
guides the biological system to react or function in a noisy
environment by using the theoretical frameworks presented in
this article.
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