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Abstract. In this paper we present a model of reinforcement learning

(RL) which can be used to solve goal-oriented navigation tasks. Our
model supposes that transitions between places are learned in the hip-
pocampus (CA pyramidal cells) and associated with information coming
from path-integration. The RL neural network acts as a bias on these
transitions to perform action selection. RL originates in the basal ganglia
and matches observations of reward-based activity in dopaminergic neu-
rons. Experiments were conducted in a simulated environment. We show
that our model using transitions and inspired by Q-learning performs
more efficiently than traditional actor-critic models of the basal ganglia
based on temporal difference (TD) learning and using static states.

Keywords: hippocampus, basal ganglia, navigation, reinforcement learn-
ing, Q-learning

1 Introduction

In previous papers, we proposed a model in which ”place cells” [1] are not pri-
mary located in the hippocampus proper but in the entorhinal cortex. The ac-
tivity recorded in the CA pyramidal cells would not primarily originate from
”place cells” but from ”transition cells” coding for the transient states from one
place to the next [2,3]. The reason for this proposal arose from two experimen-
tal findings. First, experimental recording of our EC artificial visual place cells
displayed large place fields allowing to reach a goal without the need to store a
lot of places in the environment [4]. The merging of “What” and “Where” infor-
mation about surrounding landmarks was sufficient to build a robust place code
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that could be simply recognized in order to build place cells. Hence the need for
a dense mapping of the environment was not justified in simple sensori-motor
navigation tasks. Second, we faced the impossibility to connect directly a cogni-
tive map made of place cells and coding for multiple goals and motivations with
a motor control system [2]. As a matter of fact, an homonculus was necessary to
read the gradient activity on the cognitive map in order to deduce that moving
in a particular direction would induce a better satisfaction than taking another
direction. It was then always necessary to simulate at each time step these back
and forth movements between the current place and the next possible places.

The building of a cognitive map linking transition cells suppressed this prob-
lem since one transition is always associated with a single movement. Action
selection would take place in the nucleus accumbens (ACC) where planning ac-
tivity coming from the cognitive map, linked to the prefrontal and/or parietal
cortices, could be used as a bias to select from the current static state the most
interesting transition. In our model, we used the dentate gyrus and its granular
cells as a way to store past activities using a spectral timing model [5]. Area CA3
of the hippocampus received information about current and past states from the
entorhinal cortex and dentate gyrus respectively. An associative memory allowed
the learning of existing transitions between places. According to our model, CA3
pyramidal cells should predict the next possible transitions. Recording such cells
should induce a strong spatial activity correlated with the animal place (the rea-
son why they are called place cells) but somehow anticipating the animal next
place. New neurobiological results are in agreement with such a prediction [6]
but it is not sufficient to convince all the neurobiologists to move from a place
cell model to a transition cell model. The cognitive map uses latent learning and
constitutes an efficient system for dealing with dynamically changing environ-
ments with multiple goals. Yet there is no proof that the rat builds a cognitive
map. Most of the hippocampal models used for navigation are based on place-
action associations through RL and succeed to display interesting navigation
performances [7,8,9,10].

In this paper, we show how the learning of transitions in the hippocampus,
required by the cognitive map for complex planning tasks, can also form the
perfect basis for a RL model based on Q-learning, as transitions are analogous
to state/action couples. RL can easily be added to allow both backward planning
with latent learning using the cognitive map and motivations, and forward plan-
ning using reinforcement hints to select the current action. Moreover the model
can account for anatomical and physiological data in both the hippocampus and
basal ganglia. This work is part of a project aiming at modeling the interaction
between the hippocampus, the prefrontal cortex and the basal ganglia. We will
show how our model can be more efficient than actor-critic models based on TD
learning in tasks with several goals and motivations. Finally we will demonstrate
the performances of the model in goal-oriented tasks in a simulated environment.



2 Model

In RL the environment is usually described as a Markov Decision Process (MDP).
The agent can be in a certain number of states in which it can choose between
a certain set of actions to perform. Experiments have been made in simulation
where the agent switched between finite states based on its location in a grid
world [11] or relative to prominent landmarks [9,10]. Place cells, with their place
fields defining particular locations of the environment, can be used to character-
ize the state of the agent in RL [7,8].

The Temporal Difference (TD) learning algorithm [12] aims at maximizing
the sum of expected rewards. While in TD learning an estimation of that sum is
learned as a function of states, Q-learning [13] creates an estimate as a function
Q(s, a) of state and action. After performing action a1 to move from state s to
state s′, the Q value is adjusted with the following equation:

Q(s, a1)← Q(s, a1) + α(r + γmax
a

Q(s′, a)−Q(s, a1)) (1)

where r is the reward obtained when in s′, α is the learning rate and γ is a
discount factor. The pair (s, a1) can also be represented as a transition s→ s′

The discovery of the response of dopaminergic neurons in the substantia nigra
pars compacta (SNc) and the ventral tegmental area (VTA) with their modu-
lation of the basal ganglia neuronal activity, suggested the strong involvement
of these structures in RL [14]. These neurons exhibit short bursts of firing just
after the occurrence of an unexpected reward and go through a short period of
depression when an expected reward is not received. The similarity of this be-
havior with the computation of the error on the prediction of expected rewards
in TD learning has lead many researchers to build models of RL associated with
the basal ganglia [15,16]. In the models the computation of the TD error made in
the SNc matches the neurophysiological observations of dopaminergic neurons.

How the neural differentiator used to compute the difference between subse-
quent predictions for the TD error signal works is subject of debate. A hypoth-
esis is that it originates from the direct and indirect connections between the
striatum and the substantia nigra pars compacta (SNc)[15]. Direct inhibitory
connections and indirect excitatory connections through the subthalamic side-
loop would provide the desired signal. This model supposes different timings of
spike propagation in the direct and indirect pathway. It is limited because of its
reliance on the internal dynamics of synapses and neurons to account for the ac-
ceptable delay between subsequent predictions. Moreover the use of the temporal
characteristics of the direct/indirect pathway as the neural substrate for the TD
error computation seems to be inconsistent with the known neuroanatomy [17].

In addition, several RL models use delayed synaptic learning with an eligibil-
ity mechanism [18,8,7,9]. This mechanism assumes that a memory trace of past
activity is present at the synaptic level. The current reward expectation is used
to modify the synaptic weights selected by the eligibility trace corresponding to
the last actions. The biological plausibility of the eligibility trace remains un-
clear. Houk and colleagues [15] gave an hypothesis as to how this learning can



happen in real synapses. Their model involves the spiny neurons in the strioso-
mal compartments of the striatum. The properties of a protein (CaM PK II) and
a cascade of intracellular signaling mechanisms are used to account for the delay
of the synaptic strengthening. However, once again, the timing of the reward is
highly dependent on the properties of the internal dynamics of the neuron. It
cannot account for a large variability in the delay between the action and the
occurrence of the reward signal.

The need for both temporal mechanisms arises from the unavailability of the
corrected reward prediction (r + γmaxa Q(s′, a) in eq. 1) when the action is
performed. This value is available in the following moments when the agent is
in the new state s′ and has received an optional reward r. However the previous
state is no more active and cannot be directly associated with the corrected
estimation of its reward expectation value.

Taking inspiration from the actor-critic model, a neural implementation of
the TD learning algorithm [18], we designed a neural network model of the Q-
learning algorithm (Fig. 1). The model addresses the issues discussed in the pre-
vious paragraphs by the use of a 2-step learning mechanism, suppressing the need
for both an eligibility trace and specific temporal dynamics in direct/indirect
pathways between the striatum and the SNc.
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Fig. 1. Model of the Q-learning using the 2-step learning. The mapping of the various
functions to cerebral structures is shown.

Step 1 : A working memory in the striatum stores information about the
last transition performed. When the representation of the new state is stabilized
and reward predictions about available transitions arise, their maximum value
is learned and associated with the value in the working memory. If a primary
reward signal is received, it will also be learned. For any transition s → s′ we
learn to predict what the value of tj = r + γmaxa Q(s′, a) will be. The learning
is made by a simple conditioning using the Widrow-Hoff Delta rule:



wji ← wji + α(tj − x
Qp

j ).xWTA
i (2)

where α is the learning rate. x
Qp

j and xWTA
i are the activities of post- and

pre-synaptic neurons respectively. All activities are rate-coded.
Step 2 : Q values are learned in synaptic weights with transition cells as pre-

synaptic neurons. Connections from the hippocampus (area CA1) to the striatum
allow the propagation of transition activity to the RL system. When the agent
starts to explore a new place, it begins to predict all the available transitions
along with their Q values. The TD error signal, computed from the difference of
current and predicted reward expectations, acts as a dopaminergic modulation
of synaptic learning for transition Q-values. The learning equation used is :

wji ← wji + α.δ.xCA1

i (3)

where δ is the TD error signal and xCA1

i the activity of the currently performed
transition. Transition activity is as follows: if a transition is being performed
(i.e. the agent switches from place A to B) then the only active transition is AB
(xAB = 1), otherwise if the agent explores place A (i.e. the place cell coding for
A has the strongest activity) then all predicted transitions are active (xAB =
1, xAC = 1, etc.).

This system allows the simultaneous availability of the Q(s, a1) value learned
in step 2 and the r + γmaxa Q(s′, a) value learned in step 1. Hence the com-
putation of the TD error signal does not require input pathways with different
temporal properties. Only simple inhibitory and excitatory pathways are used.
The trade-off for the absence of time-dependent local synaptic rules is a conver-
gence speed for the neural network divided by 2.

The Q values for each predicted transition are used to bias the original activ-
ity of the transition cells. A WTA competition results in the optimal transition
to be selected. The output of the competition is not a direct motor action but
rather a motor transition, as opposed to hippocampal transitions which are per-
ceptual. The transition then activates its corresponding learned action, which
could range from complex behaviors to simple motor commands. Even though
we chose to only take the optimal transition into account to select an action, sec-
ondary transitions are still predicted and provide their reward expectancies and
actions as possible alternatives. In a model where actions are chosen from static
states rather than transitions, a single state can correctly give a choice of actions
along with their order of preference only if all the actions are coded in orthog-
onal patterns. If actions are coded as overlapping patterns, the connectivity of
each transition with the action neurons allows the coding of well separate actions
for each transition. Moreover in our case the learning of associations between
actions and transitions is latent. It can happen at any time when navigating in
the environment, even during an exploratory phase without any reward. Here
the actions are represented by a direction to take and coded in a neural field

[19]. Path integration information from the last place, computed from odometric
input, is used to associate a direction with every transition performed. In the



model, the only actions considered in each state are based on what was learned
to be possible, not a set of pre-programmed actions (e.g Go east, Go west, etc.)
as it is often used in actor-critic models [7,8]. The architecture also distinguishes
itself by merging the learning of state and action reward prediction into a single
learning of state+action values.

The synaptic learning of predictions is modulated by particular events trig-
gering transitory neuro-modulatory signals. The learning of Q-values through
conditioning (3) happens when a transition is performed (i.e when the most ac-
tive place cell changes). The learning of future predictions and rewards (2) is
modulated by the delivery of the reward. A fixed time interval between place
entry and reward delivery is fixed at the beginning of the experiments to allow
extinction. The fixed delay is needed to provide the timing of expected rewards
and produce negative reinforcement values in case an expected reward is not
delivered. Future work will involve the use of a time spectrum architecture to
learn reward timings and allow the delivery of rewards at any time.

3 Improvements over actor-critic models

In a simple experiment where the environment contains only one reward location,
place and transition-based systems work in similar ways. In computational terms,
in addition to the N place cells coding for states, the transition architecture
requires the use of between 4N and 6N neurons in average to learn the transitions
[3].

A A
Food Food
Water

Water

?

B B

Thirst

Hunger
AB

Hunger Thirst

TD Q-learning

Fig. 2. Scenario with a food and water source intermittently located at place B. When
the food source is found, the TD solution associates the A+hunger state with the
action Go east. Further discovery of the water source eventually leads to the renewed
slow learning of the action Go east, this time associated with the state A+thirst. With
the transition solution, the agent learns the AB transition with the corresponding
action Go east, independently of resource discovery. Further discovery of the food and
water sources leads to the fast association of hunger and thirst with the existing AB
transition. Moreover dead-end recognition could lead to a lower prediction value for
the transition leading south, hence promoting the other transitions by default.

However the transition architecture shows its strength in complex tasks with
multiple goals and motivations. The motivations could range from basic drives
(e.g. hunger, thirst) to the need to satisfy various goals and sub-goals. Let us



consider a case where several types of resources (food, water etc.) are present
in the environment. The corresponding K drives indicate the need for a par-
ticular resource. In TD learning, as a direct state-action association is created,
the original model cannot learn to associate different actions to a particular
state depending on the motivational context. A direct connexion from motiva-
tions to actions would indeed guide the behavior of the agent towards making
always the same action when motivated, independently of the place it is in. An
intermediate layer of K ∗ N neurons would need to be created to learn the as-
sociation of state/drive couples with actions [7]. Actions learned in a state for
one motivation would need to be learned again for other motivations event if
they lead to the same direction (Fig. 2). If the action is coded as a direction
vector, the learning of the movement between two place fields can take some
time to converge to the vector between the two centroids (e.g. by averaging the
directions taken each time to move from one place field to the other). On the
other hand the Q-learning network would only need to associate the drives with
existing transitions. The action associated with a transition is learned whenever
the transition is made, independently from the motivational context. Transition
prediction activity would however have to be initiated by the co-activation of
place recognition in the hippocampus and learned drive associations. Figure 3
shows a comparison of the two architectures. The Q-learning system is the one
shown in fig. 1 with a few modifications to allow multiple drives. Rewards are
associated with a drive to detect different types of goals, the resulting signal
is given as input to the 2-step learning RL system. In place of the modulation
described in section 2, the dopaminergic neuromodulatory signal is used to mod-
ulate the learning of the Q values in synapses originating from the drive neurons.
The bias used to select the next action is thus combined from current transition
and drive activities.
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Fig. 3. Comparison of neural implementations of TD and Q-learning for a multiple
drives scenario. When the number of places and drives increases, the transition based
solution becomes less and less expensive as compared to the TD solution.



In our model, the number of neurons needed to encode transitions, states
and actions is independent from the number of motivations. Due to the 2-step
learning, a lot more neurons are needed for simple tasks with few motivations
than in simple actor-critic networks. However these neurons can work with any
number of motivations. The transitions model can use a direct bias of every
new motivation on transition activity whereas actor-critic models would have to
add extra place/drive neurons. In complex tasks with many goals and sub-goals
this could lead to significant improvements in information compression, meaning
more ecologically viable architectures. The trade-off is the need of wide-spread
connectivity between places, drives, transitions and actions.

4 Experiments

The neural network has been tested in a simulated environment using the Promethe

NN simulator [20]. The simulated environment is an open square environment
with 20 perfectly identifiable landmarks equally spaced along the walls to simu-
late visual input. One food source is placed in the upper left corner. The speed
of the agent is constant throughout the experiment except when avoiding walls.
The passing of time in the simulation is discretized into a series of time steps.
However the functioning of the architecture is not dependent on the fineness of
this discretization. The simulation works with any time step (e.g. 50ms, 100ms,
500ms etc.), however too large time steps would lead to the agent “teleporting”
itself and missing sensory input on the way, leading to a less reactive system and
decreased performances. The results were obtained using 100ms time steps.

First the agent performs an exploratory session in order to map its environ-
ment. During this phase of the experiment, navigation is guided by a random
exploration strategy. The direction of the agent is periodically changed, based
on a Gaussian probability function centered on the current direction. Simulated
ultrasound obstacle detection allows the agent to avoid hitting the walls. Place
cells are learned based on a minimum activity threshold. As the agent moves from
place to place, transitions between place cells are learned and associated with a
direction. During this random exploratory phase, the agent is able to discover
the food source and build its representation of optimal paths using transitions
and RL (Fig. 4).

During the second phase of the experiment, the exploratory/exploitation
phases are modulated by an internal motivational signal. When motivated, the
agent will use the learned transition bias and corresponding actions to reach the
food source. The delivery of the food reward then inhibits the motivation signal
and an exploratory phase begins. The motivation is triggered again when the
agent reaches an area comprising the eastern and southern extremities of the
environment. A good level of performance in this task requires the ability to
quickly reach the goal location from any starting position in this area.

Figure 4 shows example trajectories of motivated navigation using RL. As
the agent follows the path given by a single winning transition, the trajectories
roughly follow the edges of the transition graph and are thus not straight lines



Fig. 4. a) Graph of all learned transitions in the simulated environment. Darker colors
mean higher Q values for the corresponding transitions. b) Trajectories taken by the
agent during goal-directed navigation. The goal location is represented by a disk in the
upper left corner of the environment. All starting points for goal-oriented navigation
trials are located in the gray area.

to the goal. Smoother trajectories could be obtained using a soft competition
when selecting transitions and their associated actions. Mean escape latencies
and standard deviations are given in table 4 for both the transition Q-learning
and a random exploration strategy. They express the time needed by the agent
to reach the goal when motivated, with starting points randomly spread in the
motivation trigger area. The transition Q-learning architecture performs 3 times
better than random exploration with obstacle avoidance. A soft competition for
transition and action selection could be used to further increase the performances
of the algorithm.

Table 1. Mean escape latency and standard deviation in seconds for transition Q-
learning and random exploration. The values are computed from a set of 50 trials for
each strategy. The parameters of the simulation are : learning rate α = 0.5, discount
factor γ = 0.8, reward value r = 1.

Mean Standard deviation

Transition Q-learning 36.7 14.5

Random exploration 115.1 90.1



5 Discussion

In addition to being consistent with neurobiological observations [6], the transi-
tion learning architecture could serve as a basis for several navigation strategies.
The prediction of available transitions at any given time provides the system
with a repertoire of possible actions. The transition-action association is learned
autonomously and is dissociated from navigation strategies such as path plan-
ning or RL. As opposed to usual actor-critic models of TD learning where the
motor action is the output of the RL network, a Q-learning based model can
work with transitions as its sole representation of the environment and be more
efficient in complex scenarios.

By using transitions as a common representation, one can easily integrate
several navigation strategies in the same architecture. We previously used a
cognitive map to solve navigation tasks. This strategy also provided a bias to
the competition between predicted transitions. The competition leading to the
selection of the next action can accept several such biases, given by different
strategies working in parallel. The parallel use of the cognitive map planning
and RL will bring to light the advantages/disadvantages of one system over the
other and show the way for an integrated architecture with the 2 cooperating sys-
tems. More transition-based strategies, such as timed sequences of actions, could
eventually be added. In this case transitions would have to be able to learn both
spatial and temporal properties. Future work will involve the implementation
of a system capable of modulating these concurrent strategies. The modulation
could be based on a performance criterion, thus selecting the best strategy for
a particular task. Internal signals could also be monitored by a meta-controller
capable of detecting whether a strategy is dysfunctional or not.

We have recently built an architecture which used transitions with both spa-
tial and temporal components to build a cognitive map and solve planning tasks
involving navigation and the precise timing of particular actions. The integration
of timed transitions into the present RL model would help reproduce the pre-
cise time-dependent prediction capabilities of dopaminergic neurons in the basal
ganglia. This is necessary to be able to select an appropriate behavior depending
on the timing of a reward. One particular case in which we are interested is the
autonomous learning of a precisely timed waiting period requiring movement
inhibition from the animat.
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