Why and How to Benchmark XML Databases

Albrecht Schmidt? Florian Waas Martin Kersten Daniela Floresct

albrecht@cwi.nl florianw @microsoft.com mk@cwi.nl danaf@propel.com

Michael J. Carey loana Manolescu Ralph Busse

mike.carey @propel.com ioana.manolescu @inria.fr busse @darmstadt.gmd.de

Abstract sion whether conventional database technology, be it rela-
tional or extended relational, is up to the challenge is still
Benchmarks belong to the very standard repertory of toalsfull swing.
deployed in database development. Assessing the capgrom an application point of view, the discussion
bilities of a system, analyzing actual and potential bottlasether XML is syntax or data model looks slightly dif-
necks, and, naturally, comparing the pros and cons of dérent: in order to assume the role of a true data exchange
ferent systems architectures have become indispensgbithat in which both industry and research want XML
tasks as databases management systems grow in c@e seen, an XML database has to deliver on the per-
plexity and capacity. In the course of the developmefairmance demands of its key applications: web services,
of XML databases the need for a benchmark framewaBeB, and e-Commerce scenarios to name just a few. Most
has become more and more evident: a great many @fthem require on-line, often interactive processing.
ferent ways to store XML data have been suggested inThroughout the history of the development of relational
the past, each with its genuine advantages, disadvantagg@sbase technology, benchmarks served primarily as a
and consequences that propagate through the layers g¢ale to assess and compare new techniques and system
complex database system and need to be carefully c@dmponents. On the other side, many innovations in
sidered. The different storage schemes render the qugiiéry processing and storage management were achieved
characteristics of the data variably different. However, Y trying to boost benchmark figures.¢.[T0, [T'1]); thus,
conclusive methodology for assessing these differencepésichmarking does not only mean that we measure the
available to date. state of the art but is also a constant incentive for further
In this paper, we outline desiderata for a benchmadivelopment.
for XML databases drawing from our own experience of |n this paper, we postulate desiderata for a general pur-
developing an XML repository, involvement in the definipose benchmark for XML databases; we take both into ac-
tion of the standard query language, and experience Wiunt, the state of the art as well as recent developments.
standard benchmarks for relational databases. First of all, let's have a look at the state of the technol-
ogy: (1) Currently, there is no commonly agreed on no-
. tion of the functionality that an XML database can be ex-
1 Introduction pected to comply with. Therefore, we will go with the fre-
guently used definition of an XML database, which refers
XML and databases seem like an odd couple: two vegy a system that stores and manages XML docunfents.
different concepts driven by two very different commumore crisp are the definitions of various query languages,
nities with different expectations and requirements. YetQuery [5], the most prominent of which is currently be-
an increasing demand for consistent and reliable waysig standardized. (2) On the other hand, many applica-
manage XML data[Z] 3] suggests the marriage of the twipns currently under construction or being deployed al-
By that, we do not mean “management of XML data oady specify a number of requirements XML databases
top of a relational database” as it is often interpreted hyfll have to meet.
a general coupling of the two worlds. For storing XML, However, before we go into a detailed analysis, it might
numerous techniques have been suggested and the disggishelpful to briefly survey the complementary devel-
1Ccwil, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands opment. of relational sy;tems and benchmark_s in °rfjer
2Microsoft Corp., One Microsoft Way, Redmond, USA to identify reasonable criteria and to avoid obvious mis-

3Propel Inc., San Jose, USA takes. What can be carried over from more traditional
4INRIA Rocquencourt, France
5GMD-IPSI, Dolivostr. 15, 64293 Darmstadt, Germany 6A number of similar definitions can be found &t [3].

benchmarks like those defined by TPC, SAP, PeopleSaft Preliminaries
amongst others? What can be learned?

Early benchmarks have been strictly geared towaftie question “how to assess query performance” is obvi-
testing database functionality on a very general level. Taesly preceded by the more basic question “what opera-
early Wisconsin Benchmark12] for example consists §0ns on an XML document are conceivable and reason-
a number of queries which test the performance of smallle”. With its XML Query Working Group, the W3C
numbers of join operations. While helping to determirgddressed this issue with experts from both the database
the bottlenecks in join processing, the benchmark does Aot the document communities. The scenarios and use
take particular application scenarios into account beyog@ses([4] developed were directly taken from research in-
the obvious motivation that joins rank among the mogutt but also results of surveys of web services and ap-
costly operations thus have to be especially taken carefdication scenarios that did not yet deploy XML but could

As database functionality evolved, implementations benefit from it. The outcome of this process became avail-
different systems converged, and performance figures &le in two phases: first, an algebra that tried to formalize
simple queries became increasingly indistinguishable, ®erations was released and later, a draft for a query lan-
embedding of a database system into an application sgeéage was formulated.
nario became more and more important. TPC-HIR [16], It appears essential when staking out a benchmark, to
one of the most important industry benchmarks, is mogview these two products as they set the stage for any
eled after the general requirements a data warehousingRgiformance evaluation by defining the set of operations
plication poses to a database system. available.

Finally, the latest development are application spe-
cific benghmarks like the SAP and the Peop!eSoft benchq Query Algebra
mark series, where performance characteristics for run-
ning one proprietary application are used to assess a Shise algebra, specified in a Haskell-like functional pro-
tem. In contrast to the early general purpose benchmaigggmming languagée[8], defined and illustrated by means
these kind of application benchmarks no longer evaluatEuse cases a set of operations that appear meaningful to
databases as isolated units but as an integrated backmsréorm on XML documents. Due to the visible database
in an application scenario, and assume that customers faickground of the group, most operations suggested are
chase the database solely for this purpose. very familiar from the world of relational database sys-

tems. Operations include filters, joins on values or along

.Th|s evolution may seem like a linear develOpmePéferential key constraints, grouping operations etc.
with databases changing from general purpose reposito-

ies 10 b ; < of an individual | i In contrast to their relational relatives, these operators
rles 1o becoming part ot an individual, compiex app_'c%'bviously have to maintain order. In the notation of the
tion. However, this development has also seen failur

ebra, this is implied by usinfpr-loop like constructs
and S?t bgcks, most notably TPC'W' The TP.C'W ben hich suggest iterating over an ordered list of data. These
mark is widely agreed to provide only little insight. Mod;

i ts of a int ¢ i loops are only defining the variable binding and a sys-
€ling many components of a INtETet commerce appliGRy, \ypich can encode order through, say, an additional

tion, th_e mbteractlon between goLn p((;ntents alnd d|ffleJre ribute at the object itself may take advantage of using
scenarios become opaque and hard 10 analyze. LNW aiions that are not order preservieg.,hash joins.

the application benchmarks mentioned above, the TP With respect to the definition of a benchmark, the alge-

w scenario 1S kept overly generic, and thus, msteaq of Ba immediately provides two requirements. On the one
actly matching one app, it does not match any. While tu

) ,) and, we certainly want to test most if not all operations
ng a _databa_lse system for SAP's or Peopl_eSofts ben%u'ggested. On the other hand, the issue of treating order
mark is of direct use for customers who directly deplo

the database — often solely — in this scenario, the ga hould be a the central aspect in the tests—the more if the

from high TPC-W numbers remains questionable. dat;biitszszfelr?] question is implemented on a refational
In short, benchmarks have to match (1) the technology '

available at the time and (2) the application scenarios used

in production; given the current developments, defininga2 Query Languages

general purpose benchmark is an important first step

conclusive assessments of XML databases. V{ﬁule the algebra mainly served to outline the basic op-

erations that would have to be supported by a language
In this paper, we review the conceptual idiosyncrasigsdoes not specify how those operations should be ex-
of storing and retrieving of XML data and try to identifyposed in a query language. At the beginning of the stan-
components and operations that a reasonable benchnaianrklization process, several query languages were in use,
should cover. We also scrutinize what lessons, learribe most popular of which are XQI17] and XPath [6].
from query processing in relational databases, can direcllyose languages might be considered obsolete in the light
be carried over. of the standardized query language XQuery — XQuery

ument does not only depend on performance and redun-

L Egéﬁgble 4 dancy considerations but also on external knowledge of
O inlined the document in the form of constraints. In the simplest

i T case, there is no external knowledge and one has to use
a generic mapping like one of the binary mappings de-
scribed for instance irl[9,18]. If there is external knowl-
5 § edge, be it in the form of constraints like a DTD or even
something more expressive like a schema language [14]
then one may decide to use a more advantageous map-
= . ping for example by inlining : 1 relationships into larger
relations or mapping generic string values to richer data
types to save space and avoid coercions at query execu-
tion time [20]. In an object-oriented scenarie.,the pri-
. .) mary access pattern is navigational iteration over DOM
Figure 1. Query times of select benchmark queries Ofiige syntax trees[[21], it is often worthwhile to map the
relational database system using three different mappings,;ment structure to a set of class definitions. In this

of XML to relational structures case, external knowledge can be exploited by regrouping
objects into disk pages according to different access sce-

subsumes XPath and is more powerful than XQL. Howarios. Depending on the application scenario there likely
ever, a sizable user base currently deploys alternati/€& more optimizations to favor the query profile of the ap-
XML query languages including several proprietary ongication. A number of mappings have been presented re-
and to the best of our knowledge no commercial impl&ently €.9.,[7, ©,[T3,[T8/20]). However, it seems two de-
mentation of XQuery is available at the moment. Sin&gn principles prevail: binary decompositiore., group-
XQuery has been being standardized by the W3C, wifl ancestor relationships in one or more relations, and
all major manufacturer fully supporting the developmerifllined representation.e., storing1 : 1 relationships be-
XQuery is clearly the query language of choice for fofween parent tags and their element and attribute children
mulating the benchmark queries. in one relation whilel : n relationships are mapped to
In order to be able to test also systems which do ¥ relations which share a common kéyi[20]. While the
provide full XQuery support, be it for reasons of integraformer excel through their conceptual simplicity, the lat-
ing legacy applications and data, be it that the applicatiBif Iy to retain a relational flair by mimicking the trans-
scenario the XML database has been developed for simjgijon rules (.e., fragmenting the document along: n
does not require the additional expressiveness of XQuétgrent-child relationships) between ER-models and rela-
it seems highly advisable to defimgiery groupsi.e.,a tional schema.
classification and bundling of the individual queries. Of- Closely related to the issue of the physical represen-
ten, simple queries can be formulated using only XPdgtion is that of query optimization. Over the past two
primitives. A second dimension along which we will dedecades, there have been significant advances in optimiz-
fine query groups is of course the functionality. That wald SQL queries; in practice rule-base and cost-based op-
the functionality of a system can be categorized and &inization techniques are used, both of which are tightly
sessed conclusively and transparently. coupled to the underlying physical data model. It would
The XQuery standardization efforts have come a lof§ highly desirable to re-use large parts if not all of this

way already, yet, XQuery is by no means complete. So fgtowledge.
merely read-only query scenarios have been addressedp illustrate these points, we implemented different
inserts, updates and XML specific derivatives theregfapping models atop a relational database system and
have, at the time of writing, not been dealt with. To ocompared the query times for three queries taken from
ganize the benchmark in query groups also helps in tAise XML Benchmark Projedi9]. Figure[l shows the
situation as groups can be enhanced with versioningrésulting query times: The first column in each group
reflect the current standard. Releasing a new version agtaresents the time forfixed document-independent bi-
particular query group to incorporate new developmentary storage model such asi[1b¢., all parent-child rela-
does not invalidate old results. tionships are stored in a single relation resulting in many

self-joins during query execution. The second column is

the performance of the same data mapped varéable,
3 Motivating Examples document-dependent relational module suchas [18],

all parent-child relationships of a specific type are clus-
For XML data the physical break-down of data is of sigered in a separate relation. The third column in each
nificant impact and decidedly more important than it group eventually shows the performance of ialined
in the relational world. The decision how to store a do@ulti-attributemapping in the spirit ofif20]; here relations

Elapsed time

Query 1 Query 2 Query 3

are larger and can have many more attributes than thpegformance analysis covering all performance critical as-
are per relation in the binary case. From the plot, it is epects of processing of XML.

ident, that each of the models has its advantages and can

outrun all other alternatives in certain situations. How-l'

ever, to understand the issues and bottlenecks encountere
in this simple experiment we need to have a closer look at
the processing of the queries:

Query 1 is a very basic point query specified by a path
expression. On the inlined model this results to a scan of
one relation returning a single tuple; on the other models
a number of joins or self-joins are required to materialize
the path expression. On the one hand, the inlined model
trades in data volume for joins with respect to the binary
models, on the other hand, in the variable model a larger
number of tables has to be accessed. 2.

Query 2 specifies a join depending on the document
order. Here the multi-attribute model benefits from the
fact that fewer joins need to be executed than in the binary
case. As to the other two models, the implicit clustering
of data as achieved by the variable model results in better
statistics as compared to the fixed model. Therefore, the
the variable model is significantly more amenable for the
optimizer than the fixed model.

Query 3 finally underlines the differences in numbers of
columns per table. The multi-attribute model suffers from
the data volume when a large number of joins is executed
where only few columns are required for the result. Joins
are much less costly to process on both the fixed and the
variable decomposition schemes.

The example provides a good impression of the extent
and nature of the performance issues a benchmark has
address. Besides the relatively obvious question of the
physical data break-down, a number of other aspects have
severe impact on the query performance. Concerning the
physical design, the usage of indexes and surrogate OIDs
where additional information like order is encoded in thes.
OID can speed up querying on the expense of rendering
updates or inserts overly expensive. An area which has
been largely neglected so far is the optimization of XML
specific queries. Besides issues like in Query 2 where the
physical storage scheme prevents extracting of meaning-
ful statistics relational optimization techniques are also
oblivious of XML specifics like constraints imposed by
the hierarchical structure of the document.

4 Challenges

Above, we explained some of the effects that caused sig-
nificant differences with respect to performance charac-
teristics though the physical storage format differed only
slightly. Certainly, a general performance assessment can-
not scrutinize differences on as fine a level of granularity
as we hinted at. Rather we identify 10 general challenges
which aim at providing a comprehensive and conclusive

Bulk loading. The importance of bulk loading

gdata has been repeatedly emphasized when assessing

database performance in general. In XML databases,
bulk loading currently assumes an even more impor-
tant role as no insert/update operations are available
and most systems support insert only on a document
level. Due to the fact that different models imply dif-
ferent levels of granularity when shredding the doc-
ument this seemingly simple operation may entail
severe costs to setup and maintain indices or con-
straints.

ReconstructionAlso know as round-tripping, recon-
structing the original document is the counterpart of
bulk loading. Though being an operation simple to
specify, round-tripping is not a common but still nec-
essary operation in most scenarios. Reconstruction
reveals the price of achieving loss-less storage of the
document, i.e. the trade-off between efficient index-
ing and preserving the full semantics of the docu-
ment.

3. Path traversals.Specifying paths arguably is one of

the most basic and natural operations on structured
documents. Not only useful as a stand alone opera-
tion, path expressions are but ubiquitous part of al-
most all complex operations. Efficient path traver-
sals often bring about a trade-off with respect to re-
dundancy, data volume or degree of fragmentation.

¥ Casting.XML is essentially text and as such queries

frequently demand casting to other elementary data
types like integers, floats or even user-defined types.
String operations are notoriously expensive.

Missing elements. The semi-structured nature of
XML in general brings about a highly heterogeneous
structure of records that under some mappings re-
sults in many NULL values. Apart from strategies to
store NULL values in a compact way, we also need
efficient methods to query for NULLs as they often
represent spots of interest.

6. Ordered accessOrder isthe omni-present feature

when querying XML and affects all aspects of data
management. Obviously, sticking with order pre-
serving implementations may become a severe bot-
tleneck. Rather, sophisticated and flexible treatment
of the document order should ensure that it well in-
tegrated into the optimization process up to a degree
that it is ignored when not needed.

References. References are an important model-
ing primitive almost comparable to referential con-
straints in relational databases. Technically speak-
ing, chasing references requires efficient access

methods supporting random access across the dog-performance of production systems; Téwpressive-
ument rather than navigational access. ness of the query languageg.,the missing restructuring
capability of XPath queries, often determines whether a

8. éoms. Join operatl_(;nslon vaILf[ese.I c;)(t;/tlel_nt, hav? uery engine fits a given application scenario; Lastita
€en seen as a critical aspect early ANIL query | roughputin multi-user application scenarios;
guages lacked. Particularly data-centric applications

require the combination of data based on values. The c fO hio. With | . lexi
difficulties, bottlenecks, and challenges posed kT tal Cost of Ownership. Ith increasing complexity

joins are well-known from relational database sys- software systems, the totql cost of owngrship becomes
tems. more and more important as it usually dominates the costs
of the software itself. With respect to XML processing,

9. Construction of large resultsAs opposed to round- we can identify a number of issues:

tripping, construction of large results refers to as- Installation effort: Does the product work out of the

sembling large new documents from the data stordzbx or does it require extensive multi-stage preparation

Many application areas demand the ability to handéand installation? Generality support:|s it possible to

large data volumes. store documents with and without schema information?
What price does one have to pay for lack of modeling?
X Consistency supportts it possible to validate incoming
text search are elementa_ry (_)pe_ratl_ons_ When aueryiicuments against a schema or other constraftsfa-
XML. The problem and its .|ntr|.n5|c dlﬁlqult|es areation effort: What mapping and schema definition tasks
yvell—known from other appllce}tmn domains, henc%re necessary before the document can be imported (cf.
it hardly needs further motivation. eXcelon vs. Tamino)?Training: Does the Software re-

A benchmark for XML databases needs to address th8s&e extensive training for technical staff or does it inte-
10 points. Given an application scenario, most of the ch@fate into existing infrastructurefhteraction paradigm:
lenges can be directly expressed as a single query, sé?R&S the product provide a stand-alone document man-
however offer a larger degree of freedom and it seems &gement system with tools for direct interaction, or is it

visable to address them with several, differently paranféther an enabling technology for front-end applications?
terized queries. Updates: Does the system provide fine-grained update

functionality or is it restricted to replacing complete doc-
uments?

10. Containment, full-text searciContainment and full-

5 Other Quality Parameters

In the introduction we already outlined why not to

The above challenges are clearly focused on the per ?_.nchmark infrastructure issues qr totgl cost of owner-
ip: A benchmark has to reflect primarily the state of the

mance of the actual XML database as motivated in SE& P)
rt. Given the current developments, we believe a bench-

tion 1. From an application programmer’s perspectiv%, .
other quality parameters of an XML database are visi ark that anresses the performan'ce challenges we listed
ove provides the most valuable input for the advance-

and at first sight, it may seem natural to include thos®:

They can be divided into two groups, infrastructure issufient of XML processing technology. Benchmarks which

and total cost of ownership, we list them here for conllr]CIUde other aspects provide less accurate and insightful

pleteness and underline afterward why we believe th%)f/eedback than we envision.
should not be included in the list of challenges.

6 Conclusion

Infrastructure. Especially if front-end and back-end of
the database are not tightly coupled, communication costse wide choice of architectures and environments makes
may dominate and obscure the performance characteitigdifficult to decide which XML Query Processor and
tics of the query processor. Some of these issues hadch infrastructure fit best a given application. From a
been addressed in XMach-1 [1], a mainly system focusggktem analysis point of view, the noise introduced by the
benchmark. Issues include: infrastructure into which the query engine is embedded

Access protocols like HTTP, OLE DB, ODMG, often obscures the performance of the core components
ODBC, native APlstc, including their noise and trans-and makes fine-tuning and architectural improvements
mission costs, often determine the degree of usabilitgrd to realize. Therefore, the XML Benchmark Project,
of a solution; Result representationdike DOM, SAX, in which we gathered our experiences, aims at providing
serialized XML, or proprietary structures should be itools to analyze and improve query processors and make
line with application requirementf}esponsiveness versense of their performance characteristics. We have moti-
sus completenesise., availability of the first or the com- vated the need for an XML benchmark by pointing out
plete query result, including the influence of lazy evaluahich parts of systems need consideration and adapta-
tion and the availability of cursors can have a great impaiin: while the front-end query language is in the pro-

cess of standardization, there are many performance didtt] J. Goldstein and P. Larson. Qoptimizing Queries Us-
ical issues in the design of the physical storage schema, ing Materialized Views: A Practical, Scalable So-
the physical algebra, query optimizer and execution. The
desiderata listed in this paper are intended to serve as a on Management of Dajgages 331-342, Santa Bar-
basis for a comprehensive performance analysis of XML bara, CA, USA, May 2001.

databases.

[12]

Acknowledgments.The authors would like to thank Ste-
fan Manegold and Niels Nes for their comments on an
early draft of this paper. The first author would also like
to thank Michael Rys for his valuable input.

[13]

References

[1]

(2]

3]

[4]

[5]

[6]

T. Bohme and E. Rahm. XMach-1: A Benchmarkl4]
for XML Data Management. IProceedings of
BTW20010Oldenburg, 2001. Springer, Berlin.

R. Bourett. XML Database Products[15]
nup://www.rpbourret.com/xmi/

XMLDatabaseProds.htm 1, 2000.

R. Bourret. XML and Databasettp://iwww.
rpbourret.com/xmi/XmvLAndDatabases.
htmi, 2000.

[16]

D. Chamberlin, P. Fankhauser, M. Marchiori, and
J. Robie. XML Query Use CaseBItp://Www. [17]
w3.0rg/ TR/Xmiquery-use-cases , 2001.

D. Chamberlin, D. Florescu, J. Robie, J. %iom,

and M. Stefanescu. XQuery: A Query Language fb8]
XML, February 2001. http://www.w3.0rg/

TRIxquery 1.

J. Clark and S. DeRose. XML Path Language
(XPath), Version 1.0, November 1999. W3C
Recommendation, http://www.w3.0rg/ TR/ [19]
xpatn .

[7] A. Deutsch, M. Fernandez, and D. Suciu. Storing

[8]

[9]

[10]

Semistructured Data with STORED. Rroc. of the
ACM SIGMOD Int'l. Conf. on Management of Datal20]
pages 431-442, Philadephia, PA, USA, 1999.

P. Fankhauser, M. Feamdez, A. Malhotra, M. Rys,

J. Simeon, and P. Wadler. XQuery 1.0 Formal Se-
mantics, June 2001. W3C Working Draftttp:
[IWWW.W3.0ra/ TR/query-semantics 1]
D. Florescu and D. Kossmann. Storing and Query-
ing XML Data using an RDMBSIEEE Data Engi-

neering Bulletin 22(3):27-34, 1999.

C. Galindo-Legaria and M. Joshi. Orthogonal Op-
timization of Subqueries and Aggregation. Rroc.

of the ACM SIGMOD Int'l. Conf. on Management
of Data, pages 571-581, Santa Barbara, CA, USA,
May 2001.

lution. In Proc. of the ACM SIGMOD Int’l. Conf.

J. Gray. Database and Transaction Process-
ing Performance Handbook. http://www.
penchmarkresources.com/handbook ,

1993.

C. Kanne and G. Moerkotte. Efficient Storage of
XML Data. In Proceedings of the 16th International
Conference on Data Engineeringage 198, 2000.

D. Lee and W. W. Chu. Comparative Analysis of Six
XML Schema LanguagesACM SIGMOD Record
29(3):76-87, 2000.

J. McHugh, S. Abiteboul, R. Goldman, D. Quass,
and J. Widom. Lore: A Database Management
System for Semistructured DataACM SIGMOD
Record 26(3), 1997.

M. Poess and C. Floyd. New TPC Benchmarks for
Decision Support and Web Commerc&CM SIG-
MOD Record 29(4):64—71, December 2000.

J. Robie, J. Lapp, and D. Schach. XML Query Lan-
guage (XQL). InQL'98 — The Query Languages
WorkshopBoston, MA, USA, December 1998.

A. Schmidt, M. Kersten, M. Windhouwer, and
F. Waas. Efficient Relational Storage and Retrieval
of XML Documents. Ininternational Workshop on
the Web and Databasepages 47-52, Dallas, TX,
USA, 2000.

A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu,
I. Manolescu, M. J. Carey, and R. Busse. The XML
Benchmark Project. Technical Report INS-R0103,
CWI, Amsterdam, The Netherlands, April 2001.

J. Shanmugasundaram, K. Tufte, G. He, C. Zhang,
D. DeWitt, and J. Naughton. Relational Databases
for Querying XML Documents: Limitations and
Opportunities. InProc. of the Int'l. Conf. on Very
Large Data Basesgpages 302—-314, Edinburgh, UK,
1999.

W3C. Document Object Model (DOM)http:
[IWWwW.W3.0rg/DO M/

http://www.rpbourret.com/xml/XMLDatabaseProds.htm
http://www.rpbourret.com/xml/XMLDatabaseProds.htm
http://www.rpbourret.com/xml/XMLAndDatabases.htm
http://www.rpbourret.com/xml/XMLAndDatabases.htm
http://www.rpbourret.com/xml/XMLAndDatabases.htm
http://www.w3.org/TR/xmlquery-use-cases
http://www.w3.org/TR/xmlquery-use-cases
http://www.w3.org/TR/xquery
http://www.w3.org/TR/xquery
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/query-semantics
http://www.w3.org/TR/query-semantics
http://www.benchmarkresources.com/handbook
http://www.benchmarkresources.com/handbook
http://www.w3.org/DOM/
http://www.w3.org/DOM/

	Introduction
	Preliminaries
	Query Algebra
	Query Languages

	Motivating Examples
	Challenges
	Other Quality Parameters
	Conclusion

