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Abstract

A major mystery of glass-forming liquids is the non-Arrhenius temperature-dependence of the average relaxation

time. This paper brie¯y reviews the classical phenomenological models for non-Arrhenius behavior ± the free volume

model and the entropy model ± and critiques against these models. We then discuss a recently proposed model accord-

ing to which the activation energy of the average relaxation time is determined by the work done in shoving aside the

surrounding liquid to create space needed for a ``¯ow event''. In this model, which is based on the fact that intermo-

lecular interactions are anharmonic, the non-Arrhenius temperature-dependence of the average relaxation time is a con-

sequence of the fact that the instantaneous shear modulus increases upon cooling. Ó 1998 Elsevier Science B.V. All

rights reserved.

1. Introduction

Apparently all supercooled liquids are able to
form glasses [1±12]. The glass transition takes
place when the viscosity upon cooling becomes
so large that molecular motion is arrested on
the time-scale of the experiment. The fascination
of this phenomenon lies in the fact that chemical-
ly quite di�erent liquids ± involving ionic interac-
tions, van der Waals forces, hydrogen bonds,
covalent bonds, or even metallic bonds ± have a
number of common properties when cooled to
become highly viscous [3,6,7,12]. Of particular in-
terest here is the temperature-dependence of the
average relaxation time, s. This quantity may be
determined, e.g., as the inverse dielectric, me-
chanical or speci®c heat loss peak frequency. Al-
ternatively, it may be calculated from the
viscosity, g, and the instantaneous (in®nite-fre-
quency) shear modulus, G1, by means of Max-
well's expression

s � g
G1

: �1�

These de®nitions do not give exactly identical av-
erage relaxation times, but the di�erence is insig-
ni®cant for the present purposes. It is widely
believed [1,3,13±25] that di�erent average relax-
ation times are roughly identical because they ba-
sically measure the rate of ``¯ow events'': Most
molecular motion in a highly viscous liquid is
purely vibrational around a potential energy min-
imum. Only seldom does real motion take place.
This happens in the form of a sudden rearrange-
ment of molecules ± a ¯ow event ± a process which
is unlikely because of the large potential energy
barrier to be overcome [1,15,22]. Kauzmann re-
ferred to ¯ow events as ``jumps of molecular units
of ¯ow between di�erent positions of equilibrium
in the liquid's quasicrystalline lattice'' [1]. The
molecules involved in a ¯ow event de®ne a ``relax-
ing unit'' [1], ``cooperatively rearranging subsys-
tem'' [7] or ``cooperatively rearranging region''
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[13], ``quasi-independent unit'' [17], ``thermokinet-
ic structure'' [20], ``molecular domain'' [22], or
``dynamically correlated domain'' [23].

As the glass transition is approached, the aver-
age relaxation time becomes longer and longer.
For typical cooling rates s is of order 103 s at the
glass transition temperature, Tg. From a general
physical/chemical point of view, the temperature-
dependence of s is anomalous in the following
sense. In only very few liquids is s described by
an Arrhenius function (examples are SiO2, GeO2,
BeF2 or albite (NaAlSi3O8) [3]). Predominantly, s
is non-Arrhenius by exhibiting an apparent activa-
tion energy [de®ned as o ln s=o�kBT �ÿ1

] that in-
creases as the temperature decreases. A measure
of the departure from Arrhenius behavior is the
fragility, m, de®ned as the apparent activation en-
ergy at T�Tg in units of kBTg ln�10� [26]. For an
Arrhenius liquid, m, is about 16; for most viscous
liquids m is between 50 and 150. Liquids with large
fragility are termed ``fragile'', liquids with fragility
� 16 are termed ``strong'' [26]. There is a general
tendency that fragile liquids have broader distribu-
tions of relaxation times than strong liquids
[27,28]. This rule, however, is not without excep-
tions [29,30].

In the discussion below we will not distinguish
between the temperature-dependence of average
relaxation time and of viscosity, because these
two quantities are approximately proportional
(in Eq. (1) the temperature-dependence of G1 is
insigni®cant). Also, no distinction is made below
between activation energy and activation free ener-
gy, since this distinction was not done in many
older papers in the ®eld. We identify the tempera-
ture-dependent activation energy from the expres-
sion [25,31]

s � s0 exp
DE�T �

kBT

� �
: �2�

Although DE�T � is quite di�erent from the appar-
ent activation energy, experiments imply that
DE�T � also increases as the temperature decreases.

It is not at all obvious that a general explana-
tion for the non-Arrhenius behavior of chemically
quite di�erent viscous liquids exists, but it seems to
be a reasonable ®rst hypothesis. This paper dis-
cusses models for the non-Arrhenius average re-

laxation time, models that are phenomenological
in the sense that s�T � is determined by some mac-
roscopic property of the liquid. The most famous
phenomenological models for the non-Arrhenius
ss are the free volume model of Cohen, Turnbull
and Grest [14,32±34] and the entropy model of
Gibbs, DiMarzio and Adam [13,35]. These models
and critiques against them are brie¯y reviewed be-
low (see also Johari's review of phenomenological
models Ref. [4]). We then discuss a recently pro-
posed model [36,37], according to which the acti-
vation energy of a ¯ow event mainly originates
in the work done in shoving aside the surrounding
liquid to create enough space for the molecules to
rearrange.

2. Early phenomenological models

The signi®cance of volume was emphasized
long ago by Eyring and coworkers, who suggested
that the viscosity of a liquid is smaller the greater
the number of holes present [38]. De®ning the free
volume per molecule, vf , as the average volume per
molecule in the liquid minus the volume of the
molecule itself, in 1951 Doolittle [39] found that
the viscosity of a number of simple hydrocarbon
liquids may be ®tted by the expression

g � g0 exp
C
vf

� �
: �3�

In 1959 this expression was derived by Cohen and
Turnbull arguing as follows [32]. The molecules
are modelled as hard spheres. A molecule is mostly
con®ned to a cage bounded by its immediate
neighbors. Occasionally, there is a ¯uctuation in
density which opens up a hole within the cage.
Molecular transport occurs only when a void hav-
ing a volume larger than some critical v� forms.
The total ``free'' volume may be distributed in var-
ious ways between the cages. The average relax-
ation time is essentially the inverse of the
probability, P, that redistribution of free volume
by chance creates a void of greater volume than
v�. Turnbull and Cohen calculated this probability
by standard statistical mechanical arguments [32].
Their result is P / exp�ÿC=vf�, leading to Eq. (3)
via Eq. (1). A basic assumption in the free volume
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model is that no energy is required for redistribu-
tion of free volume. When the model is applied
to real liquids, Cohen and Turnbull de®ned the free
volume as that part of the excess volume that may
be redistributed with no increase in energy [33].

In the free volume model the temperature-de-
pendence of the average relaxation time comes
from the fact that the free volume decreases with
decreasing temperature. If the free volume is taken
to be a linearly decreasing function of tempera-
ture, one arrives via Eq. (1) at the Vogel±Ful-
cher±Tammann (VFT) expression,

s � s0 exp
A

T ÿ T0

� �
: �4�

Here T0 is the temperature at which there is no free
volume.

It is noteworthy [4] that in the approach of Co-
hen and Turnbull, the concept of free volume has a
meaning di�erent from that of Doolittle [39]. In
Doolittle's de®nition, the molecular volume is ob-
tained by extrapolating the liquid volume to zero
temperature and consequently the free volume is
zero only at zero temperature.

What critiques may be raised against the free
volume model? The derivation of Eq. (3) may be
questioned because of the primitive way in which
the ``entropy'' (distribution) of free volume is ta-
ken into account. Moreover, despite several at-
tempts [14,33] the very concept of free volume in
Cohen and Turnbull's sense seems to be ill de®ned
operationally for general liquids. When it comes to
a comparison to experiment, the VFT equation,
Eq. (4), often gives a good ®t to data [7,8]. How-
ever, the ®t is seldom perfect; in particular, there
are systematic deviations close to Tg, where the av-
erage relaxation time is apparently always less
temperature-dependent than predicted by Eq. (4)
[7,31,40±43]. A direct test of the free volume model
may be performed by applying pressure to the liq-
uid, since the model predicts that the average re-
laxation time is solely a function of density.
Indeed, s does increase at high pressures, but
quantitatively the free volume model is not con-
®rmed [3]. A further test of the model is based
on the fact that the glass transition is similar to a
second-order phase transition in the sense of Eh-
renfest (with continuity of ®rst derivatives of the

free energy and discontinuity of second deriva-
tives). For the pressure-dependence of the transi-
tion temperature, the hypothesis that the average
relaxation time is controlled by volume translates
into the requirement that the glass transition takes
place at constant volume. This requirement implies
[44]

dTg

dp
� Dj

Da
; �5�

where Dj is the di�erence between the isothermal
bulk compressibility of liquid and glass and Da
the same di�erence for the isobaric thermal expan-
sion coe�cient. Eq. (5) is seldom satis®ed [45,46];
in fact Nieuwenhuizen has recently argued that it
cannot be correct [47].

In the free volume model the glass transition oc-
curs at a ®xed volume. In the theory of Gibbs and
DiMarzio from 1958 [35] the variable controlling
the average relaxation time is the con®gurational
entropy. Evaluating the partition function for a
lattice model of linear polymeric chains in a
mean-®eld approximation, Gibbs and DiMarzio
found that there is a second-order phase transition
at a ®nite temperature, TK, to a low-temperature
state of zero con®gurational entropy. This state
is a ``ground state'' of amorphous packing. Fur-
thermore, Gibbs and DiMarzio argued that in
the neighborhood of TK the energy barrier restrict-
ing transitions between di�erent molecular con®g-
urations is very large, because ``the few states that
could conceivably occur close to TK are widely
separated in phase space, so proceeding from one
to another involves a considerable change in the
topology of molecular entanglements''. In this pic-
ture, the very equilibrium properties of a super-
cooled liquid give rise to kinetic sluggishness
which prevents the equilibrium second order phase
transition from being reached in ®nite time.

These ideas were quanti®ed in 1965 by Adam
and Gibbs [13]. They argued that the size of coop-
eratively rearranging regions, de®ned as ``the
smallest regions that can undergo a transition to
a new con®guration without a requisite simulta-
neous con®gurational change on and outside its
boundary'', diverges as the con®gurational entro-
py goes to zero. The region size is estimated by re-
quiring that at least two di�erent con®gurational
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states should reside in a region, leading to a size
inversely proportional to the con®gurational en-
tropy, Sc. Assuming the energy barrier to be over-
come is proportional to region size, Adam and
Gibbs arrived at the following expression for the
temperature-dependence of the average relaxation
time,

s � s0 exp
C

ScT

� �
: �6�

Close to TK the denominator may be expanded to
®rst order in T ) TK whereby Eq. (6) becomes the
VFT expression Eq. (4) with

T0 � TK: �7�
The entropy model resolves the Kauzmann par-

adox of a negative con®gurational entropy below
TK without just avoiding it (as Kauzmann did
himself [1] by suggesting that crystallization sets
in before TK is reached). The model is in good
agreement with experiment. Thus, Eq. (7) is often
obeyed [8,13,46,48], which is quite remarkable,
given the dynamic de®nition of T0 and the quite
di�erent purely thermodynamic de®nition of TK.
In particular, systems with only small excess spe-
ci®c heats which imply smaller Kauzmann para-
doxes and TKs close to zero, generally tend to be
``strong'', i.e., have VFT T0s close to zero [49].

The entropy model presents a beautiful scenar-
io. Still, it may be critiqued both in regard to its re-
lation to experiment and in regard to its internal
consistency. Experimentally, there is no proof that
a second order phase transition to a state of zero
con®gurational entropy is underlying the laborato-
ry glass transition. In many cases a simple two-lev-
el system model accounts well for excess entropy
data [50]; more generally, the data may be ®tted
with models with only few energy levels [17]. Also,
as mentioned above, the VFT expression fails close
to Tg, where s is usually less temperature-depen-
dent than predicted. Finally, it should be men-
tioned that the identi®cation of excess entropy
with con®gurational entropy rests on an assump-
tion that the glass has the same ``fast'' contribution
to the entropy as the crystal at the same tempera-
ture. As pointed out by Goldstein [51], this as-
sumption is not always realistic because the glass
may have signi®cant contributions to the ``fast''

speci®c heat from anharmonic vibrations and sec-
ondary relaxations not present in the crystal.

In regard to the internal consistency of the en-
tropy model, we ®rst note that the mean-®eld solu-
tion of the lattice polymer model of Gibbs and
DiMarzio is incorrect and that, in fact, the model
has a positive con®gurational entropy at all posi-
tive temperatures [52,53]. Ignoring this objection
and accepting the general idea of a phase transi-
tion to a state of zero con®gurational entropy,
one may reasonably ask [31]: What is the nature
of the amorphous ground state, the ``ideal glass''?
Since this state is unique a simple description of it
would be expected; however none has been pro-
posed. The argument of Adam and Gibbs is also
not compelling. They assumed, ad hoc, that the en-
ergy barrier to be overcome is proportional to the
size of the cooperatively rearranging region.
Though this may seem reasonable, it does not have
to be correct. More generally, approaching a zero-
entropy state does not in itself imply a diverging
relaxation time. There is no compelling link be-
tween dynamics and thermodynamics: in a master
equation description of the dynamics many di�er-
ent possible forms of transition rates, leading to
quite di�erent relaxation behaviors, are consistent
with the same statistical mechanics.

Instead of focussing on volume or entropy as the
variable controlling the relaxation of viscous liq-
uids, potential energy may be the relevant variable,
as ®rst suggested by Goldstein [15]. A number of
authors have since taken this approach
[3,16,17,21±25,54,55]. In the simplest energy con-
trolled models [16,17,21] the transition state of a
region is taken to be temperature-independent
with potential energy, E0, leading to the following
expression for the activation energy in terms of the
average potential energy of one region, E�T � [25]:

DE�T � � E0 ÿ E�T �: �8�
Since the average potential energy decreases with
decreasing temperature, the activation energy in-
creases. Qualitatively, this e�ect is observed in ex-
periment. However, to ®t data for s�T � relatively
large regions are needed, implying much broader
relaxation time distributions than observed [25].
Therefore, the simple picture does not work, and
more involved approaches need to be taken [55].
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3. The shoving model

The above discussed models all assume that re-
laxation depends only on the state of the region in-
volved. A quite di�erent approach may be taken,
where the relaxation rate depends only on proper-
ties of the surrounding liquid. As starting point we
take the fact that molecular interactions are an-
harmonic with strong short-ranged repulsions
and weak long-ranged attractions. As shown by
Widom [56] and Chandler et al. [57], this ``van
der Waals'' picture explains a number of phenom-
ena in liquids. Next, as in the free volume model,
we assume that space is needed for molecules in a
viscous liquid to rearrange. The idea is that, be-
cause of the harsh intermolecular repulsion, rear-
rangement at constant region volume is very
costly, so it is more favorable for the molecules
to spend some energy on shoving aside the sur-
rounding liquid. Suppose the rearranging mole-
cules constitute a sphere which at the transition
increases its radius by Dr. Because the surrounding
liquid may be regarded as an elastic solid on the
short time scale of a ¯ow event, the energy cost
for expanding is for some constant A equal to
A�Dr�2. The energy barrier to be overcome inside
the sphere is some function, f �Dr�. Minimizing
the total energy cost leads to 2ADr � f 0�Dr� � 0.
The ratio between the ``shoving'' work and the
``inner'' barrier to be overcome is denoted by k,
thus given by

k � A�Dr�2
f �Dr� � ÿ

1

2

d ln f

d ln Dr
: �9�

Because of the strong repulsions one expects the
logarithmic derivative of f �Dr� to be numerically
much larger than one, so the shoving work gives
the dominant contribution to the energy barrier.
Consequently, the ``inner'' contribution to the ac-
tivation energy may be ignored.

To calculate the ``shoving'' work I use the fact
that during a ¯ow event the surrounding liquid be-
haves as an elastic isotropic solid with bulk modu-
lus, K1, and shear modulus, G1. These elastic
constants are known to be more temperature-de-
pendent in viscous liquids than in simple liquids
or solids (crystals or glasses). Both K1 and G1 in-
crease as the temperature decreases. The work

done on the surroundings depends linearly on
these constants, thus leading to the observed in-
crease in activation energy with decreasing temper-
ature.

Actually, it is only the shear modulus that is im-
portant. To show this we refer to the theory of
elasticity of isotropic media [58], assuming that
the activation volume is relatively small. If V is
the volume of the cooperatively rearranging re-
gion, it is assumed that DV � V . The activation
energy is the elastic energy stored in the surround-
ings when the volume of the region has expanded
to V � DV . Elasticity theory concerns the relation
between stress tensor, rij, and strain tensor, uij.
The latter is de®ned by

uij � 1

2
oiuj � ojui

ÿ �
; �10�

where oi � o=oxi and ui is the ith component of the
elastic displacement vector, u. For an isotropic sol-
id the bulk and shear moduli K and G are de®ned
[58] by (sum over repeated indices)

rij � Kulldij � 2G uij ÿ 1

3
dijull

� �
: �11�

The equation for static equilibrium is

oirij � 0: �12�
Substituting Eq. (10) into Eq. (11) and subse-
quently Eq. (11) into Eq. (12) leads to

K � 1

3
G

� �
r�r � u� � G r2u � 0: �13�

For a purely radial displacement r� u � 0 and
thus, via the well-known vector identity
r� �r � u� � r�r � u� ÿ r2u, we have r2u �
r�r � u�. When this is substituted into Eq. (13)
one ®nds

r�r � u� � 0; �14�
implying that r � u � C1, where C1 is a constant.
The displacement (which is radial) is found by
solving r � u � rÿ2or�r2ur� � C1, leading to
ur � C2rÿ2 � C1r=3. The latter term diverges as
r!1 and thus C1 � 0. In conclusion r � u � 0,
i.e., there is no compression of the surroundings
during a ¯ow even. Consequently the elastic ener-
gy is proportional to the shear modulus.
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If the radius of the region before the expansion
is R and the change of radius is DR, we have since
DR� R

ur � DR
R2

r2
�r > R�: �15�

The energy density of an elastic solid [58] is
�1=2�Ku2

ll � G uij ÿ �1=3�dijull

ÿ �2
. Since ull � 0 the

energy density is given by Guijuij � G�u2
rr

�u2
// � u2

hh� (all mixed terms such as u2
r/ are zero

because the displacement is purely radial). When
Eq. (15) is used in the de®nition of the strain ten-
sor in polar coordinates, we get for the energy den-
sity 6G�DR�2R4rÿ6. Thus, the elastic energy is given
byZ1
R

6G�DR�2R4rÿ6 �4pr2� dr � 8pG �DR�2 R: �16�

Substituting V � 4pR3=3 and DV � 4pR2DR into
Eq. (16) we ®nd, introducing the ``characteristic
volume''

Vc � 2

3

�DV �2
V

; �17�

for the activation energy (with G � G1�T �)
DE�T � � G1�T � Vc: �18�
For the average relaxation time we thus have [36]

s � s0 exp
G1�T � Vc

kBT

� �
: �19�

Interestingly, extended mode-coupling theory
leads to an expression resembling Eq. (19), except
that G1 is replaced by the zero-frequency bulk
modulus [59]. The prediction of Eq. (19) was com-
pared to experiments on a number of organic liq-
uids in Ref. [36], assuming that Vc is
temperature-independent. Strictly speaking, this
assumption is inconsistent with the energy minimi-
zation leading to Eq. (9), but for a strongly anhar-
monic potential it is easy to show that the
temperature dependence of Vc is negligible com-
pared to that of G1. In Ref. [36] the following ver-
sion of the ``Angell plot'' [26] was used: instead of
plotting the logarithm of viscosity as function of
Tg/T, it was plotted as function of x � G1�T �=T
normalized to one at Tg. The model predicts that

a straight line should result, pointing to a physi-
cally reasonable viscosity prefactor at x� 0.
Ref. [36] compared this prediction to measure-
ments done by three di�erent methods. Overall,
good agreement with the model prediction was
found.

4. Conclusions

Early phenomenological models link the non-
Arrhenius average relaxation time of viscous liq-
uids to con®gurational entropy, free volume, or
potential energy; in Section 2 critiques of these
models were summarized. The shoving model pre-
sents an alternative approach to the non-Ar-
rhenius problem by relating s�T � to the
instantaneous shear modulus. The starting point
of the model is the fact that intermolecular forces
are anharmonic. Anharmonicity enters the model
at three stages. First, the strong repulsions imply
that it is very costly for molecules to rearrange at
constant volume (a qualitative argument reminis-
cent of the free volume model). Secondly, anhar-
monicity implies that the shoving work greatly
exceeds the ``inner'' energy barrier, a quantitative
argument). Finally, the fact that G1 depends on
temperature is itself a consequence of anharmoni-
city (a perfectly harmonic solid has no tempera-
ture-dependence of its elastic constants). Note
that according to the model a liquid is expected
to be more fragile the more anharmonic it is. This
trend is what Angell conjectured arguing within
the entropy model [10].

The shoving model basically involves three pos-
tulates: (1) The main contribution to the activation
energy is elastic energy; (2) This elastic energy is lo-
cated in the surroundings of the reorienting mole-
cules; (3) The elastic energy is shear energy. It is
interesting to note that the model of Bueche [60]
also links s�T � to the elastic properties of the sur-
roundings: A particular molecule is regarded as
surrounded by spherical shells of molecules, shells
that are bound elastically to each other. Bueche's
idea is that if all concentric shells should vibrate
outward in phase, the innermost shell would ex-
pand greatly, leaving the central molecule in a
rather large hole so it could move to a new

J.C. Dyre / Journal of Non-Crystalline Solids 235±237 (1998) 142±149 147



position. To calculate the probability of this hap-
pening Bueche made some further assumptions,
leading to an expression that at high temperatures
gives an Arrhenius expression, but at low temper-
atures a VFT-expression.

Returning to the shoving model, even if one ba-
sically accepts the above three postulates, there are
a number of points leading potentially to devia-
tions from Eq. (19): (1) Eq. (19) is based on a con-
tinuum approximation that may not be applicable
at the molecular level; (2) The ``inner'' contribu-
tion to the activation energy has been ignored;
(3) In real ¯ow events spherical symmetry is prob-
ably violated, leading to some compression of the
surroundings and thus a contribution to the acti-
vation energy proportional to K1.

Ref. [36] gave a discussion of models related to
the shoving model. To the best of the author's
knowledge, the ®rst to predict an expression equiv-
alent to Eq. (19) was Nemilov [61] who in 1968 ±
arguing quite di�erently ± arrived at Eq. (19) with
our Vc identi®ed with the total region volume. At
the present meeting Buchenau presented a model
also leading to Eq. (19) for the average relaxation
time [62]. As emphasized by Buchenau both here
and previously [63], models of this type link short
time dynamics to long time dynamics. At ®rst sight
such a link may seem surprising, but it makes sense
because the transition itself is a very fast process
[64]. Finally, we note [65] that the present mecha-
nism may possibly be applied also to explain the
non-Arrhenius average relaxation times of plastic
crystals [66] and orientational glasses [67].
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