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Why Contextual Preference Reversals Maximize Expected Value

Andrew Howes
University of Birmingham

Paul A. Warren, George Farmer, and
Wael El-Deredy
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Richard L. Lewis
University of Michigan

Contextual preference reversals occur when a preference for one option over another is reversed by the

addition of further options. It has been argued that the occurrence of preference reversals in human

behavior shows that people violate the axioms of rational choice and that people are not, therefore,

expected value maximizers. In contrast, we demonstrate that if a person is only able to make noisy

calculations of expected value and noisy observations of the ordinal relations among option features, then

the expected value maximizing choice is influenced by the addition of new options and does give rise to

apparent preference reversals. We explore the implications of expected value maximizing choice,

conditioned on noisy observations, for a range of contextual preference reversal types—including

attraction, compromise, similarity, and phantom effects. These preference reversal types have played a

key role in the development of models of human choice. We conclude that experiments demonstrating

contextual preference reversals are not evidence for irrationality. They are, however, a consequence of

expected value maximization given noisy observations.

Keywords: expected value maximization, preference reversals, rationality, choice

One of the successes of the rational analysis of human cognition

has been that a number of apparent irrational behaviors have been

shown to be rational given different assumptions about what

shapes adaptation (Hahn & Warren, 2009; Le Mens & Denrell,

2011; Oaksford & Chater, 1994; Trimmer, 2013). For example,

Hahn and Warren (2009) have shown that a consideration of an

individual’s experience of a fair coin toss and of the bounds

imposed by working memory can explain seemingly biased per-

ceptions of randomness. Similarly, Oaksford and Chater (1994)

proposed that human reasoning might be understood as rational

relative to the ecology of an uncertain world, rather than irrational

relative to deductive logic. Despite such successes, one apparent

irrationality of human behavior that continues to challenge the

rational perspective is the contextual preference reversal (Huber,

Payne, & Puto, 1982; Huber & Puto, 1983; Pettibone & Wedell,

2007; Soltani, Martino, & Camerer, 2012; Trueblood, 2012; True-

blood, Brown, Heathcote, & Busemeyer, 2013; Tversky & Simon-

son, 1993; Wedell, 1991). In the current article, we report an

analysis of contextual preference reversals that shows that human

choice can be considered computationally rational (Lewis, Howes,

& Singh, 2014) given the uncertainty introduced by perceptual and

cognitive capacities. The main contribution of this analysis is to

show that preference reversals are inevitable signatures of a ratio-

nal response to the structure of the decision task and simple

assumptions concerning perceptual and cognitive processing. In

particular, preference reversals are a rational consequence of noisy

observations of subjective expected utility and of the ordinal

relations between features. Despite the minimal nature of these

assumptions, we show in this article that the theory predicts and

provides deep explanations of several types of empirically ob-

served preference reversals—empirical regularities that have

played a key role in the development of process theories of choice

that are not grounded in utility maximization.

Contextual preference reversals occur when a preference for one

option (expressed through behavioral choice) over another is re-

versed by the availability of further options. Consider a simple

example. When asked whether you would like a healthy apple A or

a cake B that has 30 g of sugar, you might choose the apple.

However, when told that a second cake D is available (a decoy)
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that has 40 g of sugar, you might switch preference to B. A person

who makes such a switch makes a contextual preference reversal.

Typically, in preference reversal experiments options are described

explicitly in terms of two attribute dimensions and not just one. For

example, in the experiments reported by Huber et al. (1982) the

dimensions included the price and quality of beer. In the Wedell

(1991) experiments participants were offered options with numeric

probability and value features. In both of these circumstances, a

choice between, say, A and B is difficult because A might be higher

than B on one dimension, but lower on the other.

In the decision making literature, a taxonomy of preference

reversal types has been introduced that depends on the relative

positioning of options A, B, and D in the multidimensional

attribute-value space. One well-studied type is the attraction ef-

fect. A gamble version of a preference reversal task with an

attraction effect decoy is illustrated in Figure 1. Option B has a

higher value v than option A but a lower probability p. Option B

dominates D but not A. Options A and B have approximately equal

expected value. In the Figure, given the position of B, A appears in

the top left, and D in the rectangle below B. The presence of D

tends to increase the proportion of B choices. This is known as an

attraction effect because the decoy “attracts” choices to the target,

where the target is the dominating option.

In addition to multiattribute decision problems (Huber et al.,

1982; Huber & Puto, 1983; Simonson, 1989; Simonson & Tver-

sky, 1992) and gambles (Herne, 1999; Wedell, 1991), other par-

adigms have been used to study contextual reversals. One study

used political candidates as stimuli (O’Curry & Pitts, 1995). More

recently, reversals have been observed in choices between rectan-

gles with different areas (Trueblood et al., 2013) and they have

been the subject of analysis in economics (Loomes, 2005). The

effect has also been shown in zoology (Latty & Beekman, 2011;

Parrish, Evans, & Beran, 2015; Schuck-Paim, Pompilio, & Kacel-

nik, 2004), including in birds (Bateson, Healy, & Hurly, 2003;

Shafir, Waite, & Smith, 2002), bees (Shafir et al., 2002), and

ameboid organisms (Latty & Beekman, 2011). In humans it can be

attenuated by increasing blood glucose levels (Masicampo &

Baumeister, 2008), elaborating the descriptions of attributes (Rat-

neshwar, Shocker, & Stewart, 1987), and by increasing the differ-

ence in expected value between the two options (Farmer, 2014). It

has also been observed in perceptual-motor decisions (Farmer,

El-Deredy, Howes, & Warren, 2015).

The fact that people make contextual preference reversals has

been taken as evidence against normative theories of human

choice. In particular, many have suggested that preference reversal

phenomena indicate that people do not make independent evalu-

ations of each option (Ariely & Wallsten, 1995; Huber et al., 1982;

Louie & Glimcher, 2012; Simonson, 1989; Simonson & Tversky,

1992; Summerfield & Tsetsos, 2012; Tsetsos, Usher, & Chater,

2010; Tversky & Simonson, 1993). Preference reversals suggest

that the values of each option are influenced by additions to the set

of available options, which constitutes a violation of the Indepen-

dence from Irrelevant Alternatives (IIA) axiom required in many

value maximizing models (e.g., Luce, 1959). As its name suggests,

the axiom demands that a preference between two options is not

changed by the addition of an option to the set of what is available.

There is a common view that contextual preference reversals are

evidence that people violate value maximization. This belief has

survived for at least 20 years. According to Tversky & Simonson

(1993, p. 1179):

The standard theory of choice—based on value maximization—

associates with each option a real value such that, given an offered set,

the decision maker chooses the option with the highest value. Despite

its simplicity and intuitive appeal, there is a growing body of data that

is inconsistent with this theory.

In the same article, Tversky and Simonson describe why they

believe that context effects are evidence against value maximiza-

tion (p. 1188):

The analysis of context effects, in perception as well as in choice,

provides numerous examples in which people err by complicating

rather than by simplifying the task; they often perform unnecessary

computations and attend to irrelevant aspects of the situation under

study.

More recently, Usher, Elhalal, and McClelland (2008, p. 297)

state, “. . . contextual reversal effects . . . demonstrate a limitation

of rationality in choice preference.” Simonson (2014, p. 1) states,

. . . the belief in irrationality is now widely accepted among the

general public. The most commonly used operationalization of irra-

tionality among decision researchers has been based on violations of

value maximization. Preferring a dominated option or expressing

different preferences depending on the framing of options . . . dem-

onstrate[s] . . . the absence of stable preferences and resulting irratio-

nal decisions.

The main response in psychology and behavioral economics to

the apparent empirical failures of normative models of decision

making has been to pursue process theories of the mechanisms that

value (v)
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 (

p
) A (competitor)

B (target)

D (decoy)

Figure 1. In one type of contextual preference reversal experiment two

options A and B are each described in terms of two features, for example

a probability p and value v. A has a higher probability and B has a higher

value. A has the same expected value as B and they are, therefore, both on

the same line of equal expected value (the dotted curve). A decoy D is

placed in the rectangle to the left and below either A or B (B in the figure).

The decoy in the figure is dominated by B but not by A. See the online

article for the color version of this figure.
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underlie human choice. This approach embraces the distinction

that the normative models prescribe what decision making ought to

be like, and the psychological mechanism or process theories

describe how it actually works in humans. Many of these process

theories have indeed provided successful empirical accounts, and

we briefly review several of the key contributions below. Never-

theless, despite the number and diversity of such theories, they

have not been deployed with the purpose of explaining preference

reversals as a rational adaptation.

In contrast to the process theories, our aim in the work presented

here is to pursue a rational account that explains phenomena as a

consequence of expected value maximization and cognitive con-

straints (Hahn, 2014; Howes, Lewis, & Vera, 2009; Lewis et al.,

2014). This approach is, therefore, one way to pursue an under-

standing of human cognition as computationally rational (Lewis et

al., 2014). This approach has precedents in other areas of cognitive

science. For example, in the account of aimed movement offered

by Meyer, Abrams, Kornblum, Wright, and Smith (1988), the

movement strategy optimizes a speed–accuracy trade-off given

constraints on the available noisy neuromotor control signals. The

authors explicitly frame their contribution as relevant to the “de-

gree to which mental processes incorporate rational and normative

rules.” Similarly, in the analysis by Maloney and Mamassian

(2009) of target selection for aimed movement, the optimal aim

point is derived using decision theory given the assumptions that

motor performance is noisy and that people try to maximize an

objective function in which there is a trade-off between the number

of points awarded for hitting a target and avoiding a penalty

region. The aim point chosen by a participant is a consequence of

the particular individual’s bivariate Gaussian distribution of end

points around each possible aim point and the objective function.

The aim point predicted by decision theory is the aim point that

maximizes expected utility, and there is no need to fit the param-

eters of the decision model to the outcome data.

A number of contributions to the broader decision making

literature have argued that preference reversals can be rational

(Bordley, 1992; McNamara, Trimmer, & Houston, 2014; Shenoy

& Yu, 2013; Trimmer, 2013). For example, Trimmer (2013) shows

that, in an evolutionary context, even options that are never chosen

by an animal can be relevant to a decision. Bordley (1992) argues

that individuals have prior expectations about the value of lotteries

and if these are taken into account then preference reversals will

follow.1 A more detailed discussion of these contributions is

provided at the end of the current article.

In the following sections of the article:

1. We review existing models of preference reversals in

humans.

2. We present a new model of choice between options. The

model is of a task where a human is asked to choose

between options each consisting of a set of features, for

example a probability and a value. This task is used in the

preference reversal paradigm reported by Wedell (1991).

The model combines two noisy observations of each

option. The first observation is based on noisy calcula-

tion of the model’s subjective expected utility. The sec-

ond observation is a noisy observation of ordinal rela-

tions, which is a noisy encoding of the partial ordering

of the magnitudes of the presented probabilities and

values. The model chooses the expected value maximiz-

ing option given these observations.

The assumption that there is noise in perceptual and

cognitive processes, and perhaps uncertainty in prefer-

ences, is uncontroversial (Costello & Watts, 2014; Faisal,

Selen, & Wolpert, 2008; Hilbert, 2012; Loomes, 2005;

Maloney & Mamassian, 2009; Seymour & McClure,

2008; Warren, Graf, Champion, & Maloney, 2012). The

use of ordinal observations is consistent with recent ev-

idence that people make ordinal feature comparisons in

service of decisions (Noguchi & Stewart, 2014).

3. We show that the model predicts preference reversals.

We also show that it obtains higher expected value than

a model that only makes use of noisy calculation.

4. We apply the model to a previously reported empirical

study of preference reversals (Wedell, 1991). The model

predicts preference reversals in three conditions where it

is observed in humans and predicts its absence where it is

not.

5. We show that the model predicts related contextual pref-

erence reversal phenomena, namely the compromise and

similarity effects (Maylor & Roberts, 2007; Trueblood,

2012; Trueblood et al., 2013; Tversky, 1972; Tversky &

Russo, 1969). The compromise and similarity decoy po-

sitions differ from the attraction decoy positions illus-

trated in Figure 1. The compromise decoy might, for

example, have a higher probability than A and a lower

value, so as to make A a compromise between the decoy

and B. The compromise decoy causes the intermediate

item to be selected more often than it would otherwise.

The similarity decoy, as its name suggests, has the same

expected value as the other options and a very similar

probability and value to one of them. The similarity

decoy causes the similar option to be selected less often.

6. We use the model to generate predictions for the phantom

decoy effect. The phantom decoy is positioned so as to

dominate one of the other options on at least one dimen-

sion, but is not available for choice. The predictions are

supported by the results of Soltani et al. (2012) but not by

those of Pettibone and Wedell (2000, 2007). We discuss

the contradictions between these studies.

7. We use the model to generate predictions for the effect of

time pressure (Pettibone, 2012) on preference reversals.

As time pressure increases preference reversal effects

tend to diminish.

8. We discuss the implications of our findings for process

theories of cognition, and contrast our model to others

1 Shenoy and Yu (2013) was brought to our attention by a reviewer of a
previous version of the current article that had been submitted before
publication of Shenoy and Yu (2013). The two approaches were conducted
independently.
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that also consider the rationality of preference reversals

(Bordley, 1992; McNamara et al., 2014; Shenoy & Yu,

2013; Trimmer, 2013).

Background: Models of Preference Reversals

We focus in what follows on models of human preference

reversals in consumer product choice and gamble experiments.

Because it is the primary contextual preference reversal type, we

first introduce the attraction decoy task in more detail. We subse-

quently introduce the related decoys (the compromise, similarity,

phantom, and inferior but nondominated decoys) in a later section

of the article.

The attraction effect preference reversals, as illustrated in Figure

1, are observed experimentally when participants are asked to

choose between options from various product categories including

cars, restaurants, and beers (Huber et al., 1982). Each pair of

options presented to participants shared two features such as price

and quality. Two options A and B, with approximately equal utility

such that each dominated the other on one of the features were

presented. Two weeks after choosing between A and B in each of

the categories, 93 participants returned to answer the same choice

problems but with the decoy D added. The result, aggregated

across product categories, was a nine point increase in percentage

share for the option that dominated the new decoy. A follow up

study (Huber & Puto, 1983) showed that the effect could also be

achieved when the decoy is inferior to, but not strictly dominated

by, one of the options.

The attraction effect has also been shown in choices between

gambles (Wedell, 1991). The stimuli all had an expected value of

approximately $10, but with different probabilities and values. For

example, one problem was to choose between (.83, $12), (.67,

$15), and (.78, $10). The last gamble in this set, the decoy, can be

ruled out because both its P and its V are less than those in the first

gamble. Choosing between the first two gambles is difficult be-

cause while one gamble dominates on P, the other dominates on V.

A paired task was to choose between (.83, $12), (.67, $15), and

(.62, $13). The first two gambles are the same as before but the

new decoy is dominated by the second gamble rather than the first.

In this paradigm, preference reversals can be measured as the

proportion of pairs on which the dominating gamble is chosen in

both variants. This study resulted in about 20% of choices exhib-

iting the attraction effect preference reversal.

There have been many attempts to explain preference reversals

in terms of underlying psychological processes. According to one

early account, Range-Frequency Theory (Parducci, 1974), option

D in Figure 1 extends the range of values on the y-axis thereby

making B’s loss to A appear smaller than if option D were not

present (Huber et al., 1982). In motivational accounts, it has been

proposed that a participant’s desire to be able to justify their choice

to the experimenter leads them to prefer a dominating option

(Simonson, 1989). The argument is that it is easier to justify

choosing B because it dominates one of the other options and A

does not.

Tversky and Simonson (1993) proposed that preference rever-

sals can be explained in terms of two psychological processes: a

process that weights the effect of the background to the decision,

and a comparison process that describes the effect of the local

context. The local context might consist of a choice between three

beers, and the background, experienced before the local context,

might have included five or six other beers. The background

process increases the value of options in the local context if, for

example, they have a price that is lower than prices of beers in the

background. The local context process increases the value of

options that are better than proximal options that are also in the

local context, and it does so by summing the relative advantage

that each option has over other options in the set (Tversky &

Simonson, 1993, p. 1186). The model calculates the relative ad-

vantage that each option has over other options on each feature. In

the attraction effect, the dominating option’s relative advantage

over the decoy exceeds the relative advantage of the other option

over the decoy. Therefore, when the nondecoy options are com-

pared only with each other, they will have equal choice probabil-

ity, but when the decoy is included in close proximity to one of the

options, this option will have a higher choice probability.

Another theory of preference reversals is provided by Decision

Field Theory (Busemeyer & Townsend, 1993), which was devel-

oped as a general theory of the process of deliberation and accu-

mulation of preference over time in decision making. This neuro-

computational model was then extended (Roe, Busemeyer, &

Townsend, 2001) to explain contextual preference reversals. The

model is based on a connectionist network that accumulates pref-

erences for each option over time as the decision maker’s attention

switches, stochastically, between the different options and their

features. Roe et al. (2001) argue that the properties of this accu-

mulation process reveal how the attraction effect arises as a con-

sequence of computing values from differences. Option B wins

over A because it has a bigger relative value to the decoy D than

does A (Busemeyer & Townsend, 1993; Roe et al., 2001).

In Multialternative Decision Field Theory (MDFT), each option

inhibits other options (Roe et al., 2001). The strength of this

inhibition is inversely proportional to the distance between the

options in the feature space. During the deliberation, the decoy

option comes to have a negative valence. Because the decoy

dominating option is nearer than the other option, it receives a

bigger boost from comparison and is more likely to be chosen. Roe

et al. (2001, p. 388) state that attraction effect reversals naturally

follow from the extended theory.

Another neuro-computational process model, the Leaky Com-

peting Accumulator (LCA; Usher & McClelland, 2001) is a model

of perceptual choice and, as with DFT, it has been applied to the

problem of explaining contextual preference reversals (Usher et

al., 2008). In the model, a deliberation process involves comparing

the feature values of each option with each other option. The

calculated differences are then transformed into a preference state

via a loss averse value function. Because the nondominating option

suffers two large disadvantages (one to the decoy and one to the

other option, on the y-axis in Figure 1), and the dominating option

only suffers one large disadvantage (to the other nondecoy option

on the x-axis) the nondominating option accumulates less prefer-

ence and is chosen less often. This explanation is similar to that of

Tversky and Simonson’s (1993) context dependent preference. In

fact LCA can be seen as a neurally plausible implementation of

that model (Usher et al., 2008). In LCA the value function is

influenced by loss aversion. Usher et al. (2008, p. 297) argue that

their account of preference reversals “demonstrates a limitation of

rationality in choice preference.” In other words, it is a side effect

of a system adapted to other, or more general, purposes.
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Bhatia (2013) reports a process model of choice called the

associative accumulation model in which a number of effects,

including contextual preference reversals, are predicted as a con-

sequence of varying levels of association between a feature and an

option. Features that are more accessible, for example, because

they have stronger associations with options, are assumed to have

a bigger impact on the choices made. The level of accessibility can

be influenced by changes to the decision task such as adding more

options or changing the salience of existing options. The model’s

behavior is consistent with a large range of effects that include the

attraction, compromise and similarity effects as well as a gain-loss

asymmetry relative to a reference point, a range of reference depen-

dent phenomena, the alignability effect and the less-is-more effect.

Bhatia’s (2013) associative accumulation model is strongly influ-

enced by MDFT (Roe et al., 2001) and by LCA (Usher & McClel-

land, 2001) but it extends them by providing a formal account of the

whole decision making process (Bhatia, 2013, p. 539).

Trueblood, Brown, and Heathcote (2014) offer a process model

of context effects called the multiattribute linear ballistic accumu-

lator (MLBA). Unlike MDFT and LCA this model offers quanti-

tative accounts of the reversal effects. Where evaluations of MDFT

and LCA have only been made qualitatively, because of the

computational complexity of the simulations, MLBA has an ana-

lytic likelihood function that makes it tractable to fit experimental

data. MLBA models choice as a race for a threshold between

independent accumulators. The speed of each accumulator is de-

termined by a drift rate that is a function of weighted subjective

value comparisons, where the weights reflect the amount of atten-

tion paid to a particular comparison. It is hypothesized that atten-

tion weights should be larger when features are more similar and

weights should be smaller when features are easy to differentiate.

The model performs impressively when compared against MDFT

(see Figure 8 in Trueblood et al., 2014, p. 195).

Wollschläger and Diederich (2012) report a model of attraction,

compromise and similarity effects, and the associated decision

time. The core assumption of this model is that information is

sampled and used to increment counters. Each option has two

counters, one for positive information and one for negative infor-

mation. A random walk of the tree of possible states, where each

state is a vector of positive or negative information counters for

each option, is used to simulate the decision making process in the

standard contextual decision making conditions. The model suc-

cessfully predicts a range of the known phenomena. Unlike DFT

and LCA, inhibition is not required to explain these phenomena.

An advantage of the model is that it generates closed form pre-

dictions for choice proportions and decision time.

Other models suggest that the attraction effect might be the

consequence of low level neural information processing constraints,

such as firing rates. It is possible that relative estimates of value may

be a consequence of adaptation of neuronal firing to optimize sensi-

tivity across large ranges of value (Seymour & McClure, 2008). In

computational neuroscience, Soltani et al. (2012) have proposed a

model in which stimuli are normalized so as to be distinguishable by

neurons that have a firing rate of between 0 and a few hundred spikes

per second. Without normalization, neurons would not be able to

represent the range of experienced values. Soltani et al. (2012) show

that this neural constraint can lead to preference reversals. An impor-

tant contribution of this work is that it takes known facts about

constraints on the operation of neurons and works through their

implications for choice behavior.

In summary, contextual preference reversals have been taken as

strong evidence that human decision making processes do not con-

form to key axioms present in normative theories of rational choice.

This observation has led to a prevalent view that preference reversals

indicate that value maximization approaches cannot be used to ex-

plain behavior (Tversky & Simonson, 1993). Further, influential

process explanations of contextual preference reversals suggest the

effect is a consequence of cognitive-neural information processing

mechanisms (Roe et al., 2001; Usher et al., 2008). Preference rever-

sals, according to these explanations, are an outcome of a bounded

system failing to generate the normatively rational solution. In con-

trast, in what follows, we argue that the decoy provides information

that correctly implies that the dominating option has the highest

expected value. We demonstrate that a rational analysis can explain

why people exhibit a range of preference reversal types, including

attraction, compromise, similarity, and phantom. Thereby, we provide

an analysis of why neural cognitive-neural information processing

models should exhibit these effects.

A Model of Computationally Rational Choice

We assume that the decision problem in a preference reversal

experiment is an expected value maximizing choice between op-

tions, each of which is represented by a set of features, and where

the expected value of each option is a function of its features. Here

we focus on a task in which a choice must be made from a set of

gamble options as in Wedell (1991), each of which is sampled

from a distribution of possible options. Each option has a proba-

bility feature p and a value feature v.

The model makes a pair of observations of the options presented

in the experiment. One observation is a noisy calculation of the

model’s own subjective expected utility. The other observation is

a noisy encoding of the partial order of the features of the options,

here probabilities and values. (The order of the observations in the

model is not important.) We refer to the first observation as the

calculation observation and the second as the ordinal observation.

We assume that these two observations are subject to partially

uncorrelated noise. This is based on the assumption that the two

observation processes are not identical—that they need not operate

at the same time or on precisely the same perceptual input. (The

theory does not commit to the mechanistic sources of the noise.)

Having made the observations, the model chooses the option with

the highest expected value given these two noisy observations.

The model is illustrated in Figure 2 and a corresponding formal

description is given below. Both are illustrated with a choice

among three options, each defined by probability and value fea-

tures, but the model is easily generalizable to other numbers of

options, and other mappings from features to expected value.

1. Each option i � {A, B, D} is a gamble specified by a

�probability, value� pair.

2. The environment distribution E is the distributions of

probability and value. The probabilities p are sampled

from a distribution with range [0; 1] and the values v

are sampled from a distribution with a defined central ten-

dency and spread. Here we assume that the probabilities are

� distributed (with shape parameters a and b) and the values
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are Gaussian distributed (with parameters � and �val) but

the model is not committed to these particular distributional

assumptions. The model allows for a correlation r between

p and v. In general, these distributions allow the modeling of

the distributions of probability and value in the adaptation

environment.

p ~ B(a, b) (1)

v ~ N��, �val
2 � (2)

r � corr(p, v) (3)

3. The calculation observation is M � �MA, MB, MD�
where:

Mi � pi
� � U(vi) � E, E ~N�0, �calc

2 � (4)

The probability p is weighted by an exponential parameter

�. The calculation of Mi is assumed to be subject to unbi-

ased Gaussian noise with standard deviation �calc. This

calculation noise represents all of the noise experienced

through observing probabilities and values and calculating

each Mi. The calculation produces a noisy, and possibly

biased, estimate of the model’s own subjective expected

utility. If � � 1 and U(v) � v then the observationMi is an

unbiased but noisy observation of the expected value.

4. The ordinal observation is a set R of partial orderings,

one for each feature type. To represent pairwise order

relations we define a function f which, subject to a

small probability of error errorf, maps pairs of real

numbers to a member of the set O � ��, �, ��, where

two probabilities are defined as equal if their magni-

tudes are within tolerance 	p and two values are de-

fined as equal if their magnitudes are within tolerance

	v. The probability of ordinal error is the probability

that each order relationship is chosen uniformly ran-

domly from O. For probabilities, the function f is

defined as

f(pi, pj) ��� ,

� ,

� ,

iff pi � pj 	 
p

iff | pi 	 pj | � 
p

iff pi � pj � 
p

(5)

The set R is then the noisy encoding of the partial

orderings of probabilities and values:

R� ��f(pA, pB), f(pA, pD), f(pB, pD)�,

�f(vA, vB), f(vA, vD), f(vB, vD)��
(6)

5. The expected value of each option i given the observa-

tions is:

Figure 2. Given a choice task, the theory of bounds (to the left of the dotted line) is that people make two noisy

and partially independent observations of the task; one is a noisy, and possibly biased, calculation of subjective

expected utility (SEU) and the other a noisy ordinal observation. The order of the observations does not matter.

In the example in the figure the observation of MB is without error but the observation of MA and MD have been

affected by noise; the observation of R is without error. The analysis (to the right of the dotted line) chooses the

option with maximum expected value given the observations M, R and the environment E.
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EVM,R,E(i) � �(EV(i) |M,R, E) (7)

� �(pi � vi |M,R, E) (8)

where we denote the dependence on the observations and

environment with the superscriptM, R, E. EVM,R,E�i� is

the model’s best estimate of EV(i) given a particular

observation of M, R in environment E. In Bayesian

terms, EVM,R,E�i� is the posterior estimate of expected

value given the observations.

6. The expected values of all three options are compared

and the model chooses the option i with the largest

expected value:

i* � arg max
i�A

EVM,R,E(i) (9)

In summary, the model parameters are:

1. Parameters that define the environment distribution E.

These are the shape parameters a and b of the � distrib-

uted probabilities; the mean � and variance �val
2 of the

Gaussian distribution of values; and the correlation r

between the probability and value. (When we fit the

model to data we use the predictive t distribution to model

the distribution of values in the experiment.)

2. The calculation noise �calc
2 and probability weighting param-

eter � associated with the calculation observationM.

3. The probability of ordinal error P(errorf) associated with

determining feature ordinals R, and the ordinal tolerances.

The tolerances were set to the following values for all

analyses presented in the article: 	p � 0.011 and 	v � 1.1.

In the following sections we explore the consequences of the

free parameter settings for the preference reversal rate predicted by

the model.

Results: Deriving Implications of the Theory

All predictions reported in the following sections were gener-

ated using a numerical simulation that had the following stages.

• The simulation first constructed, via Monte Carlo sampling, a

tabular value function that mapped observations to expected

value. It sampled many tasks from the environment distribution

E, madeM,R observations, and computed conditional expected

values. An observation was a pair �M,R� and expected value

was a triple � EVM,R,E�A�, EVM,R,E�B�, EVM,R,E�D� � (see

Definition 7). These conditional expected values were com-

puted by taking the average of the true expected values for

the observed sample tasks that met the condition. One to

fifty billion samples were used to construct the value func-

tion tables in the simulations reported in the article. As

there are three levels of feature ordinal (greater, less, and

equal) and six relationships between features (Definition 6),

there are 36 � 729 possible ordinal observations R. The

three calculation observations M were binned into 120

levels to give 1203 � 1,728,000 possible observationsM.

There were, therefore, a total of 1,259,712,000 possible

combined observations.

• Once the value function had been constructed it was used to

generate choice predictions for tasks (option sets) of inter-

est. These tasks were either tasks sampled from E, or they

were the Wedell (1991) tasks, or they were task types, such

as compromise and similarity, that were not studied by

Wedell (1991) but were generated as variants of the Wedell

tasks. Unless otherwise stated, the predictions for each task

were generated by sampling 1 million observations. For

each observation, the expected values were computed (us-

ing the tabular value function), and the option with the

highest conditional expected value was selected. (The

C2
code and executable are available online at http://

www-personal.umich.edu/rickl/)

Demonstration of Expected Value Maximization

To support the claim that it is rational to make use of ordinal

observations, we randomly generated three-option tasks from an

environment in which options had a probability feature p and a

value feature v (10 million tasks were sampled for each point in the

plot and each task was observed once). The probabilities p were �

distributed with parameters (a � 1, b � 1). The values v were

normally distributed with parameters (� � 100, �val � 5). The

correlation r between p and v was 0 and the probability weighting

parameter was � � 1. The maximum value to the model was

75.69. We compared the value of choices made by the simulation

described above to the value of choices made by a model that only

made use of calculation observations and to the value of choices

made by a model that only used ordinal observations. These

comparisons are illustrated in Figure 3.

Figure 3 shows 2 panels. In each panel the true expected value

of the choice is plotted against noise level. In the left panel the

expected value is plotted against calculation noise �calc. In this

panel, when �calc � 0 the combined observation model observes

calculation with perfect acuity and achieves the maximum value

from its choices. It does so by virtue of the fact that without noise

and with � � 1 the calculation observation observes expected

value, which is why the calculation only observation does as well

at �calc � 0. As noise in the calculation increases the value

received when only using calculation observation diminishes.

However, as this happens, the value of choices made by the

combined calculation and ordinal observation model, and, there-

fore, the expected value, diminishes less slowly because noise on

ordinal observations is not increasing.

In the right panel, expected value is plotted against the probability

of a feature order error P(errorf). In all three models a constant

calculation noise was used (�calc � 30), corresponding to a coefficient

of variation of 0.3. All other parameters were unaltered.

Attraction Effects

In this section we test whether the theory predicts the preference

reversals effects observed in Wedell (1991). Wedell’s experimen-

tal design has the virtues of systematically varying the decoy

position, and using gambles, so that there is an independent prin-

cipled basis for mapping from the features of each alternative to

expected value. We described this study briefly above and expand

the description here.

In each of the experimental conditions there were three options

{A, B, D}. In one condition the decoy was close to option A and in
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the other condition it was close to B. We refer to the option that is

proximal to the decoy as the target and the other option as the

competitor. (Terminology varies in the literature.) Option A always

had a higher probability and option B a higher value. Each partic-

ipant made two choices for each pair of gambles (one choice for

each decoy position).

In the first two experiments reported by (Wedell, 1991), four

positions for the decoy relative to the target were tested. These are

shown in Figure 4. The Range decoy (R), Frequency decoy (F),

Range-Frequency decoy (RF), and R’ (Rprime decoy) were each

set to test a different hypothesis. A preference reversal effect was,

as expected, observed in the asymmetric conditions (R, F, and RF)

where the decoy is positioned closer to one option than to the

other. Furthermore, as expected, the effect was not observed in the

symmetric condition (Rprime), where the decoy is dominated by

both A and B on the value dimension. Rprime is an important

control and shows that merely introducing any decoy is not suffi-

cient to cause preference reversals (Wedell, 1991). The probabil-

ities and values used to model the R, F, RF and Rprime tasks were

those used by (Wedell, 1991).

The theory was tested by generating predictions using the nu-

merical simulation described above. The effect of calculation noise

on preference reversals is shown in Figure 5. The y-axis shows the

reversal rate minus the inverse reversal rate. The reversal rate is

the proportion of trials on which participants selected A when the

decoy was at A and selected B when the decoy was at B for

matched trials that used identical gambles for A and B. In other

words, the reversal rate is the rate at which participants selected the

decoy dominating option in both of a pair of matched trials with

the same A, B features but different decoy positions. The inverse

reversal rate is the rate at which participants selected B when

the decoy was at A and A when the decoy was at B. The reversal

and inverse reversal rate were reported by Wedell (1991). The

inverse rate acts as a control for random variation. The param-

eters of the model were set as follows. The shape parameters of

the � distributed probabilities p were set to the maximum

likelihood values of (a � 1, b � 1) given Wedell’s task

distributions. The other parameters were set to the following

values:

�P�error f� � 0, r � 0, � � 1, U�v� � v�.

Figure 3. The expected value of choice against coefficient of variation for the calculation error (left panel) and

coefficient of variation for the probability of ordinal error (right panel). The different lines are the expected values for

the following models: (a) both a calculation observation and an ordinal observation, (b) only a calculation observation,

and (c) only an ordinal observation are provided. See the online article for the color version of this figure.

Figure 4. Option positions (R, F, RF, and Rprime) used by Wedell

(1991). The dotted line represents the line of equal expected value on

which two of the three options sit (green circles). The third option is the

decoy (red triangle) and it is in one of two positions in each condition. Its

position varies according to condition but it is always dominated by one of

the other two options on at least one feature dimension (probability or

value). See the online article for the color version of this figure.
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There are six panels in Figure 5, each representing the effect of one

level of noise on the calculation observation � � {0, 0.1, 0.3, 0.5, 0.7,

0.9}. Each panel shows the reversal rate for different levels of the

location and scale of the environment distribution for feature values v.

The distribution of v used by Wedell was fitted with a scaled, shifted

t-distribution with location � 19.60, scale � 8.08, and df � 100.

The results in Figure 5 show that preference reversals are

predicted as long as calculation noise is nonzero. When calculation

noise is zero (top left panel), the model predicts no preference

reversals. The panels show how the predicted reversal rate is

moderated by calculation noise and by the expected location and

scale of the v distribution. Most noticeably, increasing calculation

noise increases the preference reversal rate.

Across seven panels, Figure 6 shows the effect of calculation

error and ordinal observation error on preference reversals in each

of the four Wedell conditions. The preference reversal rate in-

Figure 5. Reversals minus inverse reversals for the RF decoy against the predictive location of the distribution

of value v in the environment for multiple levels of calculation observation noise (1 level in each panel) and for

levels of predictive scale (the lines in each panel). See the online article for the color version of this figure.

Figure 6. Reversals minus inverse reversals against the probability of an ordinal error for different levels of

calculation noise. See the online article for the color version of this figure.
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creases as calculation error increases (across panels) and decreases

as ordinal observation error increases (within panels). We also

tested the effect of probability weighting on preference reversals

(see Appendix A) and the effect of the distance of the RF decoy

from the target (see Appendix B).

Figure 7 shows the effect of a negative correlation r � 0

between p and v on preference reversals when �calc � 0.1 and � �

1. We investigated the effect of a negative correlation as it is

plausible that probability and value are negatively correlated in

human experience (Stewart, Chater, & Brown, 2006). As expected,

the preference reversal rate is lower with high negative correlation

between p and v than with correlation nearer to zero. In the figure

it can be seen that the effect of negative correlation is fairly flat for

r � 
0.9. For r � 
0.9 the preference reversal rate reduces

rapidly until at r � 
1 the rate become negative. This is because

at r � 
1 all options have the same expected value and decoys are

selected at the expense of the target. In summary, the analyses in

this section have shown that the model predicts preference rever-

sals as long as the calculation observation is noisy and as long as

the correlation between p and v is greater than about 
0.9.

Model fitting. In this section we report the best fit that we

have obtained of the model to the Wedell (1991) effect sizes. First,

the scale and location of the value distribution were set to the scale

and location of the Wedell task distribution. The probability dis-

tribution parameters were held constant at Beta(a � 1, b � 1) and

the correlation parameter was set to r � 0. No further adjustments

to these parameters were made in the following fits to the human

data.

Next the values of the calculation noise, ordinal noise and �

parameters were adjusted so as to fit the model to the Wedell

(1991) data. These parameters were adjusted so as to minimize the

Root Mean Squared Error (RMSE) between model and data for the

reversal rate, inverse-reversal rate, decoy rate and the difference

between the reversal and inverse reversal rate. (An inverse-reversal

occurred when participants favored the option that did not domi-

nate the decoy.) The fitted values were: calculation noise �calc �

0.35, ordinal error P(errorf) � 0.1, and probability weighting

parameter � � 1.5. The average RMSE was 1.2 percentage points.

The decoy rate of the best fitting model was 2%.

Figure 8 contrasts the fitted preference reversals of the model to

the human data. The top bar graph of the figure shows the human

reversals and inverse reversals for each of the Range (R), Fre-

quency (F), Range-Frequency (RF), and Rprime (R’). It shows that

people exhibited more reversals than inverse reversals in all con-

ditions except Rprime. Wedell (1991) report that these results were

significant. The model effects are shown in the bottom bar graph

of Figure 8. More important, the model fit captures the absence of

an effect of Rprime (Wedell, 1991; see also Figure 6).

In addition, we fitted the model to the inverse reversal rate only.

With this model the calculation observation noise, the ordinal

observation error and � were adjusted to fit the model’s inverse

reversal rates to the human data. The reversal rates were not fitted

for this analysis and are, therefore, predictions. The model pre-

dicted preference reversals in R, F, and RF conditions and it

predicted the absence of an effect in Rprime. However, effect sizes

were larger than those observed in humans.

Discussion. The model described above predicts the qualita-

tive preference reversal effects observed by Wedell (1991). It does

so as long as there is some uncertainty in the observation of pi �

vi and as long as there is some partially independent observation of

feature ordinals. Further, it does so in Wedell’s R, F, and RF

conditions and it predicts the absence of an effect in the symmetric

(Rprime) condition, which provides a control.

The reason that the model predicts these contextual preference

reversal effects is that making preference reversals, when obser-

vations are noisy, is an implication of expected value maximizing

choice. The model shows that there is nothing irrational about

preference reversals given these assumptions. In fact, there is no

sense in which making preference reversals reveals a change in

preferences, once it is understood that the choice tasks in these

experiments are choices with uncertainty about expected value.

Given this uncertainty and the availability of partially independent

ordinal observation, the expected value of options is defined by the

analysis provided above. We offer further explanation on the role

of ordinal observation in contextual choices below.

Compromise, Similarity, and Phantom Effects

In this section we use the same theoretical assumptions to

predict the effects of the compromise, similarity, phantom and

inferior but nondominated decoy positions. All but the last of these

decoy positions are illustrated in Figure 9. The last, the inferior but

nondominated decoy position, was set between the compromise

and F position (see Figure 4) so that it was below the line of equal

expected value and not dominated by either option. To model this

scenario, the ordinal observation was made with the decoy present

(as above) but the model was not permitted to select the decoy

(unlike above). The change is only required to model the task and

involves no changes to the theoretical assumptions.

In the left panel of Figure 9, the two possible positions of a

compromise decoy (red triangle) are shown. All three options in a task

have the same expected value and the decoy is known to increase

human preference for the option that lies between the other two on

the line of equal expected value. In the middle panel, the four possible

positions of the similarity decoy position are shown. Again, only one

of these positions is used in any one task. Two of the positions are

outside of the other two options and two are in between. In all cases,

the similarity decoy is very close to the target option and has the same

Figure 7. The effect of a negative correlation between p and v on

preference reversals when �calc � 0.4. See the online article for the color

version of this figure.
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expected value. The phantom positions are shown in the right most

panel. These are illustrated with red triangles that are open to indicate

that they cannot be chosen.

The predictions of the model in the similarity, compromise,

phantom, and inferior nondominated conditions are shown in Fig-

ure 10. Each panel shows the consequences of different levels of

one of the noise parameters when the other parameters were set

to: �location � 19.60, scale � 8.08, Beta�a � 1, b � 1�,
P�errorf� � 0, �calc

2 � 2.0, r � 0, � � 1�. (The location and scale

of the t-distribution of value are the maximum likelihood values

given Wedell’s materials.) The left panel represents the effect of

calculation noise and the right panel represents the effect of ordinal

error. The panels show the predicted number of target selections

minus the number of competitor selections, where the target is the

option that is proximal to the decoy. This measure is a measure of

the preference for the target over the competitor. It is used instead

of the reversal minus inverse reversal measure used in the previous

section because it is the measure used in the studies reported by

Trueblood et al. (2013) and others. For comparison purposes the

model also shows the number of selections of target minus com-

petitor for the attraction decoy and for when the decoy is absent.

Each line in Figure 10 is for one of the decoy positions. This is an

average of two positions for compromise and phantom decoys and

the average of four positions for the similarity decoy.

The left panel of the figure shows that irrespective of the level

of calculation noise, if the decoy is absent, then each of the two

options are predicted to be selected about half of the time. In

contrast, as calculation noise increases then there is a predicted

positive effect of the attraction and the compromise decoy on

target selections. The compromise decoy prediction is in the same

direction as that observed by Trueblood et al. (2013). The formal

explanation for the compromise effect is in the theoretical assump-

tions described above. Informally, the compromise effect is a

consequence of the expected values of the three options given the

ordinal observation and utility observations. Imagine a set of

randomly sampled option triples given the distributional and cor-

relation properties of the environment. The compromise condition

is a particular subset of this distribution in which pA � pB � pD

and vA � vB � vD. Given the standard definition of the expected

Figure 8. Reversal effects for model fit (bottom) and data from Wedell, 1991 (top). The bar graph shows the

reversal and inverse reversal effects for the four major conditions of the Wedell experiment.

Figure 9. Option positions for compromise, similarity and phantom

choice conditions. In the compromise and similarity tasks only the two

green-circle options and one of the red-triangle options are available. In the

similarity task there are four possible decoy positions all of which have

the same expected value as the other two options. In the phantom case the

decoy option is not available for choice and the phantom option is posi-

tioned so as to dominate one of the other options. See the online article for

the color version of this figure.
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value, then the calculations reported in Figure 10 show that the

expected value of option B is greater than the expected value of

the other two options more frequently than vice versa. However,

the extent to which this outcome is true is dependent on the

environmental parameters; a further analysis of scale and location

of value is provided in Appendix C. In addition, the size of the

compromise effect is moderated by the distance of the compromise

option from the target option; see Appendix D.

Figure 10 also shows the predicted effect of the similarity decoy

and the phantom decoy. The effect of the similarity decoy was found

to be the same for all four pairs of the four similarity decoy positions

and the figure shows the average. When ordinal observation noise is

low, these decoy positions cause the model to predict a reduced

proportion of selections of the option that is close to the decoy, which

is consistent with the observed human behavior (Maylor & Roberts,

2007; Trueblood et al., 2013; Tversky, 1972).

Further investigation of the results revealed that the similarity

prediction is because of substitution; when the similarity decoy is

present then choices that would otherwise have gone to the target

are shared between the target and the decoy, thereby reducing the

number of target selections relative to the situation where the

decoy is absent. Substitution effects have been discussed in con-

sumer choice, and Evers and Lakens (2014) provide evidence that

they explain apparent similarity effects in simple categorization

tasks. As a consequence of the substitution of decoy for target, the

model predicts high rates of decoy selection in the similarity

condition. This prediction is supported by Trueblood (2012) where

the similarity decoy selection rate was about 20% (Trueblood

(2012), p. 966; Figure 3a).

The predicted phantom effect is only present when there is

calculation noise (left panel of Figure 10). As with the similarity

effect, the predicted phantom effect reduces the number of target

selections. This prediction is consistent with some other models,

but not all. The fact that existing models offer inconsistent phan-

tom predictions has been noted before (Scarpi & Pizzi, 2013). Our

model’s phantom prediction is consistent with the results of a

study of lottery choice reported by Soltani et al. (2012). In the

Soltani study, participants were presented with three monetary

gambles on a screen for 8 s and at the end of that period one of the

gambles—the phantom decoy—was removed and the participant

selected one of the remaining gambles within a 2 s period. The

phantom decoy dominated one of the other options. Soltani et al.

(2012, p. 4) found that the phantom decoys decreased the selection

of the target gamble.

While the prediction of our model is consistent with Soltani

et al. (2012), both prediction and data are inconsistent with the

phantom effects observed by (Pettibone & Wedell, 2000, 2007).

Pettibone and Wedell (2007) studied the effect of five phantom

positions in two experiments. The tasks involved consumer

choices such as a choice between computers on the basis of two

dimensions, say memory and speed. The five positions domi-

nated one of the other options on either one dimension or both

and were either closer or further from the target option. The

Pettibone and Wedell (2007) tasks did not involve choices

between gambles, unlike Soltani et al. (2012). In 4 out of 5 of

the decoy conditions in Experiment 1 of Pettibone and Wedell

(2007) a significant positive effect of the phantom decoy was

observed; the phantom decoy increased the proportion of target

selections. The same was true in 2 out of the 5 decoy conditions

in Experiment 2 of Pettibone and Wedell (2007); a significant

effect was absent in 3 of the 5 conditions and, on average, it was

diminished in magnitude. Experiment 2 used a within partici-

pant design and further analysis was conducted to understand

the individual differences. Pettibone and Wedell (2007) split the

participants into three groups, a positive group (N � 79), a low

group (N � 156), and a negative group (N � 27) on the basis

of arbitrary cutoffs in the individual phantom effect size. What

was interesting was the extent to which there was individual

Figure 10. Predicted proportion of target minus competitor selections for five preference reversal conditions

against calculation noise (left panel) and ordinal noise (right panel). The Decoy Absent condition is the control

and represents the two choice task. All parameters, other than those manipulated, were held constant (see text

for details). See the online article for the color version of this figure.
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variation in the effect of the phantom decoy. Of the three

groups, only the group of 79 of the 262 participants generated

a reliable positive phantom decoy effect in all five of the decoy

conditions. The result for the largest group of participants (N �

156) were either mixed or absent (there was little compelling

evidence for a positive or negative phantom effect). The result

for the relatively small group of participants (N � 27) was a

negative phantom effect (as predicted by our analysis). Al-

though this was the smallest group, the negative effect was

present in all five of the phantom conditions and the magnitude

of the negative effect for this group was about the same size as

the magnitude of the positive effect exhibited by the positive

group.

In summary, our analysis of the effect of the phantom decoy

suggests that the average behavior of the participants studied by

Soltani et al. (2012) was rational; by making ordinal observa-

tions relative to an unavailable option suppresses the selection

of options dominated by a phantom, these participants were

behaving in a way that is consistent with an observer that seeks

to maximize the expected value of selected gambles given

noise. Similarly, the individual differences analysis provided by

Pettibone and Wedell (2007) suggests that at least a small group

of their participants made rational, expected value maximizing

decisions, when presented with consumer choice triads that

included a phantom decoy.

Time Pressure Effects

A number of studies suggest that the rate of contextual

preference reversals diminishes as time pressure increases

(Dhar, Nowlis, & Sherman, 2000; Pettibone, 2012; Simonson,

1989; Trueblood et al., 2014). In particular, Pettibone (2012)

has shown an effect of manipulating the time available to view

options on the compromise and attraction effect. In a between-

participants design participants were given 2, 4, 6, or 8 s to view

a three alternative, two attribute, choice set and then asked to

choose. The results of Pettibone’s study are presented in the top

panels of Figure 11. The top left panel is for the attraction decoy

positions and the top middle panel for the compromise posi-

tions. In both figures lower time pressure is to the right on the

x-axis and higher time pressure to the left. As time pressure

increases—right-to-left—it can be seen that the differences

between the target, competitor, and decoy selection proportions

diminishes. It can also be seen that the decoy option is selected

more frequently in the compromise condition than in the attrac-

tion condition. The effect of time pressure on the human sim-

ilarity effect was not investigated by Pettibone (2012) and is not

illustrated, but has been demonstrated empirically by Trueblood

et al. (2014) who found that time pressure diminished the

magnitude of the effect.

The model’s predictions, bottom panels of Figure 11, are

based on the assumptions that (a) even when there is no time

pressure there is some noise in the calculation observation and,

therefore, uncertainty about the expected value of the option

(this is the same assumption as has been made in all previous

analyses in the current article), and (b) the ability of participants

to accurately perceive ordinal feature relationships diminishes

with time pressure and, therefore, the model parameter P(er-

rorf) increases with time pressure. Calculation observation error

was fitted to Pettibone’s data �calc � .5. This value is substan-

tially higher than the fitted value for the model of Wedell

(1991), perhaps reflecting higher uncertainty in Pettibone

(2012)’s participant’s estimates of subjective expected value. In

the Figure, effect on target, competitor and decoy selections is

shown against increasing—right-to-left— ordinal observation

error. The attraction and compromise effects are larger at lower

ordinal observation error than at higher ordinal observation

error. In both model and humans, increased time pressure is

accompanied by a decrease in the target selection rate and an

increase in the competitor and decoy selection rates.

While Figure 11 shows that the quantitative fit of the time

pressure effect is excellent for the attraction and compromise

data reported by Pettibone (2012), the results are a less good

prediction of the effect of time pressure on the similarity effect

reported by Trueblood et al. (2014). However, the time pressure

effects reported by Trueblood et al. (2014) were for tasks with

very different time profiles (a legal inference task and a per-

ceptual size judgment task) to that studied by Pettibone (2012).

Given the differences in the tasks we have not conducted a cross-

experiment comparison of the effect sizes. The important point is

that the similarity predictions are in the same direction as the

human data; time pressure diminishes the effect size.

The Consequences of Ordinal Observation for

Preference Reversals

The analysis above demonstrates that the choice model pre-

sented previously in the article can predict human performance on

a range of contextual choice tasks. Here, we offer two further

analyses so as to help explain why the model predicts preference

reversals.

The Implications of Ordinal Observation for

Expected Value

We have shown that an expected value maximizing model that

makes noisy calculation observations and noisy ordinal observations

makes choices between options that is influenced by the addition of

new options, and gives rise to a pattern of preference reversals that is

in many cases strikingly similar to the human data. The key to

understanding these findings is to understand the implications of

ordinal observation for the expected value of choice. An analysis of

attraction decoy choice tasks given perfect ordinal observation is

provided in Figure 12 where a problem consists of three options A, B,

and D and each option is described in terms of a pair of random

variables; a random probability p and a random value v. Figure 12a

and 12b represent the densities of these random variables for prob-

lems with the reported parametric values and Figure 12c represents

the density of the expected values of these options assuming that there

are no constraints on their relative value.

Decoy absent choice problems (Figure 12d) are constructed by

sampling p and v values for only two options A and B and

accepting samples for which constraint J holds.

J � pA � pB, vB � vA (10)

The densities of the expected values of these options are repre-

sented in Figure 12d. Notice that there is a small difference in the
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expected values of A and B, which derives from the asymmetric

contribution of probability and value to expected value. Notice too

that the advantage in this case is in favor of B; on average B is a

better choice than A in the two choice scenario.

Typically, a constraint is imposed in the decoy present condition

of a preference reversal experiment. This constraint can be repre-

sented with the following inequalities.

L � pA � pD � pB, vB � vA � vD (11)

L captures the fact that A must strictly dominate D but also that

B does not dominate, and is not dominated by, D or A on either

dimension. Decoy present problems are constructed by sampling p

and v pairs for each of the three options from the distributions

illustrated in Figure 12a and 12b and only accepting problems in

which L holds. For these cases Figure 12e represents the densities

of E. It is clear in Figure 12e that, on average, option A has a higher

expected value than the other options. The preference for B in the

two choice task has been altered to a preference for A in the

attraction decoy situation.

In Figure 12f the mean values of p and v for each of A, B, and

D are represented along with 95% confidence intervals (Cis),

which are smaller than the plotted points, and lines representing

Figure 11. Top panels: Observed effects of time pressure on attraction and compromise effects (similarity not

tested) for human target selections, from “Testing the Effect of Time Pressure on Asymmetric Dominance and

Compromise Decoys in Choice,” by J. C. Pettibone, 2012, Judgment and Decision Making, 7, pp. 516–517.

Copyright 2012 by the Society for Judgment and Decision Making. Bottom panels: Predicted effect of ordinal

observation error on preference reversals (x-axis reversed). From left to right: attraction, compromise and

similarity decoys. See the online article for the color version of this figure.
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equal expected value.2 These values are the average values of p

and v given the constraint L. In Figure 12f, it is clear that, given the

prior distributions of p and v when the dominance relationship L

holds, selecting A is expected value maximizing.

The above analysis shows that it can be entirely rational for a

person to select a dominating option A rather than a nondominating

option B when a decoy is present, even when there should be an

advantage for B over A when the decoy is absent. The analysis

thereby explains the empirical observations of Huber et al. (1982)

and also Wedell (1991) as rational choice given uncertainty about

the utility of options.

Figure 13 extends the previous analysis to the compromise and

similarity effects. Probabilities and values were sampled from

distributions with the same parameters as in Figure 12 and then

subsets of options were sampled according to the constraints of the

condition (two-options, attraction, compromise, or similarity). The

top left panel of the figure shows the expected values of two

options that correspond to constraint J (see above; one option has

higher probability and the other higher value). In the middle panel

of the left column, the expected values of the three attraction

options, when the decoy is dominated by the high probability

option, is shown. This panel shows the same result as that shown

in Figure 12. The bottom left panel is also for the attraction

condition but here the decoy is dominated by the low probability

option. The figure shows the reversal in the order of the expected

values of the two superior options when the decoy position

changes. The middle panel extends the analysis to the compromise

condition. Here the constraint used for the middle column, middle

row compromise plot (Compromise A) was:

Lcomp � vB � vA � vD, pD � pA � pB, | ED 	 ET | � 
,

| ED 	 EC | � 
 (12)

2 All values were calculated using numerical simulation given 10 million
samples of A, B, and D probabilities and values.

Figure 12. (a and b) Values of p for each option were sampled from a � distribution with shape parameters

(2, 2) and values of v were sampled, independently, from a Gaussian distribution with mean � 3, SD � 2. (c)

The density of expected values, E � p � v, of options given no constraints. (d) Densities of E | J for each of

two options. (e) Densities of E | L for the three options that include the decoy. (f) E of each of the three options

and their equal expected value curves given L. J and L are ordinal constraints specified in the text. See the online

article for the color version of this figure.
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where � represents some small difference to ensure that the decoy

has an expected value E close to that of both A and B. Lastly, for

one of the similarity conditions, the constraint was,

Lsim � pA � pB, vB � pA, | vB 	 vD | � 
, | pB 	 pD | � 


(13)

The figure shows which option has the highest expected value

changes with decoy position in the attraction (left column) and com-

promise condition (middle column). In the similarity condition, the

decoy is substituted for the target, splitting the target’s share of the

choices.

A Formal Model for Decision Problems With

Ordinal Observation

In this section, we demonstrate that preference reversals are also a

consequence of expected value maximization given utility ordinals.

We assume a decision maker that has no a priori knowledge about the

utility of presented options. We model this situation with two options,

A and B, with utilities that are random variables, UA and UB, sampled

from the same distribution. Assuming UA � UB and in the absence of

any other information p�UA � UB� �
1

2
.

Given the addition of a third random variable UD, also sampled

from the same distribution, where UD � UA and a dominance

constraint K � UB � UD, then by a simple application of Bayes’

rule we see that p�UB � UA � K� � p�UB � UA and K� ⁄ p�K�. The

numerator and denominator can be calculated simply by listing all

six possible and equally likely dominance relationships between

the three values. In three of these scenarios, namely �UB �

UA � UD�, �UB � UD � UA� and (UA � UB � UD) the constraint

K holds; consequently, p(K) �
3

6
. However, in only two dominance

relationships, namely (UE � UA � UD) and (UE � UD � UA), do

both K and UB � UA hold. It follows that the numerator p

�UB � UA and K� �
2

6
and that p�UB � UA � K� �

2

3
.

As a result, given a choice between random variables UA, UB,

and UD, it will be optimal to prefer UB over UA given only the

information that UB � UD. In other words, if UB dominates UD

then UB should be preferred over UA. This analysis shows that it is

rational for a preference ordering between two options to be

influenced by information about the relative value between one of

Figure 13. The expected value of each of three options given ordinal constraints on their probabilities and

values. The left top panel is for two options, one of which has a higher probability and a lower value. The left

middle and bottom panels are for the attraction constraint, the middle column for the compromise constraint and

the right column for similarity. See the online article for the color version of this figure.
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these options and a third option. This analysis holds as long as

there is some uncertainty about the value of the options and the

distribution of utilities is bounded.

General Discussion

We have presented an analysis of choice that demonstrates that

preference reversals are a consequence of expected value maximi-

zation in the face of noisy observations of options. The analysis

assumes two observations: one observation is a noisy, and possibly

biased, calculation of subjective expected utility for each option

and the other is a noisy observation of the partial orderings of

features across options. Contextual preference reversals are pre-

dicted when the calculation observation is uncertain and when the

ordinal and calculation observations are partially independent.

Under these conditions an expected value maximizing model will

exhibit preference reversals in the attraction, compromise, and

similarity conditions. In addition, the analysis showed that rational

choice predicts a number of other preference reversal effects,

including the (target suppressing) phantom effect, the inferior

nondominated effect, the effect of time pressure and the difference

in magnitude of the time pressure effect between compromise and

attraction conditions.

An implication of the analyses is that people who observe

ordinal relationships, subject to noise in their calculation of sub-

jective expected utility, will make better decisions (gain higher

value) than people who do not. If a person who reverses prefer-

ences in the presence of a dominated option does so in environ-

ments where the choice matters, then the extent to which they

maximize expected value will be greater than if they do not. It is

for this reason that preference reversals are not irrational or illog-

ical; nor are they necessarily a departure from the axioms of

rationality as they should be applied to understanding the behavior

of computationally bounded minds. On the contrary, under the

assumptions of the model presented here, a person who fails to

reverse preferences will fail to gain the maximum expected value

available to a model that can only make noisy observations of

options.

One potential limitation of the analysis is that it says only a little

about the underlying information processing mechanisms. The

extent to which rational analysis can inform theories of mechanism

has been the subject of a recent debate (Bowers & Davis, 2012;

Griffiths, Chater, Norris, & Pouget, 2012; Hahn, 2014; McClelland

et al., 2010; Norris & Kinoshita, 2010). From one point of view

our analysis says only that a rational information processing mech-

anism should make preference reversals when new options are

added to the context. This is a contribution at the level of compu-

tational theory (Marr, 1982; Oaksford & Chater, 2007). It is made

by studying the environment of cognition, as recommended by

Anderson (1990). However, our analysis says more. By virtue of

the fact that decisions are bounded by limitations on a person’s

ability to calculate the expected value of options, the analysis

reveals the rational choice given the hypothesized bounds. In this

sense, the analysis shows that preference reversals are computa-

tionally rational (Howes et al., 2009; Lewis et al., 2014). Specif-

ically, the analysis suggests that under uncertainty induced by the

inevitable limitations of biological information processing sys-

tems, a mechanism can improve the expected value of choice if it

makes and uses ordinal observations.

The analysis of rationality that we have used adopts a method-

ological optimality approach, as advocated by Oaksford and

Chater (1994). While the models make use of optimization to gain

their explanatory force, they do not demand that people perform

optimizations, nor that they maximize expected value to the extent

shown to be possible by the particular account above.

Our analysis shows that preference reversals are a consequence

of expected value maximization but not that expected value max-

imization is required for preference reversals. There are many

algorithms for integrating information from multiple sources that

would not be optimal but that would generate higher expected

value than either the calculation or ordinal observations alone. A

bounded information processing system that could only compute

approximate estimates of expected value, for example, should still

exhibit preference reversals so long as it has some capacity to

make ordinal observations. In these circumstances, the use of

ordinal observations leads to preference reversals and to better

decisions as a consequence.

An implication of this observation is that a wide range of

theories of the cognitive mechanisms that predict preference re-

versals may be rationally adapted to the choice task. DFT, LCA,

and Range-Normalization, which offer process explanations of

how contextual reversals might arise as a consequence of interac-

tions between units in a parallel distributed network (Bhatia, 2013;

Roe et al., 2001; Usher et al., 2008) or interactions between

neurons (Soltani et al., 2012), may be mechanism theories of

rational choice given processing limitations. Further, it is conceiv-

able that the rank dependent mechanisms proposed and reviewed

in Roe et al. (2001); Tsetsos, Chater, and Usher (2012); Tversky

and Simonson (1993); Usher et al. (2008); or the comparison only

models (Stewart et al., 2006; Vlaev, Chater, Stewart, & Brown,

2011), are rational. In other words, making comparisons between

features of options, by whatever means, may just be an efficient

way for a bounded information processing system to deal with the

inevitable uncertainty that attends the noisy integration of features.

What the analysis in the current article shows is that, contrary to

some views, these mechanisms and strategies may generate ratio-

nal rather than distorted choices under uncertainty.

Our approach has common purpose with a number of recent

contributions that demonstrate that preference reversals can be

rational under a range of assumptions (Bordley, 1992; McNamara

et al., 2014; Shenoy & Yu, 2013; Trimmer, 2013). As we said,

Bordley (1992) argued that individuals have prior expectations

about the value of lotteries and if these are taken into account

according to Bayesian principles, then preference reversals will

follow. He points out that a correct application of expected utility

theory—that takes into account priors—can lead to very different

decision outcomes than those advertised in much of the decision

making literature. Trimmer (2013) shows that violations of regu-

larity and independence can be optimal in an evolutionary context.

In two models he considers an animal choosing which herd of prey

to attack. The models demonstrate that even options that are never

chosen by an animal can be relevant to a decision and it is,

therefore, not the case that violations of regularity indicate subop-

timal behavior. McNamara et al. (2014) uses a foraging model to

show that an animal that is maximizing its rate of food gain can

violate transitivity and IIA (Independence from Irrelevant Alter-

natives). However, unlike in our model, McNamara et al.’s model

only demonstrates violations of independence when choices may
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not be available in the future (as happens in real-world foraging

environments).

Shenoy and Yu (2013) also describe a Bayesian model of

contextual choice. It is a normative account, following Marr

(1982)’s framework, and informed by economic theory, in which

the assumptions concern what people believe is fair in the mar-

ketplace. In contrast, our model is focused on what is rational

given the constraints imposed by cognitive mechanisms. Further,

where we focus on the combination of multiple uncertain obser-

vations of the task, Shenoy and Yu (2013) assume that uncertainty

in posterior beliefs about market conditions contributes to random-

ness in choice on repeated presentations of the same options (see

also Regenwetter and Davis-Stober (2012) for an analysis of

choice variability and preference consistency). The essence of

Shenoy and Yu (2013)’s explanation is that the introduction of a

decoy moves “the indifference line,” which is an estimate of fair

value in a perceived market. The essence of our explanation is that

ordinal observations allow a decision maker to make improved

estimates of expected values. Furthermore, an important difference

is our derivation that p�UB � UA � UB � UD� �
2

3
that links the

contextual preference reversal phenomena to other decision mak-

ing behaviors that can be explained with an analysis of the Monty

Hall problem (for example, see Chen, 2008; Krauss & Wang,

2003). This analysis (explained above) provides a general demon-

stration of the rationality of preference reversals.

Our analysis (and the other rational analyses) still faces

substantial challenges in showing that all of the empirical

phenomena—including some that are explained by existing pro-

cess accounts—are a consequence of expected value maximiza-

tion. For example, Bhatia (2013) not only explains contextual

preference reversals but also decision making effects such as the

less-is-more effect, the alignability effect, and gain-loss asymme-

try. In addition, Scarpi and Pizzi (2013) demonstrate empirically

that the phantom decoy can either suppress or enhance the pro-

portion of target selections. In their study, they manipulated

whether or not a decoy was “known.” In the “known” condition,

the participants were told, before selecting an option, that the

decoy (the best option) would not be available. In the “unknown”

condition, the participants were allowed to choose before the

decoy was subsequently withdrawn, resulting in most participants

choosing the decoy only to then be told that it is not available. The

effect of the phantom was to enhance target selection in the known

condition and to suppress target selection in the unknown condi-

tion. Our model is not a sequential process model and there is no

straightforward means of generating different predictions for

known and unknown scenarios. However, these data will have to

be addressed in the future.

An additional challenge concerns the computational complexity

of the analysis. Our current computational simulation requires

billions of simulation trials (one billion take about 20 min on a

modern desktop computer) to calculate the expected values of

three options and the number of trials required would grow with

more options. However, there is no theoretical problem posed

here. The theory does not need to be generalized to the case of

larger option set size; it is well-defined for any set size. However,

there are nevertheless two important issues that arise in consider-

ing large set sizes. The first concerns the tractability of generating

the predictions of the model. For larger set sizes, there is no doubt

that more efficient algorithms for approximating optimal solutions

will be required. It is beyond the scope of our current work to

pursue that now. The second issue concerns whether future em-

pirical shortcomings of the model might be identified and under-

stood to be related to human bounds on integrating observations

and managing a large decision space. We think this is also an

interesting area to pursue for future work.

What can we now say about Tversky and Simonson’s (1993),

and others, rejection of people as value maximizers—a rejection

that has in part led to the popular belief that people are irrational

(Simonson, 2014)? We have shown that preference reversals are a

consequence of value maximization and noisy observations. Our

analysis makes the simple assumption, uncontroversial in statisti-

cal decision theory, that value maximization given uncertainty

should make use of available noisy information to calculate the

expected value of options. Value maximization requires making

best use of all of the information available according to its preci-

sion, and doing so leads to preference reversals. Our analysis not

only shows that contextual preference reversals should not be

taken as evidence against value maximizing in people. It also

shows that preference reversals should be read as evidence that

people are value maximizing given the limitations of their neural

mechanisms—that is, they are computationally rational.
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Appendix A

The Effect of Probability Weighting on Preference Reversals

Figure A1 shows that the probability weighting parameter � in Equa-

tion 4 has little effect on the preference reversal rate irrespective of the

level of calculation noise. Preference reversals are observed for all plotted

levels of �. In other words, preference reversals are predicted by an

expected value maximizer irrespective of the presence or absence of bias

in its estimate of its own subjective expected utility.

Figure A1. The effect of � and calculation noise on preference reversal rate for the four conditions in the

Wedell (1991) studies. See the online article for the color version of this figure.

(Appendices continue)
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Appendix B

The Effect of RF Decoy Distance on Preference Reversals

Figure B1 shows that the preference reversal effect diminishes as a

function of the distance of the RF decoy from the target choice. This is

consistent with the effect observed by Soltani et al. (2012). All noise

parameters were set to the values used in Attraction Effects.

Figure B1. The magnitude of the RF preference reversal effect against the distance of the decoy from the target.

The x-axis shows the difference between the target value (v) and the decoy value. The probability of the decoy

was adjusted with v to maintain the RF decoy position.

(Appendices continue)
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Appendix C

The Effect of the Value Distribution Parameters on the Compromise Effect

Figure C1 shows the effect of the location and scale of the value

distribution on the magnitude of the compromise effect. The

compromise effect is smaller at higher values of location. The

effect of location interacts with the effect of scale.

Figure C1. The magnitude of the compromise effect for three levels of the scale of the value distribution

against the location of the value distribution. See the online article for the color version of this figure.

(Appendices continue)
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Appendix D

The Effect of the Compromise Decoy Distance on Preference Reversals

Figure D1 shows the effect of the distance of the compromise

decoy from the target choice. Noise parameters were the fitted

parameters derived in Attraction Effects. At distance � 0, the

decoy is in a similarity decoy position and the preference reversal

effect is, therefore, negative. The effect size increases as the decoy

is moved away from the target choice and then plateaus.
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Figure D1. The magnitude of the compromise effect against decoy distance for two levels of calculation noise.

See the online article for the color version of this figure.
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