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Abstract

In the past, the most widely used neural networks were 3-layer ones.
These networks were preferred, since one of the main advantages of the
biological neural networks – which motivated the use of neural networks in
computing – is their parallelism, and 3-layer networks provide the largest
degree of parallelism. Recently, however, it was empirically shown that,
in spite of this argument, multi-layer (“deep”) neural networks leads to a
much more efficient machine learning. In this paper, we provide a possible
theoretical explanation for the somewhat surprising empirical success of
deep networks.

1 Formulation of the Problem

Why neural networks. In spite of all the progress in computer-based recog-
nition algorithms, we humans still perform many recognition tasks much faster
(and often much more reliably) than computer programs. And we perform
faster in spite of the fact that the fastest of our brain’s data processing units –
neurons – has reaction time ≈10 msec, while computer components operate in
nanoseconds. The explanation lies largely in the fact that in the human brain,
billion of neurons operate in parallel.

Thus, a natural idea is to speed up computer-based data processing, by
simulating the way biological neurons operate. The resulting data processing
techniques are known as artificial neural networks, or simply neural networks,
for short; see, e.g., [1].

Traditionally, neural networks used the smallest possible number of

1



layers. When we have neurons working in parallel, the computation time is
proportional to the number of layers that the signal passes through:

• in each layer, all the processing is done in parallel,

• so, data processing in each layer takes the same time, no matter how many
neurons we use.

Most widely used neurons perform two types of operations: a linear combi-

nation of inputs y = w0 +
n∑

i=1

wi · xi and a non-linear transformation y = s(x)

for some non-linear activation function s(x). Activations functions are usually
assumed to be smooth (at least three times differentiable). The most widely

used activation function is the sigmoid function s(x) =
1

1 + exp(−x)
.

It is known that, for the sigmoid activation function, already 3-layer neurons
are universal approximators; see, e.g., [1]. To be more precise, the following class
of functions can approximate any continuous function f(x1, . . . , xn) on a given
box [x1, x1]× . . .× [xn, xn] with a given accuracy ε:

y =
K∑

k=1

Wk · yk −W0, (1)

where
yk = s(zk) (2)

and

zk =

n∑
i=1

wki · xi − wk0. (3)

In such neurons:

• the original signals xi pass through the first linear layer in which all the
values zk are computed;

• then the second (non-linear) layer computes all the values yk, and

• finally, the third (linear) layer computes the resulting value y.

It is also known that 2-layer neural networks do not have the universal
approximation property. As a result, 3-layer networks used to be most frequently
used.

Recent successes of deep networks: a mystery. Recently, it was empiri-
cally shown that in many cases, it is beneficial to use “deep” neural networks,
i.e., neural networks with a large number of layers; see, e.g., [2, 3, 5, 6, 7].
What is still not clear is why this works better than the more traditional (and
seemingly better) 3-layer network.

Comment. To be more precise, there are qualitative explanations for this em-
pirical phenomena, but they have not been transformed into a precise result:
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• One qualitative explanation is that if we have few neurons on each layer,
then we have fewer combinations of weights on each layer, so it is easier
to try all such combinations.

• Another qualitative explanation is that when we have several neurons on
the same layer, there is a potential duplication of information – since we
can have two identical neurons – but neurons on different layers do not
lead to duplication.

2 Why Deep Neural Networks: Our Explana-
tion

The universal approximation property of 3-layer networks depends on
the choice of the activation function: reminder. In principle, different
activation functions s(x) are used in neural networks. The most important
requirement is that the function s(x) should be non-linear: otherwise, we will
only be able to represent linear functions.

The universal approximation result for 3-layer networks was originally proved
for the sigmoid activation function. A similar result is true for many other
activations functions, but it is not true for many other non-linear functions. For
example, if we use a non-linear function s(x) = x2, then the network (1)–(3)
is only able to compute quadratic functions – and thus, it will not have the
universal approximation property.

Similar results. Similarly, if we select s(x) to be any polynomial s(x) =
a0 · xd + a1 · xd−1 + . . . + ad−1 · x + ad, then every function computed by a
network (1)–(3) is a polynomial of degree ≤ d, and thus, the corresponding
network does not have the universal approximation property either.

A similar negative result holds even if, instead of a 3-layer network, we allow
multi-layer networks with the possibility of ℓ non-linear layers. Indeed:

• the function computed by the network is a composition of functions cor-
responding to each layer; and

• the composition P1(P2(x)) of two polynomials P1(x) and P2(x) of degrees
d1 and d2 has a degree d1 · d2.

Thus, if the activation function is a polynomial of degree d, and we allow ℓ
non-linear layers, then each function computed such a network is a polynomial

of degree ≤ D
def
= dℓ. Thus, such networks are not universal approximators.

Why this is important. Since we are mostly using the sigmoid activation
function s(x), why does it matter that something is wrong with other functions
s(x)? At first glance, the above negative results only emphasize the importance
of using the sigmoid activation function.

In the ideal world, yes. However, in reality, no matter how we implement
the activation function, whether we implement it in hardware or in software, we
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cannot implement is exactly. We can implement the activation function with a
certain accuracy. As a result, in a real neural network, instead of the desired
sigmoid activation function s(x), we actually have an approximate function
s̃(x) ≈ s(x).

And here lies a problem. It is known (see, e.g., [1]) that an arbitrary con-
tinuous function on a box can be approximated, within any given accuracy, by
a polynomial. This is not just a theoretical possibility: when a computer com-
putes a standard non-linear function, be it sin(x) or exp(x), the most widely use
computational algorithms actually compute the sum of the first few terms in the
Taylor expansion of the desired function – i.e., actually compute a polynomial,
the activation function for which the universal approximation property is lost.

Conclusion: the usual formulation of the universal approximation
property is not fully adequate. The usual formulation of the universal
approximation property assumes that we can implement the exact activation
function. In practice, however, we can only implement some approximation
to the ideal activation function – and, if we take that into account, that the
universal approximation property may be lost.

To study real-life neural networks, it is therefore desirable to come up with a
more adequate formulation, that takes into account the fact that an activation
function can only be implemented with a certain accuracy. Let us formulate
this in precise terms.

Definition 1. By a ℓ-layer neural network with activation function s(x) and n
inputs, we mean a (marked) ordered graph whose vertices (called neurons) are
divided into ℓ+ 1 subsets (called layers) 0, 1, . . . , ℓ, in such a way that:

• the 0-th (input) layer has exactly n neurons marked x1, . . . , xn;

• the last (ℓ-th) layer has exactly one neuron marked y;

• an edge from a neuron in the i-the layer can only go to a neuron in a j-th
layer, with j > i;

• some neurons who have only one incoming edge are marked by s; each
such neuron applies the activation function s(z) to the output z of the
incoming neuron;

• for each neuron that is not marked by s, each edge going into this neuron
is marked by a real number wi and the neuron itself is marked by a number
w0; this neuron computes the value

∑
i

wi ·yi−w0, where yi are the outputs

of the incoming neurons.

The markings enable us to compute, layer-by-layer, from Layer 1 to Layer ℓ,
the output of each neuron, until we reach the output of the neuron in the final
layer; its output is called the result of applying the neural network to the inputs
x1, . . . , xn.
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Definition 2. Let δ > 0 be a real number. We say that functions s(x) and s̃(x)
defined on an interval [−X,X] are δ-close if |s̃(x)−s(x)| ≤ δ for all x ∈ [−X,X].

Definition 3. Let s(x) be a given smooth activation function. We say that a
class of neural networks with this activation function has the realistic universal
approximation property if:

• for every continuous functions f(x1, . . . , xn) on a box [x1, x1] × . . . ×
[xn, xn],

• for every two real numbers δ > 0 and ε > 0, and

• for every smooth function s̃(x) which is δ-close to s(x),

there exists a neural network from this class for which,

• when we use the activation function s̃(x),

• for all inputs from the given box, the result of applying this neural network
is ε-close to f(x1, . . . , xn).

Proposition 1. For any ℓ and for any activation function s(x), the class of
all ℓ-layer neural networks does not have the realistic universal approximation
property.

Proof follows directly from the fact that we can approximate any function s(x)
by polynomials s̃(x), and, and we have shown, ℓ-layer neural networks that
use a polynomial activation function do not have the universal approximation
property.

Proposition 2. For any nonlinear activation function s(x), the class of all
neural networks has the realistic universal approximation property.

Comment. The proof of this result is, in effect, contained in [4], where it is shown
that if we do not limit the number of layers, then any non-linear activation
function has the universal approximation property.

Conclusion. In the idealized case, when we assume that we can implement the
activation function exactly, 3-layer networks have the universal approximation
property. However, in a more realistic setting, if we take into account that
we can only implement the activation function approximately, neither 3-layer
networks not network with any fixed number of layer have the corresponding
realistic universal approximation property. Thus, to adequately approximate
different dependencies, we have to consider networks with many layers – i.e.,
deep networks. Thus, this theoretical result explains the need for deep neural
networks.
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