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Abstract. We develop a video understanding system for scene elements,
such as bus stops, crosswalks, and intersections, that are characterized
more by qualitative activities and geometry than by intrinsic appearance.
The domain models for scene elements are not learned from a corpus of
video, but instead, naturally elicited by humans, and represented as prob-
abilistic logic rules within a Markov Logic Network framework. Human
elicited models, however, represent object interactions as they occur in
the 3D world rather than describing their appearance projection in some
specific 2D image plane. We bridge this gap by recovering qualitative
scene geometry to analyze object interactions in the 3D world and then
reasoning about scene geometry, occlusions and common sense domain
knowledge using a set of meta-rules. The effectiveness of this approach
is demonstrated on a set of videos of public spaces.
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1 Introduction

We build on recent research in appearance-based object recognition and track-
ing [1,2,3,4], recovery of qualitative scene geometry from images and video [5,6,7],
and probabilistic relational models for integrating common sense domain mod-
els with uncertain image analysis [8], to develop a video understanding system
that can identify scene elements (cross walks, bus stops, traffic intersections),
characterized more by qualitative geometry and activity than by intrinsic ap-
pearance. The domain models we use are naturally specified by humans, and
characterize scene elements in terms of geometric relationships (sidewalks are
found along roads and are parallel to roads) and activity relationships (people
walk on sidewalks, wait and possibly queue for a bus).

These domain models are related to image analysis (appearance, tracking,
motion) by representing them as probabilistic logical models (Markov Logic
Networks). These logical models, however, describe what typically happens in
the scene and not what is visible in some video of that scene. We bridge this
gap using two methods. First, we recover qualitative scene geometry to analyze
object interactions in the 3D world rather than the 2D image plane. Second,
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we utilize a set of meta-rules that capture general rules about scene geometry
and occlusion reasoning and fuse them with common sense domain knowledge
to detect these scene elements in videos taken from arbitrary viewpoints. This
involves reasoning about unobserved events and inferring their occurrence based
on other observations. Figure 1 provides an overview of our system.
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z4:  ZoneVertical(z4), ZoneNearZone(z4,z5), ...
z5:  ZoneHorizontal(z5), ZoneNearBoundary(z5), ...
z6:  ZoneHorizontal(z6), ZoneOccludedCar(z6,z7), ...
z7:  ZoneVertical(z7), ZoneNearBoundary(z7), ...
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PeopleAppear(z1) ^ ZoneVertical(z2) ^ ZnZ(z1,z2) => Entrance(z1) 
CarsStop(z1,t1) ^ ZoneNearZn(z1,z2) ^ PeopleOrtho(z1,t1) => Crosswalk(z1)
PeopleAppear(z1) ^ ZoneVertical(z2) ^ ZnZ(z1,z2) => Entrance(z1)

PeopleAppear(z1) ^ CarPresent(z2) ^ ZoneOcc(z1,z2) => CarOcc(z1,t1)
PeopleDisappear(z1) ^ CarPresent(z2) ^ ZoneOcc(z1,z2) => CarOcc(z1,t1)
PeopleAppear(z1) ^ CarPresent(z2) ^ ZoneOcc(z1,z2) => CarOcc(z1,t1)
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Scene Element Labels

Fig. 1. System overview. Our scene understanding system consists of an image analysis
module (Section 3) that takes an input video and outputs a set of events and zone
characteristics as observational evidence, a knowledge base (Section 4) that stores
human elicited domain models and general rules about scene geometry and occlusion
as a set of first-order logic rules, and an inference engine (Section 5) based on Markov
Logic Networks that uses the logic rules and observational evidence to infer the labels
of visible scene elements.
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As an example, consider a model for a bus-stop. This model might indicate
that people wait and queue at a bus stop, a bus stops at the bus stop, the
doors to the bus open, people leave the bus through the doors, then the people
waiting enter the bus through the doors, the doors close, and finally the bus
leaves. From the viewpoint in Scenario 1 (refer to Figure 2), all of the activities
associated with this bus stop model are observable. Scenario 2 shows a bus stop
seen from another viewpoint, in which the bus occludes the people waiting to
board, and the bus doors are not visible. In this case, our system reasons about
this occlusion, and determines that what we expect to observe are that the people
waiting for the bus will be gone when the bus leaves, and that new people will
be seen after the bus leaves.

People get into the bus. Bus departs.

People gather. Bus departs. People have disappeared.
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Bus arrives. People not visible.

People gather. Bus approaches.

Fig. 2. Two bus stops observed from different viewpoints. In Scenario 1, all activities
associated with a typical bus stop model are observable. In Scenario 2, the bus occludes
people departing and entering the bus.

We demonstrate our video understanding framework on a dataset of videos
of public spaces. These video sequences were collected using cameras overlook-
ing scenes from varying viewpoints. Each contains multiple scene elements of
interest, such as bus stops, traffic intersections, stop signs, crosswalks, garage
entrances, etc. Our system is able to correctly identify a large number of these
scene elements described by the human elicited domain models.

2 Related Work

Methods to categorize scenes from single images by completely bypassing the
tasks of image segmentation and object detection are described in [9,10,11].
Oliva et al. [9] represented holistic image structure using low level features that
captured the degree of naturalness, openness, ruggedness, etc. whereas Fei-Fei
et al. [10] represented scenes as bags of codewords of texture measures. More
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recently, there have been attempts to jointly solve the tasks of object recogni-
tion and scene classification [12,13,14,15]. Bosch et al. [13] detected objects and
then used the object distribution for scene classification. Murphy et al. [14] com-
bined the holistic image representation of [9] with local object detectors using
a tree-structured graphical model. Li et al. [15] proposed a framework to deal
with three problems simultaneously: object detection, segmentation and scene
categorization.

There has also been progress in recovering surface orientations [5,7] and
occlusion boundaries [16], given just a single image. Recently, Hoiem et al. [17]
proposed a framework in which estimates of surface orientations, occlusion bound-
aries, objects, camera viewpoint and relative depth are combined, enabling au-
tomatically reconstructed 3D models.

Research in the domain of scene understanding from videos has mostly fo-
cused on building models of motion patterns of objects and using these to detect
anomalous behaviors [18,19,20,21]. While Hu et al. [20] propose a parametric
approach to model typical scene behaviors, Saleemi et al. use non-parametric
density functions. Building such typical behavior models can help to improve
foreground detection, detect areas of occlusion and identify anomalous motion
patterns. There have also been attempts to learn activity based semantic re-
gion models for locations such as roads, paths, and entry/exits, most notably
by Makris et al. [19] and Swears et al. [22]. Both these approaches involved
designing a detector for every scene element.

Research in object category recognition has typically focused on building vi-
sual classifiers trained on annotated datasets. Recently however, there has been a
growing interest in building object category models directly from human elicited
descriptions [23,24,25]. Such approaches have the potential to learn unseen ob-
ject categories based on their descriptions in terms of known visual attributes.

3 Image Analysis

Our scene understanding framework has three components: an image analysis
module, a knowledge base and an inference module (refer to Figure 1 for a
system overview). The image analysis module first segments the scene into a
set of neighborhoods called zones. It then analyzes appearance characteristics
of each zone as well as motion properties of objects passing through them, to
generate a set of zone attributes that characterize local scene geometry and
capture occlusion relationships between zones. A set of dynamic events is then
generated for every zone, at every time instant, to describe the behavior of
objects in the scene. The knowledge base consists of domain models describing
the scene elements of interest, as well as a set of meta-rules that capture general
knowledge about scene geometry and occlusion. The inference module, based
on Markov Logic Networks (MLN), integrates events generated by the image
analysis component with the rules in the knowledge base to label scene elements.
The knowledge base and inference module are described in Sections 4 and 5
respectively. The components of the image analysis module are described below.
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3.1 Detection and Tracking

We detect and track three classes of objects: humans, cars and buses. Detection is
carried out using the object detection method proposed in [2]1. For the purposes
of human detection, we directly used a trained model provided along with the
code, which was trained on the INRIA pedestrian dataset [1]. The car detector
is trained using the Caltech Car Rear Training Set and the ETHZ Car Side
Training Set [26]. The bus detector is trained using images from Bing Image
Search. A two level association based tracking method is used to link object
detections into tracks. At the low level, detections are linked to form tracklets
using appearance and proximity features. At the second level, these tracklets are
associated into longer tracks using appearance and motion features. Figure 3b
shows car and human tracks obtained for one of the videos in our dataset.

Cars
Humans

(c) (d)

(a) (b)

Fig. 3. Components of the image analysis module. (a) Background image for Scene I.
(b) Trajectories (Sec 3.1). (c) Zones (Sec 3.2). (d) Horizon line estimate (Sec 3.3).

3.2 Zone Segmentation

The MLN based reasoning module utilizes events generated by the image anal-
ysis framework to assign labels to each part of the scene. To avoid performing
inference at the pixel level, we segment the scene spatially into a set of zones, and
perform inference on each zone. Zone segmentation groups pixels based on their
appearance, location and the motion characteristics of objects passing through
them. This results in a set of zones in which objects display distinct behav-
iors. Examples include locations where people gather and stand still for a long
time (at bus stops), locations where vehicles drive in specific directions (along
drive lanes), locations where cars and people cross each other (at cross walks),
etc.
1 Code obtained: http://www.umiacs.umd.edu/~schwartz/softwares.html

http://www.umiacs.umd.edu/~schwartz/softwares.html
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We begin by obtaining a background image by simply constructing an image
for which a pixel p(i, j) is the median of all pixels in the video at that location.
This image is oversegmented by an image segmentation algorithm [27] to create a
set of superpixels2. A set of features are computed for each superpixel, including:
(1) Appearance - 3 histograms (one each for R,G,B) (2) Motion - Velocity mag-
nitude histogram and velocity orientation histograms (weighted by magnitude)
for each class of passing objects. An affinity matrix that includes the similar-
ity between all pairs of superpixels is created for each feature. The distance
metric used for all histograms is the Earth Mover’s Distance (EMD). In addi-
tion, a location based affinity matrix is also created. This captures the minimum
Euclidean distance between all pairs of superpixels and is calculated efficiently
using the distance transform. Spectral clustering is then used to group super-
pixels into zones. We used the self-tuning method proposed by Zelnik-Manor et
al. [28]3, since it automatically selects the scale of analysis as well as the number
of clusters. Figure 3c shows zones obtained for one of the scenes in our dataset.

3.3 Scene Geometry Analysis

Surface Layout. An estimate of the scene surface layout supports reasoning
about the location of many scene elements. For example, entrance and exit zones
(such as doors into buildings) are typically located where horizontal and vertical
surfaces meet. We obtain a rough surface layout using the method of [5]4 which
classifies pixels into three primary classes: horizontal, vertical and sky. This
estimate uses information extracted from individual images. However, we also
have the additional knowledge of object trajectories that can help us obtain
better surface estimates. Our meta-rules (discussed in Section 4) encode common
sense knowledge about surfaces such as: Objects are supported by a horizontal
surface. Objects might appear out of and disappear into vertical surfaces. Such
rules allow us to correct some of the erroneous surface estimates provided by [5].
Figure 4 shows a surface layout before and after inference by our system.

Proximity Measures. Models of scene elements typically contain predicates
corresponding to notions of proximity in the world, such as nearby, far away, next
to, etc. Distances measured directly in the image plane, however, do not maintain
these scene proximity relationships. Under a unit aspect ratio perspective camera
model, we show how to compare segment lengths measured at different parts of
the image based on their true lengths in the 3D world. We break the problem
down into two components: segments parallel to the camera axis (lengths along
a column of pixels) and segments parallel to the camera image plane (lengths
along a row of pixels), shown in Figure 5.

2 Code obtained: http://www.wisdom.weizmann.ac.il/∼ronen/

index files/segmentation.html
3 Code obtained: http://www.vision.caltech.edu/lihi/Demos/
SelfTuningClustering.html

4 Code obtained: http://www.cs.uiuc.edu/homes/dhoiem/
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HorizontalVertical

(a) (b)

Fig. 4. Surface layout estimates before and after inference by our system. The road
visible in the far distance is erroneously labeled as a vertical surface (in (a)), but
corrected after inference (in (b)), due to the presence of objects passing over it.

Fig. 5. Schematic relating image plane distances to ground plane distances

Consider Figure 5a. As in [6], we translate our image co-ordinates (u, v) to
(û, v̂) so that v̂ = 0 for every point on the horizon line and v̂ > 0 below the
horizon line. In this new co-ordinate system f1 represents the foot location in
the image of a person at a distance z1 from the camera and f ′

1 is the foot location
when the person takes a step Δz1 parallel to the camera axis to be located at a
distance z′1 from the camera. Now, f1z1 = f ′

1z
′
1 = fyc. Consider a person at a

second location in the scene taking a step Δz2. This gives us: f2z2 = f ′
2z

′
2 = fyc.

A little algebra yields (f ′
1−f1)f2f ′

2
(f ′

2−f2)f1f ′
1

= Δz1
Δz2

. Now consider Figure 5b. Here the
person moves from foot location f1 to a new location f ′

1 parallel to the camera
image plane. One can obtain: Δi1yc = Δz1f1, where Δi1 represents the image
plane distance between the two feet locations. For a second person at a new
location, we obtain: Δi2yc = Δz2f2. This yields Δi1

Δi2

f2
f1

= Δz1
Δz2

. Given the horizon
line, the above equations relate distances (segment lengths) measured at different
locations in the image plane, based on the true 3D measurements. Measures such
as nearby, far away, etc., when defined at one location in the image, can be thus
transformed to equivalent measures at other locations.

The horizon line is estimated using the method of Lv et al. [29]. Consider two
vertical poles of the same height in the scene. The two lines joining their foot
locations and head locations, respectively, intersect at a point on the horizon
line. Thus, three non-coplanar poles of the same height uniquely determine the
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horizon line. In practice, we have a large number of people walking through each
scene. Each pair of detections (from the same human track) provides us with an
estimate of a point lying on the horizon line. A least squares estimate of many
such detection pairs yields a good horizon line estimate (shown in Figure 3d).

Zone Transitions. While the distance measures described above help define no-
tions of proximity in the scene, they do not capture the restrictions imposed on
object trajectories due to the scene layout. For example, a sidewalk is located ad-
jacent to a road, yet vehicles typically do not traverse between roads and side-
walks. We characterize typical traffic patterns in the scene in terms of the average
transition times of objects between one zone and another. These patterns are rep-
resented as transition matrices, one for each object class. Zone pairs that do not
have any traffic flowing between them, are assigned a large transition time by de-
fault. Figure 6 shows examples of proximal zones. Note that cars typically conform
to fixed directions, where as people walk along paths in both directions.

Proximal Zones for Cars Proximal Zones for People

Fig. 6. Examples of proximal zones based on zone transition matrices. (a) Vehicles
travel from red zones onto yellow zones within a short time span. (b) People walk from
blue zones onto yellow within a short time span.

Directionality. User descriptions of scene elements often involve spatial prepo-
sitions which provide a notion of directionality, such as in front of, behind, to the
left of, etc. Under the assumption that objects move in the direction in which
they are facing, we define four directions with respect to the motion of the ob-
ject: left, right, front and behind. Furthermore, some zones in the scene exhibit
a single dominant direction of motion (based on the objects that pass through
them). This is especially true of zones located on the road, on which vehicles
strictly follow a single direction of motion. The four directions defined above are
also noted for such zones, with respect to the centroid of the given zone.

3.4 Zone Occlusion Relationships

As objects move through the scene, they occlude different areas of the scene as
well as objects present at those locations. This is a common source of errors in
a typical computer vision system. Knowledge about typical occlusion areas can
provide valuable information to the scene understanding framework. For exam-
ple, people trajectories ending at a location suggest the presence of a doorway to
a building at that location. However, the observation of a vehicle parked nearby,
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with the knowledge that it may causes occlusions at the former location, can
prevent such an inference error. We represent occlusion relationships between
zones using a binary matrix OC (one for each object class). For every object
that passes through a zone zi, we determine zones in the scene that intersect the
object bounding box in the image plane (indicating potential occlusions), while
the object was within zi. If a zone zj consistently undergoes occlusion by objects
in zi, the indicator variable OC(zi, zj) is set to 1.

3.5 Event Generation

Short time spans of 20 frames are grouped together to form a temporal window. A
set of dynamic events is generated at every zone within each temporal window.
These events characterize the location, motion and trajectory of objects in a
given zone during the given window. This results in a large set of evidence
ground atoms passed to the inference module throughout the duration of the
video sequence. In addition, the image analysis module also generates a set of
zone characteristics and inter zone relationships, as described above. These are
also represented as evidence atoms and passed on to the inference module.

4 Knowledge Base

The knowledge base consists of two components: a set of scene element models
and a set of meta-rules that capture information about scene geometry, occlusion
reasoning as well as common sense knowledge that applies to many domains. We
begin with a description of our approach to represent uncertain knowledge, and
then proceed with outlining the two components of our knowledge base.

4.1 Knowledge Representation

Knowledge is represented as first order production rules. The rules are repre-
sented in clausal form, whereby each rule is a conjunction of clauses and each
clause is a disjunction of literals. Rules are constructed using variables such as
zone, time, etc. Some variables are typed. Such variables have mutually exclu-
sive and exhaustive values. For example, the typed variable appearPersonReason
signifies an explanation for the birth of a person track and must take one of the
following values: {TrackingFailure, OcclusionByCar,...}.

We use two types of predicates. The first represents events in the video and are
associated with a particular zone and time instant (PersonAppear(zone,time)).
The second represents properties of individual zones (ZoneIsVertical(zone)), re-
lationships between zones (ZoneNearZone(zone, zone)) and relationships between
time instants (ShortlyAfter(time, time)). These predicates need only be calculated
once for the entire video sequence.

Each rule in our knowledge base is associated with a weight that indicates
its confidence. We use three degree of confidence for rules of absolute certainty
(weight = M), for ones with lesser certainty (0.5M) and for rules that may be
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true a very small fraction of times (0.25M). One may infer the certainty of a
human elicited rule by frequency adverbs such as always, never, rarely, etc.

Some of the predicates generated by the image analysis module, such as
ZoneIsVertical(zone), have a confidence value associated with them. Such un-
certain predicates are integrated into the first order rules using the method em-
ployed in [8]. Consider a predicate P with a weight w. We introduce a dummy
observation predicate OP along with a rule OP → P and associate the weight w
with this rule. The predicate OP does not have any weight associated with it.

4.2 Scene Element Models

Each scene element is described by a logical model comprising a set of first order
rules. These logical models describe a scene element on the basis of what typically
happens in a scene at that element. For example, the logical model for a cross-
walk consisting of logic rules with confidence measures is given in Figure 75. The
numbers in parentheses represent the weight assigned to each rule (recall that M
represents the highest weight assigned in the knowledge base). The presence of
people walking on the road indicates that they might be passing over a crosswalk
(Rule 1). However, pedestrians often disobey laws and cross the road at other
locations. The presence of a car waiting for people to cross the road is a stronger
indication of a crosswalk and is thus assigned a higher weight (Rule 2).

Rule1: (0.25M)  PeopleMove(z1,t1) ^ ZoneClassA(z1,Road) => ZoneClass(z1,Crosswalk)
Rule2: (0.5M)   PeopleMove(z1,t1) ^ ZoneClassA(z1,Road) ^ CarStop(z2,t1) ^
                ZoneTransitionCar(z2,z1) => ZoneClass(z1,Crosswalk)
Rule3: (0.5M)   ZoneClassA(z1,Road) ^ ZoneTransitionPeople(z2,z1) ^ ZoneClassA(z2,Sidewalk) ^
                ZoneTransitionPeople(z1,z3) ^ ZoneClassA(z3,Sidewalk) => ZoneClass(z1,Crosswalk) 
Rule4: (1.0M)   !ZoneClass(z1,Road) => !ZoneClass(z1,Crosswalk)

Crosswalk Model:

Fig. 7. First order logic rules representing a crosswalk model

4.3 Meta-Rules

In addition to the scene element models, the knowledge base also consists of a
set of meta-rules, which encode information relating to scene geometry, occlusion
handling, common failures of low level computer vision modules as well as com-
mon sense knowledge about the world. They only need to be written once, but
are then widely applicable over a large number of domains. For instance, consider
the scene element Building Entrance/Exit. Entrances and exits are typically char-
acterized as sources and sinks of person tracks. There are however, a variety of
situations that may lead to an initiation of a person track such as: exiting a vehi-
cle, tracker identity switching, occlusion within a group of people, etc. Our meta
rules encode such possibilities. This enables the inference module to reason about
plausible explanations when it encounters a new person track. This reduces the
number of false locations that might be labeled as an entrance-exit.
5 Other models provided at: http://www.umiacs.umd.edu/~ani

http://www.umiacs.umd.edu/~ani
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5 Inference Using Markov Logic Networks

There has been a growing interest in problems related to knowledge representa-
tion and learning in domains that are rich in relational as well as probabilistic
structure. Markov Logic Networks (MLN) are one such representation that com-
bine first order logic with probability theory in finite domains [30]. They support
the specification of statistical models using intuitive and understandable first or-
der rules. A first order knowledge base, by itself, is often impractical to use for
real world problems. Each rule in such a knowledge base is a hard constraint.
A world that does not satisfy a single formula gets assigned a zero probability.
MLNs attempt to relax these hard constraints using weights for each formula.
The probability of a world is dependent upon the number of formulae that the
world satisfies and the weights assigned to those formulae. MLNs can also be
viewed as a template for constructing ordinary Markov networks. Given a set
of formulae and constants, a MLN produces a Markov network. Based on the
constructed network, marginal distributions of events given the observations can
be computed using probabilistic inference. We use the Alchemy system [31] to
represent our rules and perform inference on the resulting MLN6.

5.1 Local Inference Procedures

The image analysis module generates a large number of evidence ground atoms
within every temporal window, for every zone in the scene. Over the entire
video, the number of ground atoms gets prohibitively large, rendering infer-
ence intractable. However, the spatio temporal interactions between objects,
that characterize the scene elements of interest are sufficiently local in nature,
both spatially and temporally. For instance, consider the crosswalk model in
Figure 7 described by the interaction between people walking on the crosswalk
and vehicles waiting on the road adjacent to it. Interactions between objects at
locations far away from the crosswalk do not affect inference about the given
zone. Likewise, interactions between people and vehicles at the crosswalk, at
other times in the video, are largely independent of the current interaction.

We break down the large inference problem into smaller ones, carried out in
every zone and at regularly spaced time instants. For every such spatio temporal
location, the inference procedure takes into consideration events generated at a
set of neighboring zones and time instants. For each zone, votes for each label,
which are generated over the duration of the video, are aggregated to determine
the final scene element label associated with that zone.

6 Experiments

We demonstrate our scene understanding framework on a dataset of 5 videos of
public spaces, totaling over 100,000 frames (about 58 minutes). The video data

6 Code available: http://alchemy.cs.washington.edu/

http://alchemy.cs.washington.edu/
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has been collected using cameras overlooking scenes from varying viewpoints.
Each scene contains a large amount of pedestrian, car and bus traffic passing
through it. Over the entire dataset, the number of pedestrians, cars and buses is
approximately 700, 500 and 25 respectively. The data has been collected in high
definition mode (1920x1080 pixels). Figure 8 shows some representative frames.

The scene elements that we seek to identify are: Road, Sidewalk, Other Path
(other paths taken by people, which are not sidewalks), Bus-stops, Stop-sign
Zones, Crosswalks, Entrances-Exits for People (typically buildings) and
Entrances-Exits for Vehicles (typically garages). Figure 8 shows the labels as-
signed to different regions of the scenes. The system is able to correctly identify
a large number of the scene elements using the human elicited domain models.

Our scene understanding framework is effectively able to reason about the scene
geometry and occlusions to identify scene elements from widely varying viewpoints.
Recall the example of a bus-stop observed from two viewpoints (Figure 2). Scene

III

I

II

II

V

V

Road Bus-Stop
Sidewalk
Other Path
Pedestrian Entrance Vehicle Entrance

Stop Sign Zone
Crosswalk

IV

IV III

I

I

Fig. 8. Scene element labels determined by our system for Scenes I-V along with a
representative image from each scene
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III contains a view of a bus-stop in which we are able to observe people entering
and exiting the bus. Scene II and IV, on the other hand, contain views of bus-stops
in which the doors of the bus are not visible. The system reasons about people that
might have entered and exited the buses that stopped at the location and correctly
identifies all bus stops. Two locations are marked as bus-stops in Scene III, since
buses stop one behind the other in this scene.

Pedestrian crosswalks are also correctly identified in all scenes, with the excep-
tion of a partially visible crosswalk in Scene II. These include the three crosswalks
visible in the far distance in Scene III. A fair number of people tend to cross
roads at locations other than crosswalks. However, cars do not always stop for
such jaywalking violations. The system correctly identifies crosswalk locations
using this additional information and suppresses the false alarms. Vehicle and
pedestrian entrances are identified on the basis of track appearances and dis-
appearances into vertical surfaces. Scene I shows a correctly identified garage
entrance. The other detections in Scene I are not garage entrances, but they
correspond to locations in the scene (away from the image boundary and close
to vertical surfaces) where cars enter and exit the camera frame. Scene V shows
a loading dock correctly marked as an entrance/exit for people. We fail to detect
one of the doorways in Scene III (primarily due to a leafless, yet occluding tree),
but another entrance in the distance away is correctly determined.

Roads, Sidewalks and Other Paths are also identified in each scene. Sidewalks
are defined to be paths adjacent to roads and parallel to them on which people
walk. Zones are considered parallel to one another if the orientations of objects
passing through them are similar. Stop-sign zones are also detected in the scenes.
The system does not merely depend on locations where cars stop-and-go, but
also uses information such as Stop zones are located adjacent to cross-walks and
at intersections. Scene V shows a false alarm caused by cars frequently stopping
at a busy crosswalk. Such false alarms can be reduced by analyzing a larger
amount of data, spanning different times of the day.
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N00014-09-10044.
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