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Abstract

The centrality-lethality rule, which notes that high-degree nodes in a protein interaction network tend to correspond to
proteins that are essential, suggests that the topological prominence of a protein in a protein interaction network may be a
good predictor of its biological importance. Even though the correlation between degree and essentiality was confirmed by
many independent studies, the reason for this correlation remains illusive. Several hypotheses about putative connections
between essentiality of hubs and the topology of protein–protein interaction networks have been proposed, but as we
demonstrate, these explanations are not supported by the properties of protein interaction networks. To identify the main
topological determinant of essentiality and to provide a biological explanation for the connection between the network
topology and essentiality, we performed a rigorous analysis of six variants of the genomewide protein interaction network
for Saccharomyces cerevisiae obtained using different techniques. We demonstrated that the majority of hubs are essential
due to their involvement in Essential Complex Biological Modules, a group of densely connected proteins with shared
biological function that are enriched in essential proteins. Moreover, we rejected two previously proposed explanations for
the centrality-lethality rule, one relating the essentiality of hubs to their role in the overall network connectivity and another
relying on the recently published essential protein interactions model.
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Introduction

An intriguing question in the analysis of biological networks is

whether biological characteristics of a protein, such as essentiality,

can be explained by its placement in the network, i.e., whether

topological prominence implies biological importance. One of the

first connections between the two in the context of a protein

interaction network, the so-called centrality-lethality rule, was

observed by Jeong and colleagues [3], who demonstrated that

high-degree nodes or hubs in a protein interaction network of

Saccharomyces cerevisiae contain more essential proteins than would

be expected by chance. Since then the correlation between degree

and essentiality was confirmed by other studies [4–7], but until

recently there was no systematic attempt to examine the reasons

for this correlation. In particular, what is the main topological

determinant of essentiality? Is it the number of immediate

neighbors or some other, more global topological property that

essential proteins may have in a protein interaction network?

Jeong and colleagues [3] suggested that overrepresentation of

essential proteins among high-degree nodes can be attributed to

the central role that hubs play in mediating interactions among

numerous, less connected proteins. Indeed, the removal of hubs

disrupts the connectivity of the network, as measured by the

network diameter or the size of the largest connected component,

more than the removal of an equivalent number of random nodes

[3,8]. Therefore, under the assumption that an organism’s

function depends on the connectivity among various parts of its

interactome, hubs would be predominantly essential because they

play a central role in maintaining this connectivity.

Recently, He and colleagues challenged the hypothesis of

essentiality being a function of a global network structure and

proposed that the majority of proteins are essential due to their

involvement in one or more essential protein–protein interactions that

are distributed uniformly at random along the network edges [9].

Under this hypothesis, hubs are proposed to be predominantly

essential because they are involved in more interactions and thus

are more likely to be involved in one which is essential.

In this work we carefully evaluate each of the proposed

explanations for the centrality-lethality rule. Recently several

hypotheses that linked structural properties of protein interaction

networks to biological phenomena have come under scrutiny, with

the main concern being that the observed properties are due to

experimental artifacts and/or other biases present in the networks

and as such lack any biological implication. To limit the impact of

such biases on the results reported in our study we use six variants of

the genomewide protein interaction network for Saccharomyces cerevisiae

compiled from diverse sources of interaction evidence [10–15].
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To assess whether the essentiality of hubs is related to their role

in maintaining network connectivity we performed two tests. First,

if this were the case, then we would expect essential hubs to be

more important for maintaining network connectivity than

nonessential hubs. We found that this is not the case. Next, in

addition to node degree, we consider several other measures of

topological prominence, and we demonstrate that some of them

are better predictors of the role that a node plays in network

connectivity than node degree. Thus, if essentiality were related to

maintaining network connectivity, then one would expect

essentiality to be better correlated with these centrality measures

than with the node degree. However, we found that node degree is

a better predictor of essentiality than any other measure tested.

To reject the essential protein interaction model [9], we used a

hypothesis testing approach. Namely, we observed that this model

implies that the probability that a protein is essential is

independent of the probability that another noninteracting protein

is essential. However, in the tested networks the essentiality of

noninteracting proteins that share interaction partners is correlat-

ed. Thus, we reject the independence assumption and, as a result,

the essential protein interaction model with high confidence.

Motivated by our findings we propose an alternative explana-

tion for the centrality-lethality rule. Our explanation draws on a

growing realization that phenotypic effect of gene-knockout

experiments is a function of a group of functionally related genes,

such as genes whose gene products are members of the same

multiprotein complex [16]. It is well known that densely connected

subnetworks are enriched in proteins that share biological

function. Therefore, one would expect that dense subnetworks of

protein interaction networks should be either enriched or depleted

in essential proteins. Indeed, Hart and colleagues observed that

essential proteins are not distributed evenly among the set of

automatically indentified multiprotein complexes [17]. In this

work we observe that the same phenomenon holds for potentially

larger groups of densely connected and functionally related

proteins, which we call COmplex BIological Modules (or

COBIMs). We demonstrate that due to the uneven distribution

of essential proteins among COBIMs the majority of the essential

proteins lie in those COBIMs that are enriched in essential

proteins, which we call Essential COmplex BIological Modules (or

ECOBIMs).

By the very definition, ECOBIMs contain, relative to their size,

more essential nodes than a random group of proteins of the same

size. But what fraction of all essential hubs are members of such

ECOBIMs? How does this number relate to what is expected by

chance? In fact, how does the enrichment of hubs that are

members/nonmembers of ECOBIMs in essential proteins relate to

the enrichment values expected by chance under a suitable

randomization protocol? We propose that membership in

ECOBIMs largely accounts for the enrichment of hubs in essential

proteins. In support of this hypothesis, we found that the fraction

of essential proteins among non-ECOBIM hubs is, depending on

the network, only 13–35%, which is almost as low as the network

average. Furthermore the essentiality of nodes that are not

members of ECOBIMs is only weakly correlated with their degree.

Finally, using a randomization experiment we demonstrated that

these properties are characteristic of the protein interaction

network and are unlikely in a corresponding randomized network.

Results

Our Study Uses Six Protein Interaction Networks
Our source of protein interaction data for the yeast Saccharomyces

cerevisiae is numerous small-scale studies and seven high-throughput

experiments [15,18–23]. Interactions reported in targeted studies are

believed to be biologically relevant as they are usually subjected to a

variety of validation methods. Recently, Reguly et al. [11] curated

about 30,000 literature abstracts to compile a network of protein

interactions reported in small-scale experiments. We refer to this

network as the LC network (Literature Curated network).

It was suggested that the centrality-lethality phenomenon is an

artifact of a possible bias present in the networks mainly derived

from small-scale experiments [24]. Namely, essential proteins are

the focus of more studies and therefore tend to have a higher

degree in these networks. Therefore, to complement the LC

network, we included in our study two networks that contain

interactions reported in both small-scale studies and high-

throughput experiments. The DIP CORE network is derived from

the pool of protein interactions deposited in the DIP database

using a computational method of Deane et al. [10] that recruits

evolutionary information to filter out unreliable interactions. The

HC network (the High Confidence network) recently published by

Batada et al. [12] is derived by intersecting small-scale data with

the above-mentioned seven high-throughput datasets. More

specifically, an interaction is included in the final network only if

it was independently reported at least twice.

We also include two networks derived solely from high-

throughput experimental data. The Y2H network is obtained from

the genomewide yeast-two-hybrid interaction screen of Ito et al.

[15] and contains high-confidence interactions that were exper-

imentally detected at least three times. Recently, Collins et al. [13]

published a statistical scoring scheme that maps raw complex

purification experimental data to interaction confidence scores.

The authors applied their method to raw purification data from

two recent genomewide complex purification experiments [22,23].

We refer to a network that contains all interactions with a

confidence score above a certain threshold as the TAP-MS network.

Finally, we include a network of interactions predicted in silico

using the computational approach of Jansen et al. [14]. The

Author Summary

Analysis of protein interaction networks in the budding
yeast Saccharomyces cerevisiae has revealed that a small
number of proteins, the so-called hubs, interact with a
disproportionately large number of other proteins. Fur-
thermore, many hub proteins have been shown to be
essential for survival of the cell—that is, in optimal
conditions, yeast cannot grow and multiply without them.
This relation between essentiality and the number of
neighbors in the protein–protein interaction network has
been termed the centrality-lethality rule. However, why are
such hubs essential? Jeong and colleagues [1] suggested
that overrepresentation of essential proteins among high-
degree nodes can be attributed to the central role that
hubs play in mediating interactions among numerous, less
connected proteins. Another view, proposed by He and
Zhang, suggested that that the majority of proteins are
essential due to their involvement in one or more essential
protein–protein interactions that are distributed uniformly
at random along the network edges [2]. We find that none
of the above reasons determines essentiality. Instead, the
majority of hubs are essential due to their involvement in
Essential Complex Biological Modules, a group of densely
connected proteins with shared biological function that
are enriched in essential proteins. This study sheds new
light on the topological complexity of protein interaction
networks.

Essentiality of Hub Proteins
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method trains a Bayesian network that combines a variety of

genomic features such as mRNA coexpression, colocalization, etc.

to derive interaction confidence scores for protein pairs. The

authors used protein interactions derived from a set of manually

curated protein complexes as the set of positive training examples

and pairs of proteins localized to different cellular compartments

as the set of negative training examples. We refer to this network

as the BAYESIAN network.

Table 1 summarizes the structural properties of the six networks

just described. (Here and throughout the paper we analyze the

largest connected component of each protein interaction network.)

Table 2 shows the overlap, fraction of interactions in common,

between the networks. Given the differences in the experimental

techniques used to construct these networks and the fact that the

edges in the TAP-MS and BAYESIAN networks correspond to

membership in multiprotein complexes, in the Y2H to physical

contacts, and in the DIP CORE, LC, and HC networks to a mix

of these two things, it is not surprising that the networks differ

significantly in terms of density, cliquishness, and other parame-

ters. The biggest outlier is the Y2H network. In fact, for this

network, the relation between essentiality and lethality is less

prominent as discussed in the next section.

The Centrality-Lethality Rule Holds in the Six Networks
In their influential paper, Jeong et al. [3] observed that the

degree of a node in a yeast protein interaction network correlates

with the phenotypic effect of its deletion. More specifically, the

authors observed that high-degree nodes are three times more

likely to be essential than nodes having few interaction partners. It

was further hypothesized that high-degree nodes tend to be

essential due to the central role that they play in maintaining the

overall connectivity of the network by mediating interactions

among other less connected proteins. Consequently, high-degree

nodes are also referred to as hubs, and the observed phenomenon is

known as the centrality-lethality rule.

To confirm the centrality-lethality rule in the tested networks we

used the results of a systematic gene deletion screen [25] in which

1,105 yeast genes were found to be essential for growth on rich

glucose media. There are numerous ways of exposing positive

correlation between degree and essentiality, two of which are used in

this paper. First, one can ask whether hubs, nodes with a degree

greater than or equal to a certain threshold, are more likely to be

essential than an average network node, i.e., whether the fraction of

essential proteins among hubs is greater than the network average.

To choose an appropriate threshold value we relied on Figure 1A,

which shows the enrichment values for nodes with a degree greater

than or equal to k as a function of k. In some networks the steady

increase of enrichment values is interrupted for very large values of k.

Therefore, we chose the threshold value so that approximately 20%

of the network nodes are hubs. (For the DIP CORE network the

value of k is 7, for the LC network it is 10, for the HC network it is 10,

for the TAP-MS network it is 24, for the BAYESIAN network it is

12, and for the Y2H network it is 3.) However, we repeated the

experiments with hubs defined as 10% (data not shown) and found

that our conclusions are robust to the specific choice of the threshold.

Table 1. Structural properties of the tested protein
interaction networks.

Number
of nodes

Number
of edges

Average
degree

Average clustering
coefficient

DIP CORE 2,316 5,569 4.81 0.30

LC 3,224 11,291 7.00 0.36

HC 2,752 9,097 6.61 0.37

TAP-MS 1,994 15,819 15.87 0.60

BAYESIAN 4,135 20,984 10.15 0.26

Y2H 400 491 2.45 0.09

doi:10.1371/journal.pcbi.1000140.t001

Table 2. Amount of overlap between tested networks.

DIP CORE 0.58 0.62 0.25 0.61 0.02

0.28 LC 0.53 0.26 0.39 0.01

0.38 0.65 HC 0.47 0.47 0.02

0.09 0.18 0.27 TAP-MS 0.36 0.00

0.16 0.21 0.20 0.27 BAYESIAN 0.02

0.26 0.18 0.31 0.10 0.97 Y2H

Each row of the table corresponds to a single network and shows a fraction of
its edges contained in other tested networks. Thus, for example, 58% of the
edges in the DIP CORE network are also present in the LC network.
doi:10.1371/journal.pcbi.1000140.t002

Figure 1. Relationship between degree and essentiality in the
tested networks. (A) For each tested network the fraction of essential
nodes among nodes with highest degree (hubs) is shown. The
horizontal axis shows the fraction of the total network nodes that
were designated as hubs. (B) Correlation between degree and
essentiality is assessed by Kendall’s tau and Spearman’s rho rank
correlation coefficients.
doi:10.1371/journal.pcbi.1000140.g001

Essentiality of Hub Proteins
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From Figure 1A it is clear that the enrichment values increase with

k. Therefore, one can use a nonparametric measure of association,

such as Kendall’s tau and Spearman’s rho rank correlation coefficients [26], to

assess the correlation between degree and essentiality over all

network nodes. As shown in Figure 1B these two measures agree in

their estimates of the strength of the correlation; therefore all further

evaluations were done with the Kendall’s tau rank correlation

coefficient. Then, to assess the correlation between other centrality

measures and essentiality after correcting for correlation with degree,

we used a partial Kendall’s tau rank correlation.

It should be noted that in contrast to other networks the Y2H

network exhibits only a weak correlation between degree and

essentiality. This is in agreement with the study of Batada et al. [4].

They observed a highly significant difference in the average degree

of essential and nonessential proteins in the LC network but found

that the difference almost disappears when the analysis is restricted

to interactions detected by only the yeast-two-hybrid experiments.

Essential Hubs Are Not More Important in Maintaining
the Overall Network Connectivity Than Nonessential
Hubs

A network centrality index assigns a centrality value to each

node in the network that quantifies its topological prominence.

Topological prominence can be defined in a number of ways, and

over the years many centrality indices were introduced that

emphasize different aspects of network topology [27]. In a local

centrality index, the node’s centrality value is mainly influenced by

the topology of its local neighborhood. A well known example of a

local centrality index is degree centrality, where the node’s

centrality value is equal to the number of its immediate neighbors.

Betweenness indices, on the other hand, assign centrality values

based on the node’s role in maintaining the connectivity between

pairs of other nodes in the network. A well-known example of a

betweenness centrality index is shortest-path betweenness central-

ity, where the node’s centrality value is proportional to the fraction

of shortest paths that pass through it.

Even though degree centrality is a local centrality index, in some

networks hubs may play an important role in maintaining the

overall connectivity of the network. For example, it was

demonstrated that in some scale-free networks the removal of

hubs affects the ability of other nodes to communicate much more

than the removal of random nodes [8]. To clarify the topological

role of hubs in the tested networks, we compared degree centrality

to two other local indices (eigenvector centrality (EC) [28] and

subgraph centrality (SC) [29]) and to two betweenness indices

(shortest-path betweenness centrality (SPBC) [30] and current-flow

betweenness centrality (CFC) [31]). (See Figure 2 for an

illustration, and Materials and Methods for a more detailed

description of the centrality measures used in this study.)

Since betweenness indices rank nodes based on their role in

mediating communication between pairs of other nodes in the

network, it is interesting to compare the effectiveness of high-

degree nodes and nodes with high betweenness centrality in

disconnecting the network. One common way to measure the

impact of the nodes’ removal on the network connectivity is by

monitoring the decrease in the size of the largest connected

component. Figure 3A–F shows, for the six protein interaction

networks, how the removal of the most central nodes, random

nodes, and essential proteins affects the network connectivity. As

expected, removing nodes with high local centrality values is much

less disruptive than removing those with high betweenness

centrality values. Interestingly, degree centrality is as efficient in

shattering the network as betweenness in the DIP CORE, LC, and

Y2H networks, is as inefficient as the local indices in the TAP-MS

network, and is somewhere between the local and betweenness

indices in the HC and BAYESIAN networks. The local measures

strongly agree in their ranking of network nodes in all networks

except the Y2H network. The agreement is the strongest in the

TAP-MS network; as a result the curves for the EC and SC

measures overlap completely in Figure 3D.

While the removal of a set of nodes may not disconnect various

parts of the network, it may impair significantly the ‘‘quality of

communication’’ between them. For example, there can be an

increase in the length of the shortest path or decrease in the number

of alternative paths between pairs of nodes in the network.

Therefore, we introduced two additional measures, which we call

network integrity measures, to capture various aspects of the effect of

the nodes’ removal on the ability of other nodes to communicate.

(See Materials and Methods for a description of the network integrity

measures.) We find that even when these more sensitive measures are

used the observations made above about the disruptive power of

hubs relative to other most central proteins hold (Table S1).

Next, we examined whether the disruption power of hubs comes

mainly from essential hubs. First, we observe that the removal of

all essential proteins from the huge connected component is less

disruptive than the removal of an equivalent number of the most

central nodes according to any index (Figure 3A–F). Moreover, as

shown in Table 3, the removal of essential nodes is not more

disruptive than the removal of an equivalent number of random

nonessential nodes that have the same degree distribution. We

conclude that even though in most networks, the DIP CORE, LC,

HC, and Y2H networks, the removal of high-degree nodes is

Figure 2. Centrality measures demonstrated on a toy network.
Here we demonstrate the difference in the five centrality measures on a
toy network. (A) The toy network consists of two cliques: K50 with nodes
A1–A50 and K10 with nodes B1–B10. The two cliques are interconnected
by an edge (A1, B1) and through an additional vertex D. Additional node
C attaches to the network through A2. (B) As the measures assign
centrality values based on different network properties they will rank
nodes differently. Briefly, the eigenvector centrality measure (EC) will
assign high-centrality values to nodes that are close to many other
central nodes in the network. The subgraph centrality measure (SC)
assigns centrality values to a node based on the number of closed walks
that originate at the node. The shortest path betweenness centrality
measure (SPBC) assigns the node centrality value based on the fraction
of shortest paths that pass through the node averaged over all pairs of
nodes in the network. The current-flow betweenness centrality measure
(CFC) generalizes the SPBC measure by including additional paths, not
just the shortest paths, in the computation. Here, the difference
between the measures is exemplified by the rankings that they produce
for the toy network nodes.
doi:10.1371/journal.pcbi.1000140.g002
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disruptive, this disruption is not related to the essentiality of these

nodes. On the contrary, essential genes are indistinguishable in

that respect from the random nonessential genes with the same

degree distribution.

There Is No Relationship between the Disruptive Power
of a Centrality Index and Its Enrichment in Essential
Proteins

Above we demonstrated that various centrality indices vary

considerably in their ability to predict disruption in the overall

connectivity of the network. Next we asked whether this difference is

reflected in the enrichment levels. Figure 4 shows the fraction of

essential proteins among hubs and an equivalent number of most

central proteins according to five centrality measures. We observe

that the local centrality indices have enrichment levels comparable to

those of betweenness indices and in some cases even higher. But most

notably, degree centrality fares better than any other centrality index

in five networks but is narrowly beaten by shortest-path centrality for

the Y2H network. The superiority of degree centrality is even more

apparent when Kendall’s tau rank correlation coefficient is used to

measure correlation between centrality values and essentiality over

all network nodes (compare Table 2 to Table 4).

As there is considerable correlation between degree centrality

and other centrality indices, we used Kendall’s tau partial rank

correlation coefficient to see whether any of the indices is

correlated with essentiality beyond its correlation with degree

centrality index. We found that, controlling for the correlation

with degree, the correlation with essentiality is reduced to

statistically insignificant values for betweenness centrality indices

and is greatly reduced for local indices (Table 4).

The above observations indicate that the main topological

determinant of essentiality is the node’s local neighborhood rather

than its role in maintaining the overall connectivity of the network.

In particular, even though removing the nodes with high

betweenness centrality indices is much more effective in shattering

some of our protein interaction networks, their correlation with

essentiality is reduced to statistically insignificant levels by

subtracting their correlation with degree centrality.

We Reject the Essential Protein Interaction Model
Recently He and colleagues [9] proposed an explanation for the

centrality-lethality rule in terms of essential protein interactions: a

protein is essential either due to its involvement in one or more

essential protein interactions or due to other factors. The authors

argue that the determination of protein essentiality in the protein

interaction network can be captured by a simple random process:

(i) distribute essential protein interactions along the edges of the

network uniformly at random with probability a; (ii) distribute

essential proteins among the nodes of the network uniformly at

random with probability b. Thus, according to the model, the

probability (PE) of a protein with k neighbors being essential is

PE = 12(12a)k(12b), and the natural logarithm of the fraction of

nonessential proteins among proteins of degree k has a linear

dependency on k: log(12PE) = log(12a)k+log(12b).

We note that from the assumptions of the essential protein

interaction model it follows that if two proteins do not interact

then the essentiality of one protein in such a pair does not depend

on the essentiality of the other protein. Furthermore, this

independence should also be observed when proteins share

interaction neighbors. To test whether this holds in real data, we

computed the number of nonadjacent protein pairs, with three or

more neighbors (one or more neighbors in the Y2H network), that

are either both essential or both nonessential in the tested networks

and compared these numbers to the expected number of such

pairs under the model. (The model parameters were estimated

using three different strategies as described in the Materials and

Methods. In their paper, He et al. point out that their model may

not work in networks where the edges represent membership in

the same protein complex. Thus, we excluded the TAP-MS and

BAYESIAN networks from the analysis.) As shown in Table 5, the

model does not capture the correlation in essentiality observed in

Table 3. Impact of the removal of essential proteins as
compared to the removal of an equivalent number of random
nonessential proteins with the same degree distribution.

Essential Random nonessential

DIP CORE 0.519 0.50460.007

LC 0.578 0.55160.010

HC 0.521 0.52560.005

TAP-MS 0.512 0.51260.011

BAYESIAN 0.685 0.62560.006

Y2H 0.410 0.39760.046

The impact of removal of a set of proteins is measured by the fraction of nodes
in the largest connected component. For each network the effect of the
removal of essential proteins and the removal of an equivalent number of
random nonessential proteins with the same degree is shown.
doi:10.1371/journal.pcbi.1000140.t003

Figure 3. Vulnerability to attack against most central proteins. (A–F) The impact of node removal is quantified by the fraction of nodes in the
largest connected component. There is one curve for each centrality measure that shows the fraction of nodes in the largest connected component
as a function of the fraction of the most central nodes removed. We also show the impact of node removal in a random order and the size of the
largest connected component when all essential proteins are removed.
doi:10.1371/journal.pcbi.1000140.g003

Figure 4. Enrichment of hubs and an equivalent number of
most central nodes according to other centrality measures in
essential proteins. Fraction of essential proteins among hubs and an
equivalent number of most central nodes according to four other
centrality measures. The fraction of essential proteins among the nodes
of the network is shown as ntwk.avg.
doi:10.1371/journal.pcbi.1000140.g004

Essentiality of Hub Proteins
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the tested networks; i.e., there is a statistically significant difference

between the number of such pairs observed in real data and the

number expected under the model. Consequently, the essential

interaction model is rejected with high confidence.

We Propose an Alternative Explanation for the Centrality-
Lethality Rule

In the previous section we showed that proteins that share

neighbors are more likely to have the same essentiality (be both

essential or both nonessential) than expected under the essential PPI

model. Moreover, it was observed in another study that essential

proteins are not distributed uniformly among in the set of

automatically derived multiprotein complexes [17]. This suggests

that densely connected subnetworks are polarized toward being

either highly enriched or significantly depleted of essential proteins.

Furthermore, it is well known that densely connected subnetworks

are enriched in proteins that share biological function. Therefore,

one should expect that protein interaction networks contain densely

connected functional modules that are highly enriched in essential

proteins. Some large multiprotein complexes, for example, those

involved in transcription regulation, are known to be highly enriched

in essential proteins, but how general is this phenomenon and can it

account for the centrality-lethality rule?

To investigate the above question, we introduce a notion of

Essential Complex Biological Modules, which are groups of proteins with

shared biological function that extensively interact with each other

and are enriched in essential proteins. First, we describe an automatic

method for the extraction of ECOBIMs from a protein interaction

network. Next, we argue that the membership in ECOBIMs accounts

to large extent for the centrality-lethality rule in the tested networks.

Finally, we address statistical issues related to our selection procedure

by applying suitable randomization protocols.

We developed an automatic method for extraction of ECOBIMs

from a protein interaction network. In this work proteins are deemed

to share biological function if they are annotated with the same GO

biological process term from a set of 192 terms that were selected by

a group of experts to represent relevant aspects of molecular biology

[32]. Therefore, our method is applied to subnetworks induced by

Table 4. Correlation between centrality indices and essentiality.

Eigenvector centrality Subgraph centrality

tess tess.dc tess tess.dc

DIP CORE 0.15 (3.5e-19) 0.064 (8.6e-05) 0.17 (1.2e-24) 0.059 (2.5e-04)

LC 0.23 (7.9e-56) 0.094 (3.6e-11) 0.23 (1.2e-55) 0.093 (4.9e-11)

HC 0.24 (1.8e-54) 0.107 (2.9e-12) 0.24 (7.9e-55) 0.102 (3.4e-11)

TAP-MS 0.12 (8.42e-11) 20.007 (6.5e-01) 0.12 (8.42e-11) 20.007 (6.5e-01)

BAYESIAN 0.17 (5.7e-39) 0.046 (1.5e-04) 0.17 (5.1e-41) 0.051 (3.1e-05)

Y2H 0.05 (1.1e-01) 0.027 (2.5e-01) 0.03 (2.0e-01) 20.024 (7.2e-01)

Shortest-path betweenness centrality Current-flow betweenness

tess tess.dc tess tess.dc

DIP CORE 0.15 (3.2e-18) 20.002 (5.5e-01) 0.19 (2.7e-27) 0.012 (2.5e-01)

LC 0.21 (1.4e-46) 0.003 (4.25e-01) 0.26 (3.7e-70) 20.007 (6.8e-01)

HC 0.20 (1.9e-36) 0.005 (3.7e-01) 0.24 (2.6e-53) 20.005 (6.2e-01)

TAP-MS 0.12 (3.5e-11) 0.018 (1.8e-01) 0.16 (3.3e-18) 0.017 (1.8e-01)

BAYESIAN 0.18 (2.4e-41) 0.005 (3.43e-01) 0.23 (2.7e-69) 0.018 (8.1e-02)

Y2H 0.10 (1.2e-02) 0.048 (1.4e-01) 0.10 (1.4e-02) 0.041 (1.8e-01)

The correlation of centrality measures with essentiality (tess) is measured by Kendall’s tau rank correlation coefficient. The correlation with essentiality, after controlling
for correlation with degree centrality, is measured using the partial Kendall’s tau rank correlation coefficient (tess.dc). The p-values are derived from the Kendall’s tau z-
scores and are shown in parentheses.
doi:10.1371/journal.pcbi.1000140.t004

Table 5. Difference between the observed and expected number of pairs where both proteins are either essential or nonessential.

Total number of pairs Number of pairs of the same type Expected number of pairs of the same type

Simulation Line fitting Weighted line fitting

DIP CORE 1,849 1,135 945 (3.6e-10) 928 (8.6e-12) 938 (8.0e-11)

LC 10,777 6,143 5,691 (6.6e-10) 5.556 (1.1e-15) 5.589 (3.9e-14)

HC 5,907 3,516 3,213 (2.0e-08) 2,997 (2.2e-16) 2,994 (2.2e-16)

Y2H 3,254 2,167 1,976 (9.6e-07) 2,025 (2.6e-04) 2,052 (3.3e-03)

The total number of pairs refers to the number of nonadjacent protein pairs with three or more common neighbors in the network. (Due to the sparsity of the Y2H
network, the statistics are calculated for nonadjacent pairs having one or more neighbors in common.) The nodes in the pair are of ‘‘the same type’’ if they are both
essential or both nonessential.
doi:10.1371/journal.pcbi.1000140.t005
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proteins annotated with the same GO biological process term, one

subnetwork at a time. The high-level idea behind the method is to

first identify groups of densely connected proteins, which we call

Complex Biological Modules (or COBIMs), and then identify a subset of

COBIMs as ECOBIMs based on the distribution of essential

proteins among the COBIM nodes. More specifically, our heuristic

selects a subset of COBIMs that are enriched in essential proteins.

(The method is schematically shown in Figure 5 and is described in

detail in the Materials and Methods section. Figure S1 shows the

fraction of nodes that are members of r or more COBIMs for various

values of r.)

To examine to what extent the membership in ECOBIMs

accounts for the centrality-lethality rule we partitioned hubs into two

groups, those that are members of one or more ECOBIMs

(ECOBIM hubs) and those that are not (non-ECOBIM hubs), and

compared their enrichment values. As shown in Figure 6 ECOBIM

hubs are highly enriched in essential proteins, whereas non-

ECOBIM hubs are depleted in essential proteins as compared to

the network average enrichment values. But most importantly, as

discussed in the next paragraph, the difference in the fraction of

essential proteins among ECOBIM hubs and non-ECOBIM hubs is

not a result of our greedy ECOBIM selection procedure or particular

degree sequence of essential proteins in the network. We next asked

whether there is a correlation between degree and lethality for

network nodes that are not members of the ECOBIMs. As shown in

Table 6 the correlation between essentiality and degree for non-

ECOBIM nodes is much less than that for all network nodes.

One may ask to what extent the difference in the behavior of

ECOBIM hubs and non-ECOBIM hubs is due to the particular

selection procedure that we employ to identify the putative

ECOBIMs. More specifically, there are two concerns that need to

be addressed. First, our method is guided by the enrichment in

essential proteins when selecting ECOBIMs from COBIMs.

Therefore, it is expected that the fraction of essential proteins among

ECOBIM hubs should be higher than that among non-ECOBIM

hubs. Second, our method considers only annotated yeast genes.

Therefore, one might argue that the difference in behavior is due to

the fact that ECOBIM hubs are necessarily annotated while non-

ECOBIM hubs may include both annotated and unannotated genes.

To address the first concern we performed a control experiment

where essential proteins were assigned to a random set of nodes

having the same degree distribution as the true set of essential

proteins in the network. (A total of 100,000 random assignments

were performed, which resulted in 100,000 sets of ECOBIMs.) To

address the second concern, we restricted the random assignment

to annotated genes only. As shown in Table 6, the ECOBIMs

resulting from the true assignment of essential proteins have

dramatically different properties than these resulting from the

random assignment of essential proteins. In particular, the fraction

of essential proteins among non-ECOBIM hubs under the true

assignment of essential proteins is significantly lower than that

under the randomized assignment of essential proteins, even

though the same selection procedure is used in both cases.

Therefore, we conclude that the observed difference is the result of

the particular distribution of essential proteins among the nodes of

the network and not an artifact of our selection procedure. The

same holds for the reduction in correlation between degree and

essentiality for non-ECOBIM nodes.

We Identify Properties of the ECOBIMs
The identified ECOBIMs mostly correspond to large essential

multiprotein complexes such as the anaphase promoting complex

(APC) and the DAM1 protein complex but not exclusively

complexes. For example, one of the largest ECOBIMs identified

in the LC network contains multiprotein complexes involved in the

process of RNA polymerase 2 transcription [33], such as RNA

polymerase 2, general transcription factors, the mediator complex,

etc. The ECOBIMs with at least 20 members are shown in Table 7;

all ECOBIMs and their member proteins are given in Table S2.

Moreover, the ECOBIMs are remarkably different than non-

ECOBIM COBIMs. As shown in Table 8, the distribution of

essential proteins among the COBIM nodes is highly uneven. In

particular, the observed difference between fractions of essential

proteins among the ECOBIM nodes and among non-ECOBIM

COBIM nodes can not be accounted for neither by degrees of

essential COBIM nodes nor by the particular ECOBIM selection

procedure. The last claim is validated by performing 100,000

randomized assignments of essential proteins that preserve degrees

and the number of essential COBIM nodes, selecting the

ECOBIMs and computing the corresponding fractions. As shown

in Table 8, the values obtained under the true assignment of

essential proteins are significantly different from those obtained

under the randomized assignment of essential proteins.

So far, we demonstrated that the high correlation between degree

and essentially can be predominantly attributed to the ECOBIMs. In

addition, it is well known that certain functions that are essential to

the cell, for example, transcription regulation or cell-cycle regulation,

rely on large multiprotein complexes. Indeed, many of the GO terms

that are overrepresented among ECOBIM nodes are of this type, as

seen in Figure 7. Do ECOBIMs play a distinguished role in those

essential processes, or are they merely a byproduct of the above-

mentioned observation? In particular, is the difference in the

enrichment in essential proteins exclusively due to the fact that some

essential GO processes contain ECOBIMs while others do not?

To elucidate the role of the ECOBIMs we examined all GO

processes that contain at least one ECOBIM. Table 9 shows the

results for the DIP core network sorted by the percentage of

essential proteins in a given GO process. (The data for the other

networks are given in Table S3.) Observe that the enrichment of

ECOBIMs in essential genes is typically much higher than the

average enrichment in the corresponding GO. Thus, the

ECOBIMs are not merely representatives of the average structure

of the corresponding GO subnetwork. The uneven distribution of

essential proteins is also observed even when the corresponding

GO process is extremely enriched in essential proteins such as

rRNA metabolic process (GO:0016072) or transcription initiation

(GO:0006352). The percentage of essential proteins among

network nodes annotated to either one of these two processes is

more than 80%, and all COBIMs are selected as ECOBIMs. The

process with the next highest percentage of essential proteins,

transcription from RNA polymerase III promoter (GO:0006383),

contains both types of COBIMs. Interestingly, for this process, all

ECOBIM nodes are essential, but none of the remaining COBIM

nodes is. In fact, if a GO process contains both ECOBIM and

non-ECOBIM COBIMS, then such polarization is frequent albeit

rarely that extreme (Table 9). Removal of any protein from a

Complex Biological Module is expected to perturb or even disable

the whole module. Thus, within a large spectrum of essential GO

processes, a cell can tolerate large perturbations of some modules

but very little perturbations of ECOBIMs.

This last observation can also explain the poor correlation

between degree and essentiality in Y2H networks, as it indicates that

ECOBIMs are likely to contain large, stable multiprotein modules,

typically multiprotein complexes. However, interactions recovered

by the Y2H technique correspond to physical contacts and as such

do not encompass all members of a complex. Moreover, due to its

binary nature, the Y2H technique may completely miss interactions

in complexes that require cooperative binding [34].
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Figure 5. The automatic method for extraction of ECOBIMs. Here we demonstrate the major steps of the method on the HC network. The
input to the method is a protein interaction network, GO annotation, and the set of essential nodes, which are shown in red. The method considers
subnetworks induced by proteins annotated with the same GO biological process term, one subnetwork at a time, to identify densely connected
regions or COBIMs. The COBIMs are shown by a COBIM intersection graph, where nodes correspond to COBIMs (the size of the node is proportional
to the number of genes in the corresponding COBIM) and there is an edge between a pair of COBIMs if they have at least two proteins in common.
The COBIMs that are enriched in essential proteins are selected as ECOBIMs, shown in green.
doi:10.1371/journal.pcbi.1000140.g005
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Discussion

The enrichment of high-degree nodes in essential proteins, known

as the centrality-lethality rule, suggests that the topological

prominence of a protein in a protein interaction network may be a

good predictor of its biological importance. There exist numerous

measures of topological prominence, called network centrality

indices; local centrality indices assign centrality values based on the

topology of the node’s local neighborhood, whereas betweenness

centrality indices assign centrality values based on the node’s role in

maintaining the connectivity between pairs of other nodes in the

network. Even though by definition degree centrality is a local

measure, depending on the structure of the network, hubs may play

an important role in maintaining the overall connectivity of the

network. In this paper we sought to identify the main topological

determinant of essentiality and to give a biological explanation for

the connection between the network topology and essentiality.

To address this question we performed a rigorous analysis of six

protein interaction networks for Saccharomyces cerevisiae compiled from

diverse sources of interaction evidence. To clarify the topological

roles of essential proteins in general and essential hubs in particular,

we compared degree centrality to other local and betweenness

centrality indices. We found that while in some networks high-degree

nodes are as important in maintaining the overall network

connectivity as nodes having high betweenness centrality values,

this property is not due to essential proteins. On the contrary,

essential proteins are indistinguishable in that respect from

nonessential proteins having the same degree distribution. We also

found that degree centrality is a better predictor of essentiality than

any other measure tested and that correlation of betweenness indices

Figure 6. Enrichment of ECOBIM and non-ECOBIM hubs in essential proteins. Fraction of essential proteins among various types of hubs: all
hubs, hubs that are members of ECOBIMs (ECOBIM hubs), and hubs that are not members of ECOBIMs (non-ECOBIM hubs). The fraction of essential
proteins among all proteins in the network is also shown (ntwk.avg.). The numbers above the bars show the number of essential hubs out of the total
number of hubs of this type for ECOBIM and non-ECOBIM hubs.
doi:10.1371/journal.pcbi.1000140.g006

Table 6. Membership in ECOBIMs and the centrality-lethality rule.

Enrichment of ECOBIM hubs Enrichment of non-ECOBIM hubs Corr. degree vs. essentiality for non-ECOBIM hubs

Obs. Rand. p-value Obs. Rand. p-value Obs. Rand. p-value

DIP CORE 0.80 0.67 1.98e-03 0.26 0.43 ,1.00e-05 0.08 0.18 ,1.00e-05

LC 0.80 0.69 1.88e-03 0.32 0.48 ,1.00e-05 0.17 0.27 ,1.00e-05

HC 0.83 0.70 4.00e-05 0.35 0.51 ,1.00e-05 0.17 0.27 ,1.00e-05

TAP-MS 0.76 0.62 1.00e-05 0.24 0.40 ,1.00e-05 0.12 0.20 ,1.00e-05

BAYESIAN 0.77 0.65 ,1.00e-05 0.18 0.36 ,1.00e-05 0.09 0.20 ,1.00e-05

Y2H 0.85 0.66 5.81e-02 0.13 0.25 2.00e-05 20.04 0.05 2.00e-04

For every quantity three values are shown: the value under the true assignment of essential proteins (Obs.), the mean value under the randomized assignment of
essential proteins (Rand.), and the fraction of the randomized assignments that resulted in values stronger (either smaller or larger depending on the context) than
those obtained with the true assignment of essential proteins (p-value).
doi:10.1371/journal.pcbi.1000140.t006
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with essentiality is entirely due to their correlation with degree

centrality. Thus, we conclude that the topological determinant of

essentiality is the node’s local neighborhood rather than its role in

maintaining the overall connectivity of the network.

Next we examined whether the essential interactions model,

recently proposed to explain the centrality-lethality rule, is valid in

the tested networks. We found that the model’s central assumption

that the majority of proteins are essential due to their involvement

in one or more essential protein interactions, which are distributed

uniformly at random along the edges of the network, violates basic

clustering patterns of essential proteins in the networks that we

examined. The uniform distribution of essential protein interac-

tions implies that, as long as two proteins do not interact, the

essentiality of one protein in the pair is independent of the

essentiality of the other protein. However, in real protein

interaction networks the essentiality of pairs of proteins that share

many neighbors is correlated, and the number of nonadjacent

protein pairs that share three or more neighbors and are either

both essential or both nonessential significantly deviates from the

expected number of such pairs under the model. Consequently, we

rejected the essential interactions explanation with high confi-

dence. We stress that we do not reject the existence of essential

protein interactions but rather the assumption that these

interactions are evenly distributed along the edges of the network

and explain the degree distribution of essential proteins.

The above observations led us to propose an alternative

explanation for the centrality-lethality rule. Our explanation builds

on a growing body of evidence that gene knock-out phenotypes for

genes whose gene products are members of the same multiprotein

complex are correlated [16,17]. In particular, Hart et al.

demonstrated that essential proteins are not distributed evenly

among the set of automatically identified multiprotein complexes;

rather there are ‘‘surprisingly’’ many complexes where the majority

of members are essential and ‘‘surprisingly’’ many complexes where

the majority of members are not essential [17]. Here we

hypothesized and then computationally confirmed that the same

phenomenon holds for potentially larger groups of densely

connected and functionally related proteins that we called Complex

Biological Modules and abbreviated as COBIMs. But more

importantly, we were able to demonstrate that membership in

ECOBIMs, those COBIMs that are enriched in essential proteins,

provides a good explanation for the correlation between degree and

essentiality in the protein interaction networks considered in this

study. In particular, we showed that non-ECOBIM hubs are

depleted in essential proteins and for non-ECOBIM proteins the

correlation between degree and essentiality is greatly reduced.

Moreover, by applying suitable randomization protocols we showed

that the different characteristics of ECOBIM and non-ECOBIM

hubs (or in general ECOBIM and non-ECOBIM proteins) are not a

mere consequence of their degrees or the particular computational

method that we adopted for selecting the ECOBIMs.

In the past, several attempts were made to classify high-degree

nodes using additional biological data to obtain a deeper insight

into biological and physiological properties that hubs were

reported to possess. Here we discuss how our findings fit the

results reported in two such studies [35,36]. Han et al. utilized

mRNA expression data to classify hubs into party and date hubs,

where the party hubs show a significant agreement in the mRNA

expression levels, or are coexpressed, with their interacting

partners, whereas the date hubs are not coexpressed with their

neighbors [35]. The removal of the date hubs was observed to

shatter the network much more efficiently than the removal of

party hubs. On the basis of this and other observations made in the

paper, the date hubs were proposed to ‘‘…participate in a wide range

Table 7. Largest ECOBIMs extracted from the tested
networks.

The DIP CORE network

GO:0006508 proteolysis 27 35 0.77

GO:0042254 ribosome biogenesis and assembly 27 32 0.84

GO:0016192 vesicle mediated transport 21 30 0.70

GO:0016071 mRNA metabolic process 18 28 0.64

GO:0015931 nucleobase, nucleoside, nucleotide and nucleic
acid transport GO:0051236 establishment of RNA localization

15 24 0.62

GO:0016072 rRNA metabolic process 18 21 0.86

GO:0008380 RNA splicing 16 21 0.76

The LC network

GO:0042254 ribosome biogenesis and assembly 88 107 0.82

GO:0016071 mRNA metabolic process 37 58 0.64

GO:0008380 RNA splicing 35 52 0.67

GO:0015931 nucleobase, nucleoside, nucleotide and nucleic
acid transport GO:0051236 establishment of RNA localization

16 26 0.62

GO:0006508 proteolysis 17 24 0.71

The HC network

GO:0042254 ribosome biogenesis and assembly 84 100 0.84

GO:0016071 mRNA metabolic process 49 71 0.69

GO:0016072 rRNA metabolic process 63 71 0.89

GO:0008380 RNA splicing 46 63 0.73

GO:0006508 proteolysis 28 35 0.80

The TAP-MS network

GO:0042254 ribosome biogenesis and assembly 90 120 0.75

GO:0016071 mRNA metabolic process 46 66 0.70

GO:0008380 RNA splicing 45 62 0.73

GO:0016072 rRNA metabolic process 37 41 0.90

GO:0016072 rRNA metabolic process 30 32 0.94

GO:0006508 proteolysis 17 22 0.77

The BAYESIAN network

GO:0042254 ribosome biogenesis and assembly 119 152 0.78

GO:0016072 rRNA metabolic process 93 106 0.88

GO:0008380 RNA splicing GO:0016071 mRNA metabolic
process

40 50 0.80

GO:0006366 transcription from RNA polymerase II promoter 23 42 0.55

GO:0006508 proteolysis 28 37 0.76

GO:0006913 nucleocytoplasmic transport 17 31 0.55

GO:0006412 translation 18 27 0.67

GO:0051169 nuclear transport 15 27 0.55

GO:0045184 establishment of protein localization 15 27 0.55

The Y2H network

GO:0007010 cytoskeleton organization and biogenesis 9 11 0.82

GO:0006366 transcription from RNA polymerase II promoter 7 11 0.64

GO:0045184 establishment of protein localization 6 10 0.60

GO:0006913 nucleocytoplasmic transport GO:0051169 nuclear
transport

6 10 0.60

For every tested protein interaction network we list the ECOBIMs with at least
20 members; for the Y2H network, the ECOBIMs with at least 10 members are
listed. For each ECOBIM the following information is shown: the corresponding
GO biological process term, number of essential genes, number of genes, and
fraction of essential genes. For a list of all ECOBIMs and their member genes see
Table S2.
doi:10.1371/journal.pcbi.1000140.t007
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of integrated connections required for the global organization of

biological modules in the whole proteome network…’’ However, the

fraction of essential proteins among the party hubs was even slightly

higher than that among the date hubs. This is consistent with one of

the conclusions made in this paper, namely, essentiality is not a

byproduct of the node’s ability to maintain the overall connectivity of

the network. Furthermore, it has been proposed that ‘‘party hubs

represent integral elements within distinct modules’’ and ‘‘tend to

function at a lower level of the organization of the proteome’’ [35].

Such a description is consistent with the properties COBIM hubs

where COBIMs hubs are explicitly defined as hubs that are members

of highly connected modules. Similarly to the party hubs, the average

enrichment of COBIM hubs in essential proteins is slightly higher

than that of non-COBIM hubs (data not shown). We also

demonstrated that essential proteins clearly cluster within ECOBIMs

rather than being uniformly distributed over all COBIMs.

In the second study Kim et al. utilized structural data to classify

hubs into singlish-interface and multiinterface hubs, where singlish-

interface hubs would interact with their partners through one or

two distinct interfaces, whereas the multiinterface hubs would

interact with their partners through three or more distinct interfaces

[36]. In this case, however, the classification produced significantly

different enrichment levels, with a multiinterface hub being twice as

likely to be essential as a singlish-interface hub or an average network

node. The authors suggested that multiinterface hubs most likely

correspond to members of large and stable multiprotein complexes.

Consequently, this would imply that stable multiprotein complexes

are enriched in essential proteins. This view is consistent with the

results of this paper with additional caveats as discussed below.

It is well known that certain biological functions essential for the

cell depend on large multiprotein complexes. (Consider, for

example, RNA Polymerase II transcription machinery [33] or

ribosome biogenesis and assembly [37].) Indeed, many ECOBIMs

indentified by our approach are associated with such processes.

However, even within such essential processes, ECOBIMs

distinguish themselves as being more enriched in essential proteins

than the remaining proteins within the same process. The

enrichment in essential proteins of non-ECOBIM COBIMs is

usually at the same level and frequently significantly lower than the

average enrichment within the corresponding GO process. Thus,

within a large spectrum of essential GO processes, a cell can

tolerate large perturbations of non-ECOBIM modules but very

little perturbation of ECOBIMs. Some COBIMs do not contain

any essential proteins. In such a case, the whole module can be

nonessential, and the fact that a cell can tolerate the removal of

any of member of such a COBIM does not exclude the possibility

that this COBIM corresponds to a stable complex.

Materials and Methods

Network Centrality Indices
In this work we compare the degree centrality measure to two

other local measures (eigenvector centrality (EC) [28] and

subgraph centrality (SC) [29]) and to two betweenness measures

(shortest-path betweenness centrality (SPBC) [30] and current-flow

betweenness centrality (CFC) [31]).

Table 8. ECOBIMs contain a large fraction of essential COBIM proteins.

Enrich. ECOBIM proteins Enrich. non-ECOBIM COBIM proteins

Obs. Rand. p-value Obs. Rand. p-value

DIP CORE 0.77 0.65 ,1.0e-05 0.06 0.21 ,1.0e-05

LC 0.77 0.65 1.00e-05 0.10 0.17 1.56e-03

HC 0.81 0.68 ,1.00e-05 0.12 0.18 2.31e-02

TAP-MS 0.74 0.64 ,1.00e-05 0.09 0.17 1.87e-03

BAYESIAN 0.76 0.65 ,1.00e-05 0.08 0.18 ,1.00e-05

Y2H 0.79 0.63 9.93e-03 0.06 0.17 3.00e-05

For each network the enrichment in essential proteins of ECOBIM nodes and enrichment of COBIM nodes that are not members of one or more ECOBIMs is shown. For
each group three values are listed: the fraction under the true assignment of essential proteins (Obs.), the mean fraction under the randomized assignment of essential
proteins (Rand.), and p-value of the difference.
doi:10.1371/journal.pcbi.1000140.t008

Figure 7. GO terms that are overrepresented among ECOBIM
nodes. For every network the GO terms that are overrepresented
among ECOBIM nodes are shown. The overrepresentation of a GO term
is quantified by the natural logarithm of a p-value, where the p-value is
the probability that at least this number of ECOBIM genes would
belong to the GO term had the ECOBIM genes been selected uniformly
at random from the network genes.
doi:10.1371/journal.pcbi.1000140.g007
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The computation of the eigenvector centrality values can be cast

as an iterative process: (i) start with an initial vector of centrality

scores ~xx0~ x0 . . . xnð Þ; (ii) in iteration k+1 update the centrality

score of a node i using the scores of its neighbors from the previous

iteration xkz1
i ~

P
jx

k
j and then normalize the scores

~xxkz1~~xxkz1= ~xxkz1j j. It can be shown that this process converges

to the eigenvector that corresponds to the largest eigenvalue of the

adjacency matrix of the network.

Table 9. Enrichment of ECOBIM and non-ECOBIM COBIM nodes for GO subnetworks in the DIP CORE network.

GO term Subnetwork nodes ECOBIM nodes Non-ECOBIM COBIM nodes

GO:0016072 rRNA metabolic process 0.83 0.91 n/a

GO:0006352 transcription initiation 0.82 1.00 n/a

GO:0006383 transcription from RNA polymerase III pro 0.77 1.00 0.00

GO:0042254 ribosome biogenesis and assembly 0.72 0.87 n/a

GO:0008380 RNA splicing 0.71 0.79 0.50

GO:0006839 mitochondrial transport 0.64 0.80 n/a

GO:0006360 transcription from RNA polymerase I pro 0.64 0.80 0.00

GO:0016071 mRNA metabolic process 0.63 0.75 0.40

GO:0006260 DNA replication 0.61 0.93 n/a

GO:0031123 RNA 39-end processing 0.59 0.93 0.29

GO:0006399 tRNA metabolic process 0.50 1.00 0.00

GO:0007059 chromosome segregation 0.49 0.76 n/a

GO:0006944 membrane fusion 0.48 0.75 0.22

GO:0006508 proteolysis 0.46 0.77 n/a

GO:0051169 nuclear transport 0.44 0.80 0.47

GO:0006997 nuclear organization and biogenesis 0.43 1.00 0.33

GO:0000278 mitotic cell cycle 0.43 0.81 0.19

GO:0015931 nucleobase, nucleoside, nucleotide and n 0.42 0.63 n/a

GO:0006913 nucleocytoplasmic transport 0.42 0.80 0.41

GO:0051236 establishment of RNA localization 0.42 0.63 n/a

GO:0006366 transcription from RNA polymerase II pro 0.40 0.75 0.29

GO:0007010 cytoskeleton organization and biogenesis 0.40 0.78 0.00

GO:0048308 organelle inheritance 0.39 0.86 n/a

GO:0006401 RNA catabolic process 0.38 0.83 0.41

GO:0006461 protein complex assembly 0.38 1.00 n/a

GO:0045184 establishment of protein localization 0.37 0.89 0.38

GO:0009100 glycoprotein metabolic process 0.37 0.63 n/a

GO:0006412 translation 0.36 0.85 0.00

GO:0007005 mitochondrion organization and biogenes 0.35 0.91 n/a

GO:0006512 ubiquitin cycle 0.34 0.82 n/a

GO:0051325 interphase 0.33 0.83 0.00

GO:0016192 vesicle-mediated transport 0.31 0.71 0.18

GO:0000074 regulation of progression through cell cycl 0.31 0.73 0.18

GO:0000279 M phase 0.30 0.80 0.17

GO:0006974 response to DNA damage stimulus 0.28 0.67 0.11

GO:0006323 DNA packaging 0.26 1.00 0.16

GO:0006417 regulation of translation 0.26 0.80 n/a

GO:0016481 negative regulation of transcription 0.25 1.00 0.13

GO:0007001 chromosome organization and biogenesi 0.22 0.79 0.16

GO:0016458 gene silencing 0.22 1.00 0.00

GO:0040029 regulation of gene expression, epigenet 0.21 1.00 0.00

GO:0007047 cell wall organization and biogenesis 0.17 0.75 n/a

For each GO subnetwork that contributed at least one ECOBIM, the fractions of essential proteins among the subnetwork nodes, subnetwork ECOBIM nodes, and
subnetwork non-ECOBIM COBIM nodes are shown.
doi:10.1371/journal.pcbi.1000140.t009
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The subgraph centrality value of a node is equal to the number

of closed walks that start and terminate at the node. As there is an

infinite number of such walks, to obtain finite index values the

number of closed walks of length k is weighted by 1/k!. Therefore,

short walks dominate the subgraph centrality values.

For the shortest-path betweenness index, the node’s centrality

value is equal to the average fraction of shortest paths that pass

through the node.

The current-flow centrality measure extends the shortest-path

centrality measure by taking into account other paths in addition to

shortest paths. This is achieved through a current-flow paradigm

where the network is viewed as a resistor network with each edge

having a unit capacity. For every pair of nodes s and t, one unit of

current is shipped from s to t, and the centrality of a node is set to the

average amount of current that passes through that node.

We demonstrate the difference between the five centrality

measures on a toy network in Figure 1A. In this network two

cliques K50 and K10 are interconnected by an edge (A1, B1) and

through a node D. The nodes of K50 are labeled A1…A50, and the

nodes of K10 are labeled B1…B10. An additional node C attaches

to K50 through A2. Figure 1B shows the ranking of network nodes

based on the centrality values assigned by the five centrality

measures.

Network Integrity Measures
We introduced two measures, which we call network integrity

measures, to capture various effects of node removal on the ability

of other nodes to communicate. An integrity measure maps a set of

nodes, S, to a value between 0 and 1, with the value of 0 being

assigned when the removal of S completely disrupts the

communication and the value of 1 being assigned when it causes

no disruption. Our first measure, shortest-path integrity, quantifies

the increase in the length of the shortest path due to the removal of

S and is given by

P
s,t=[Smax C{dS s,tð Þ,0ð ÞP
s,t=[Smax C{d s,tð Þ,0ð Þ , where d(s,t) is the length of

the shortest path between s and t in the original network, ds(s,t) is

the length of the shortest path between s and t after the removal of

S, and C is a constant. In this work we chose the value of C to be

twice the diameter of the original network. Our second measure,

edge-disjoint paths integrity, quantifies the decrease in the number

of edge-disjoint paths and is given by

P
s,t=[SfS s,tð ÞP
s,t=[Sf s,tð Þ , where fs(s,t) is the

number of edge-disjoint paths between s and t in the modified

network and f(s,t) is this value in the original network.

Estimating the Parameters of the Essential Protein
Interactions Model

To evaluate the model on the tested networks we used three

strategies to estimate the model’s parameters: a network simulation

procedure, line fitting to points (log(12PE), k) for k#k0, and

weighted line fitting to points (log(12PE), k) for all values of k. (In

weighted line fitting, the contribution of (log(12PE), k) to the error

function is weighted by the fraction of nodes having degree k.) The

first two strategies are described by He et al. [9]. They deem the

agreement of parameter values estimated using the network

simulation and line fitting strategies to be one of the strongest

indications for the validity of the model. But in the tested networks

the parameter values estimated using different strategies, as shown

in Table S4, vary considerably.

The Method for Automatic Identification of ECOBIMs
Our method for automatic extraction of putative ECOBIMs is

applied to subnetworks induced by proteins annotated with the same

biological process GO term. In this work we used a set of 192

biological process terms, which were selected by a group of experts to

represent relevant aspects of molecular biology. Thus, the method

was applied to 192 subnetworks, one subnetwork at a time.

From each GO subnetwork the method extracts groups of

densely connected proteins. An ideal dense network is a clique, a

complete network where every pair of nodes is adjacent. Over the

years various generalizations of the clique concept were proposed

in the literature to model a wider set of dense networks. Here we

adopt one such generalization based on k-connectivity. We say that a

pair of nodes is k-connected if there are k node-disjoint paths in the

network between them. We say that a network is k-connected if

every pair of nodes is k-connected. For example, a (k+1)-clique, a

clique with (k+1) nodes, is k-connected. In fact, it is the smallest k-

connected graph.

Our method utilizes the following approach to find regions of

GO subnetworks that are k-connected: start with a seed that is a

(k+1)-clique and iteratively extend the seed through addition of

proteins that have at least k neighbors already in the seed. In

addition to being k-connected our COBIMs satisfy the following

property: nodes can be removed from a COBIM one by one such

that the network induced by the remaining nodes is still k-

connected. We note that not every k-connected network has this

property. Consider, for example, a cycle. The cycle is 2-connected.

However, removal of any node results in a path which is 1-

connected. The value of parameter k was chosen so that the

fraction of COBIM nodes is about 25% of the number of nodes in

the network. As shown in Table S5 this results in the following

values of k for the tested networks: for the DIP CORE network

k = 3, for the LC and HC networks k = 4, for the TAP-MS network

k = 11, for the BAYESIAN network k = 4, and for the Y2H

network k = 1. We also sampled values of k in the neighborhood of

selected values and found that the results reported in this paper are

however robust with respect to the selected value of k. We note

that approaches similar to ours have been previously used by Palla

et al [38] and Chesler et al. [39].

Once the COBIMs are computed, the method selects a subset of

COBIMs based on the distribution of essential proteins among the

COBIM nodes. Namely, the heuristic selects all COBIMs with a

fraction of essential proteins that is significantly higher than what

would be expected from a uniform distribution of essential genes

among the COBIM nodes. More specifically, a COBIM with n

nodes and m essential nodes is selected iff:

Pn
k~m

M

k

� �
N{M

n{k

� �

N

n

� � v0:5,

where N is the total number of COBIM nodes and M is the

number of essential COBIM nodes.

Supporting Information

Table S1 Using network integrity measures to evaluate the effect

of the removal of hubs and equivalent number of the most central

nodes according to other centrality measures

Found at: doi:10.1371/journal.pcbi.1000140.s001 (0.04 MB

DOC)

Figure S1 Membership in COBIMs. The amount of overlap

among COBIMs is quantified by showing the fraction of nodes

that are members of several COBIMs.

Found at: doi:10.1371/journal.pcbi.1000140.s002 (0.05 MB

DOC)
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Table S2 ECOBIMs and their member genes. For every tested

protein interaction network we list the automatically identified

ECOBIMs. For each ECOBIM the following information is

shown: the corresponding GO biological process term/terms,

number of essential genes, number of genes, and the names of

member genes.

Found at: doi:10.1371/journal.pcbi.1000140.s003 (0.05 MB XLS)

Table S3 Enrichment of ECOBIM and non-ECOBIM COBIM

nodes for GO subnetworks in the LC, HC, TAP-MS, BAYESIAN,

and Y2H networks. For each GO subnetwork that contributed at

least one ECOBIM the fraction of essential proteins among the

subnetwork nodes, subnetwork ECOBIM nodes and subnetwork

non-ECOBIM COBIM nodes is shown.

Found at: doi:10.1371/journal.pcbi.1000140.s004 (0.15 MB XLS)

Table S4 The parameters of the essential protein interaction

model. We use three strategies to estimate the parameters, a and

b, of the essential protein interaction model: the network

simulation as described in the original paper (simulation), line

fitting to points for as described in the original paper (line fitting),

and weighted line fitting to points for all values of k (weighted line

fitting).

Found at: doi:10.1371/journal.pcbi.1000140.s005 (0.03 MB

DOC)

Table S5 The number of COBIM and ECOBIMs nodes as a

function of the parameter . The number of nodes that belong to

one or more COBIMs (ECOBIMs) depends on the value of the

parameter k. For small values of k the COBIMs (ECOBIMs)

output by our algorithm are larger than the COBIMs (ECOBIMs)

identified for bigger values of k and therefore contain more

network nodes. Here the exact dependency is shown for a range of

parameter values. For each protein interaction network the

fraction of network nodes that are members of one or more

COBIMs (ECOBIMs) is shown. For each network we selected a

value of k that results in approximately 25% of network nodes

being the members of COBIMs; the resulting fractions are shown

in bold.

Found at: doi:10.1371/journal.pcbi.1000140.s006 (0.03 MB

DOC)
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