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Abstract 

1. The biases and shortcomings of stepwise multiple regression are well 

established within the statistical literature. However an examination of papers 

published in 2004 by three leading ecological and behavioural journals 

suggested that the use of this technique remains widespread: of 65 papers in 

which a multiple regression approach was used, 57% of studies used a 

stepwise procedure. 

2. The principal drawbacks of stepwise multiple regression include bias in 

parameter estimation, inconsistencies among model selection algorithms, an 

inherent (but often overlooked) problem of multiple hypothesis testing, and an 

inappropriate focus or reliance on a single best model. We discuss each of 

these issue with examples. 

3. We use a worked example of data on yellowhammer distribution collected 

over four years to highlight the pitfalls of stepwise regression. We show that 

stepwise regression allows models containing significant predictors to be 

obtained from each year’s data.  In spite of the significance of the selected 

models, they vary substantially between years and suggest patterns that are at 

odds with those determined by analysing the full, four year data set.  

4. An Information Theoretic (IT) analysis of the yellowhammer data set 

illustrates why the varying outcomes of stepwise analyses arise.  In particular, 

the IT approach identifies large numbers of competing models that could 

describe the data equally well, showing that no one model should be relied 

upon for inference.  
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Introduction 

In the face of complexity, ecologists often strive to identify models that capture the 

essence of a system, explaining the observed distribution and perhaps ultimately 

permitting prediction.  A first step toward this aim is to collect data on the response of 

interest, together with data on factors that it is believed might influence that response.  

Frequently data are observational (i.e. the variance in the dataset has not been 

generated by experimental manipulation) leading to difficulties in determining which 

causal factor or factors best explain the observed responses.  In these situations, 

scientific possibility is limited to describing the system and identifying models 

consistent with the observed phenomenon.  One of the most commonly used 

techniques for this purpose is multiple regression or, more generally, a general linear 

model with multiple predictors. The statistical theory underlying this methodology is 

well understood (e.g. Draper & Smith 1981; McCullogh & Nelder 1989), as are the 

assumptions and limitations of the approach (e.g. Derksen & Keselman 1992; 

Burnham & Anderson 2002). 

 Although the scientific primacy of a principle of parsimony is without clear 

support (Guthery et al. 2005), it is usually the case that models with fewer variables 

also contain fewer nuisance variables and have greater generality (Ginzberg & Jensen 

2004).  For that reason, research is usually directed towards identifying a relatively 

parsimonious model that is in general agreement with observed data.  A suite of 

model simplification techniques has been developed, and the notion of a minimum 

adequate model (MAM) has become commonplace in ecology.  A MAM is defined as 

the model that contains the minimum number of predictors that satisfy some criterion, 

for example, the model that only contains predictors that are significant at some pre-

specified probability level. Finding such a model is not straightforward, and most 
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statistical packages offer algorithms for model selection in multiple regression.  These 

include algorithms that operate by successive addition or removal of significant or 

non-significant terms (forward selection and backward elimination, respectively), and 

those that operate by forwards selection but also check the previous term to see if it 

can now be eliminated (stepwise regression).  Collectively, these algorithms are 

usually referred to as stepwise multiple regression. 

In spite of wide recognition of the limitations of stepwise multiple regression 

(Grafen & Hails 2002; Hurvich & Tsai 1990; Johnson et al. 2004; Stephens et al. 

2005; Steyerberg et al. 1999; Wintle et al. 2003), use of the technique in ecology 

remains widespread (see further below for a review of applications in major journals).  

In particular, three problems with the approach are frequently overlooked in 

ecological analyses, all of which may lead to erroneous conclusions and, potentially, 

misdirected research.  These include bias in parameter estimation, inconsistencies 

among model selection algorithms, and an inappropriate focus or reliance on a single 

best model, where data are often inadequate to justify such confidence. 

In this paper, we give a brief review of the major problems with stepwise 

multiple regression and we analyse how frequently the technique is used in leading 

ecological and behavioural journals.  We present an example of how focusing on a 

single model may lead to difficulties of interpretation. Finally, we discuss the 

problems of analysing and modelling data from complex multivariable ecological 

datasets. 

 

Problems with multiple regression 

Bias in parameter estimation 

Stepwise multiple regression requires that model selection (i.e. deciding which 
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regression variables should be included in the final MAM) is conducted through 

parameter inference (i.e. testing whether parameters are significantly different from 

zero) (Chatfield 1995), which can lead to biases in parameters, over-fitting and 

incorrect significance tests. To see this, consider a simple example, using a single 

parameter. Consider the linear model which models an observation yi as a function of 

parameters α and β, predictor value xi and some error ε: 

yi = α + βxi + εi  (1) 

which is fitted to data vector y and predictor vector x. A stepwise approach may be 

used to decide whether the model in equation (1) is preferable to the simpler model: 

yi = α + εi   (2) 

One simple way to do this is to compute the estimate of β (termed b) and then 

determine whether b is significantly different from zero.  

Fig. 1 shows a simple simulation example which illustrates the logical 

problem in using the test on b to determine which of models (1) and (2) are preferable 

(see Fig. 1. legend for details). For the simulated data, Fig. 1A shows the sampling 

distribution of b, a t-distribution. The distribution in Fig. 1A corresponds to the 

distribution of b when model (1) only is fitted to the data, and no attempt is made at 

distinguishing between (1) and (2).  

Fig. 1B shows the corresponding sampling distribution when model selection 

based on the significance of b is employed. Accepting model (2) over model (1) is 

equivalent to accepting a value of b = 0 as an estimate of β in model (1). Thus, in Fig. 

1B, the distribution of estimates of β has a peak at zero, since most estimates in Fig. 

1A are non-significant (i.e. P > 0.05). In the right tail an estimate is significant only 

when it exceeds a critical value. What is clear from Fig. 1B is that the sampling 

distribution that results from model selection is highly unrepresentative of the 
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expected distribution of b in Fig. 1A. Importantly, any individual estimate b in this 

example is biased: either a value of zero is accepted if the significance test on b is 

non-significant, underestimating β, or values greatly in excess of the true value are 

accepted if the test on b is significant.   

This phenomenon is termed model selection bias and will arise in any method 

of model selection based on the inclusion / exclusion of individual predictors without 

reference to the suite of other possible models (Chatfield 1995; Burnham & Anderson 

1998, 2002). In contrast, in Fig. 1A no individual estimate is biased one way or the 

other relative to the true value. This bias is important if the model is to be used 

predictively, and also has implications for other analyses based on the model.  

 

Stepwise algorithms, consistency and interpretation 

A second problem with stepwise multiple regression is more widely-recognised and 

yet appears not to have deterred many ecologists from using the technique.  The 

problem is that the algorithm used (forward selection, backward elimination or 

stepwise), the order of parameter entry (or deletion), and the number of candidate 

parameters, can all affect the selected model (e.g. Derksen & Keselman, 1992).  This 

problem is particularly acute where the predictors are correlated (e.g. see Grafen & 

Hails 2002 for an example).  In addition, the number of candidate parameters has a 

positive effect on the number of nuisance (or noise) variables that are represented in 

the selected MAM (Derksen & Keselman 1992).  Interpreting the quality of the 

selected model can also be difficult.  In particular, it is easy to overlook the fact that a 

single stepwise regression does not represent one hypothesis test but, rather, involves 

a large number of tests.  This inevitably inflates the probability of Type I errors (false 

positive results) (Wilkinson 1979).  Similarly, searching for a model on the basis of 
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the data inflates the R2 value (Cohen & Cohen 1983), overestimating the fit that would 

be achieved by the same model were more data available. Finally, owing to the 

selection of variables to include on the basis of the observed data, the distribution of 

the F-statistic is also affected, invalidating tests of the overall statistical significance 

of the final model (Pope & Webster 1972). 

 

“Best” models and inference 

A final source of concern with stepwise regression procedures is their aim of 

identifying a single “best” MAM as the sole product of analysis.  This can suggest a 

level of confidence in the final model that is not justified by the data, focusing all 

further analysis and reporting on that single model.  Although one model may be 

selected, other models may have a similarly good fit and it is highly likely that there 

will be uncertainty surrounding estimates of parameters and even which parameters 

should be included.  Basing inference or conclusions on a single model may be 

misleading, therefore, because a rather different model may fit the data nearly as well. 

The selection of a single MAM does not allow such uncertainty to be expressed.  We 

discuss this problem further below.  

 

Current use of stepwise regression 

Recognition of all of the problems outlined above is not widespread among ecologists.  

Recent publications have drawn attention to the problems of bias arising from variable 

selection on the basis of statistical significance (e.g. Anderson, Burnham & 

Thompson 2000; Burnham & Anderson 2002) and, as a result, alternative model 

selection protocols are increasingly used.  In particular, use of information theoretic 

(IT) model selection based on Akaike’s Information Criterion (AIC, see further 
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below) has increased substantially over recent years (Guthery et al. 2005; Johnson & 

Omland 2004; Rushton, Ormerod & Kerby 2004).  In spite of this, two of the central 

messages of Burnham & Anderson (e.g. 2002) have been widely overlooked.  These 

are that models representing different hypotheses should be compared in their 

entirety, rather than through automated selection procedures, and that further analysis 

should not be based on a single best model, but should explicitly acknowledge 

uncertainty among models that are similarly consistent with the data.  That these 

points have been overlooked means that even where authors have used IT model 

selection, they have often retained the use of stepwise procedures, and based inference 

on a single best model.  Some authors have attempted to overcome some of the 

limitations of stepwise procedures by checking for consistency between stepwise 

algorithms (e.g. Post 2005) but this approach is seldom explicit. 

In order to assess the prevalence of different stepwise approaches in current 

literature, MJW reviewed 508 papers published in 2004 in three leading journals: 

Journal of Applied Ecology, Animal Behaviour and Ecology Letters.  In all cases in 

which a multiple regression approach (excluding ordination techniques) was used, the 

analytical approach was identified as stepwise or other.  Among papers employing 

stepwise techniques, studies were further subdivided into those that used least squares 

approaches and those that used IT techniques.  Multipredictor regression analyses that 

did not use stepwise techniques were divided among those that based inference on a 

global model (i.e. inferences were drawn with all predictors present), and those that 

used other techniques (typically IT-AIC) to determine a set of well-supported models 

for inference. 

Results of this analysis are presented in Table 1. Overall, 65 papers used a 

multiple regression approach, of which 57% used a stepwise procedure; however, 
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there was no statistically significant difference between the proportion of studies 

using stepwise regression across the three journals (χ² = 0.145, P = 0.98).  Of the 

studies that used stepwise procedures, six out of 37 (16%) used IT-AIC, whilst the 

remainder used least squares techniques. 

 

Example  

As an empirical example of the problems of using stepwise multiple regression we 

reanalysed a published data set, collected to determine which factors influence the 

occurrence of yellowhammers Emberiza citrinella L. on lowland farms in the UK 

(Bradbury et al. 2000; see the accompanying electronic supplement for further details 

of the data and the analytical methods).  Previous analyses were conducted using least 

squares stepwise regression (Bradbury et al. 2000). Here we were primarily interested 

in the limitations of using a single best model for inference, rather than in the 

limitations of the stepwise approach (which are well-established, see above).  

We fitted models to our dataset using least squares procedures (e.g. procedure 

“lm” in ‘R’) and compared them using AIC. AIC is a likelihood-based measure of 

model fit that accounts for the number of parameters estimated in a model (i.e. models 

with large numbers of parameters are penalised more heavily than those with smaller 

numbers of parameters), such that the model with the lowest AIC has the ‘best’ 

relative fit, given the number of parameters included (Akaike 1974).  

The IT methodology developed by Burnham & Anderson (2002) is designed 

to conduct a comparative model fit analysis for a group of competing models. 

Specifically, for each model a likelihood weight (for model i termed wi) is calculated. 

This value has a simple interpretation: it is the probability that of the set of models 
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considered, model i would be the AIC-best model, were the data collected again under 

identical circumstances. For a set of models the likelihood weights sum to one.  

 For a dataset in which there is a clear ‘best’ model, one model would have a 

very high likelihood weight, and all other models would have very low weights. On 

the other hand, if all the models are poor, or if most have similar fit, then a number of 

models will share a similarly low probability. If there is no single model that clearly 

outperforms all others, the IT methodology may be used to perform model averaging, 

in which the parameter estimates of all models are combined, the contribution of each 

model being proportional to its likelihood weight. By contrast, stepwise methodology 

would identify a single model as pre-eminent, encouraging all further interpretation to 

be based on that model alone, ignoring the other models with similar fit to the data.  

 For the yellowhammer dataset, there were nine predictors, and we fitted all 

possible subsets of these parameters. For each model we generated a likelihood 

weight, and we ranked all models from best fitting to worst fitting on the basis of AIC 

values. We plotted summed likelihood weights against model rank (Fig. 2). These 

plots are effectively cumulative probability plots, with the summed probability 

measuring the probability that the cumulative set of models would include the AIC-

best model were the data re-collected. At a given cumulative probability level (e.g. 

95%) this is sometimes termed a confidence set.  

The yellowhammer dataset was collected over four years. We analysed the 

data separately for each year, and for all years combined. The data from the four years 

analysed separately failed to yield a model that, in terms of likelihood weights, was 

clearly better than the alternative models (Fig. 2a, b). For instance, in Fig. 2a the four 

years of study required 77, 114, 172 and 159 models to yield a summed probability of 

0.95. The implication is therefore, that any one of a large number of models could 
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have been selected as the best fitting model in each year. The best-fitting model is, in 

a sense, a random draw from this set of similarly well supported models. This 

interpretation is backed up by Table 2 which shows the minimum adequate models 

selected for the four separate years. The models selected are highly variable from year 

to year, with no variable selected in all four years.  

 The analysis of the combined dataset yielded a smaller set of credible models, 

with only 42 models required to reach a probability of 0.95.  However this is still too 

large a number to be able to base all inference and conclusions on one model with any 

confidence. The MAM for this dataset includes most of the variables found to be 

significant in the analysis of the single years. However, the likelihood weight for this 

model was only 0.028; it was not the AIC-best model, which itself had an AIC weight 

of only 0.048. Either of these models would be a poor one on which to base inference.  

 

Discussion 

Biases and shortcomings of stepwise multiple regression are well established. 

Surprisingly, however, we found that of recent papers in three leading ecological and 

behavioural journals, approximately half of those that employed multiple regression 

did so using a stepwise procedure (Table 1). Our example, using detailed data on 

yellowhammer habitat selection highlights the dangers of this approach.  In particular, 

although the yellowhammer field study was conducted on a large scale, a single year’s 

data was clearly insufficient to identify a single best model to explain yellowhammer 

territory occupancy, or even a small number of similarly well-supported models for 

that purpose.  Even with four years’ data, representing a comprehensive autecological 

study, as many as 42 models provided similarly good explanations of the observed 

data.  To select a single MAM from this set without acknowledging the considerable 
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uncertainty that remains, would be entirely misleading. A full model approach (i.e. 

including all predictors and all four years’ data) gives, in this case, a very similar 

result to one derived using the IT methodology (see Table 2). This re-inforces the 

point that conclusions based on data collected in any one year may be erroneous. 

Multiple regression is a widely used statistical method within ecology with 

13% of the papers we reviewed using this method. It was notable that within two of 

the journals sampled (Animal Behaviour and Ecology Letters) only between 8-9% of 

studies used a multiple regression approach whereas in Journal of Applied Ecology 

26% (23/88) used such an approach. Therefore the problems we report may very 

likely be more widespread within landscape studies (which tend to collect large 

numbers of potentially explanatory factors) than in studies with more restricted 

experimental designs (e.g. laboratory experiments which are common within 

behavioural science).  

 As with our example, it is likely that many studies employing stepwise 

procedures conceal much uncertainty when selecting a single MAM.  Most ecological 

datasets usually include a set of predictors with a tapered distribution of effect sizes 

(Burnham & Anderson 2002) and almost all analyses will therefore contain equivocal 

variables close to statistical significance. Estimated effects are likely to be strong, 

intermediate and weak, or zero. For predictors with zero or weak effects, MAMs are 

likely to yield biased estimates of parameters (e.g. Fig. 1) and a high Type I error rate. 

Furthermore, when correlations exist between the predictors, different combinations 

of predictors may yield models with similar explanatory power (e.g. Grafen & Hails 

2002). The methodology underlying MAMs is generally not designed to analyse 

marginal effects.  
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 Instead of using stepwise procedures, two analyses are arguably valid: a full 

model including all effects, or the analysis using IT-AIC methods (the approach that 

we demonstrated here). The full model tests a single set of hypotheses on a single 

model. The expected parameter estimates are unbiased (e.g. Fig. 1), and the statistical 

properties of the generalised linear model are well understood (e.g. McCullough & 

Nelder 1989). If the main aim of the study in question were to analyse whether each 

of the predictors affected the distribution of birds, and whether the effects were 

consistent between years, this analysis should be entirely justifiable. 

 The downsides of using the full model for analysis and inference are that (i) 

the model may not be the ‘best’ model for the data in question, as other models may 

fit the data equally as well; (ii) if we wished to use the model predictively, it includes 

variables that are non-significant; (iii) the analysis would rely on null-hypothesis 

testing. The first argument is not relevant to comparisons of the effects of different 

predictors. The reason why this model may not be the best model is precisely that it 

includes predictors that are non-significant. The analysis is designed to reveal those 

predictors that are significant, and those that are not. Hence we would not expect this 

model to be the best model.  

The second problem is that a full model will contain estimates for all 

parameters, irrespective of whether they are statistically significant or not.  This can 

generate an excess of noise, resulting in a model that is unsatisfactory for prediction. 

By contrast, techniques exist for multi-model parameter estimation, particularly 

within the IT framework (e.g. Burnham & Anderson 2002). This approach allows 

model uncertainty to be measured at the same time as parameter uncertainty to assess 

the likely bias in parameters resulting from selection. The advantage of using this 

approach for prediction, rather than the full model, is that the contribution of each 
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predictor (in making predictions) is determined by its performance across the whole 

suite of models.     

The third problem with basing inference on the global model, is where tests of 

individual parameters (designed to determine how important they are) are conducted 

using null hypothesis testing (NHT).  NHT has been the focus of much criticism in 

recent decades (e.g. Carver 1978, Cohen 1994, Johnson 1999, Anderson et al. 2000).  

In particular, two problems of NHT apply directly to the issue of parameter testing 

within the global model.  First, NHT is essentially binary in nature; either the tested 

parameter is (statistically) ‘significant’ or it is not.  Wherever the threshold for 

significance is drawn, this can lead to dramatic differences in inference arising from 

very small differences in the dataset.  For example, consider a threshold for 

significance drawn at P = 0.05.  Imagine that our estimate for a parameter coefficient, 

β, was 2.5, with a 95% confidence interval between -0.1 < β < 5.1.  Here, we would 

reject the estimate of β and assume that β = 0 was a more reliable estimate.  However, 

if the estimate of β was the same but with a confidence interval 0.1 < β < 4.9, then we 

would accept that β = 2.5.  The second problem of NHT that applies to analyses of the 

global model is that, assuming we have reason to include the variable of interest in the 

model, then a null hypothesis of “no effect” (representing a coefficient estimate of β = 

0) is a “silly null”.  Indeed, in the previous example, an estimate of β = 5.0 is as 

plausible as an estimate of β = 0.0, and is arguable more plausible, given that we had 

a priori reasons to believe that the tested parameter should be important. 

 The full model is appropriate if the data are taken from an experiment 

(Burnham & Anderson 2002). This is because an experiment will be designed in order 

to examine all main effects as well as, potentially some of the interactions. In this case 
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the parameter estimates for one variable should be unaffected by the inclusion (or 

otherwise) of other factors.  

Stepwise regression is most likely to lead to problems when it is used for data 

mining exercises. For example, it is common within landscape ecology studies for 

large numbers of predictors to be collected that are potentially associated with a 

particular organism or group of organisms. This is often the case when the underlying 

ecology of an organism is poorly known. Such studies sometimes use MAMs to 

reduce the list of predictors down to a manageable number. As we have shown the 

MAM approach will lead to errors for such datasets. 

  In our IT analysis we considered all possible subsets of models including 

these. This might be considered a large number of competing models to consider. The 

key issue with the dataset we explored here (and another discussed elsewhere by 

Whittingham et al. 2005) is that the variables included in the analysis represent a 

small proportion of the possible variables that could have been included. This subset 

was selected on the basis of a priori considerations (i.e. with reference to the known 

ecology of yellowhammers and similar farmland birds). Consequently, the analysis is 

not a ‘shot-gun’ attempt to find significant variables, but is more precisely testing the 

relative effects of a realistic set of candidate predictors (a form of magnitude of 

effects estimation, sensu Guthery et al. 2005).  That this set is large is a typical 

problem in ecological analyses.  

We have dealt in this paper with problems in formal model selection. 

However, a great deal of selection occurs informally in exploratory data analysis. For 

example, researchers may conduct preliminary analyses to reduce the set of predictors 

examined and reported in publications, or may use statistical tests in the exploratory 

phase to guide them towards the final model. This part of the analytical process is 
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generally not reported; however it is clear that a great deal of selection may occur 

prior to the final output. Such an approach (termed ‘data-dredging’ by Burnham & 

Anderson 2002) may suffer from all of the limitations we have outlined above, 

although is less straightforward to recognise or correct. It cannot be stressed enough 

how important it is to either specify hypotheses a priori, or to describe in detail how 

the final reported analysis was determined.  

In summary we have demonstrated that use of stepwise multiple regression is 

widespread within ecology and some areas of behavioural science. We have outlined 

the three main weaknesses of this technique (namely: bias in parameter estimation, 

inconsistencies among model selection algorithms, and an inappropriate focus or 

reliance on a single best model) and shown how erroneous conclusions can be drawn 

with a worked example. We suggest that use of stepwise multiple regression is bad 

practice.  Ecologists and behavioural scientists should make use of alternative (e.g. 

IT) methods or, where appropriate, should fit a full model (i.e. one containing all 

predictors).  Full (or global) models are unlikely to be well-suited for prediction, 

however, and we recommend multi-model averaging techniques where prediction is 

the desired end. 
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Table 1. Proportion of studies from a range of primary ecological journals (all issues in 2004 included in this analysis) that used stepwise 

multiple regression for at least one component of their study. Studies using two-way ANOVA (or similar) for replicated experiments are not 

included as they are not really multivariate analyses that would require this approach (see discussion). Note: (1) in some cases it was not possible 

to determine exactly how the statistical analysis was performed, these cases are omitted from this Table. (2) *The number of studies in which it 

was possible to use stepwise methods is indicated in the denominator, e.g. 23 in this case, and the number that did so as the numerator, e.g. in 

this case 12, the remaining studies used alternative methods which are listed in the final column. 

 % of studies using 

stepwise regression  

Number of papers 

published by journal in 

2004 

Ratio of predictors to sample size for 

analyses using stepwise regression (no. of 

cases in which based given in parentheses) 

Alternative approaches 

Journal of 

Applied 

Ecology 

52% (12/23)* 88 24 (8) 

 

7 studies fitted full model, 1 used heirarchical 

partitioning and 3 used an IT approach. 

Ecology Letters 58% (7/12) 139 66 (3) 4 studies fitted full model, 1 used an IT 

approach.  

Animal 

Behaviour  

60% (18/30) 281 9 (6) All 12 studies fitted full model. 
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Table 2. Minimum adequate models constructed to explain the distribution of 

yellowhammers in four separate years. Data were collected from a variable number of 

farms in each year and these are indicated in brackets after each year. Note: (1) 

boundary length and a code for farm forced into all models, therefore number of 

predictors entered into all models was 11. * P<0.05, ** P<0.01, *** P<0.001; (2) For 

comparison with the results of the full model we calculated selection probabilities 

using IT methodology (see Whittingham et al. 2005). + - the model selection 

probability is the probability that a given predictor will appear in the AIC-best model, 

and is derived from the IT-AIC analysis.  

 

 

 1994 (5) 1995 (5) 1996 (8) 1997 (9) 1994 - 1995 IT Selection 

probability+ 

Hedge presence * **   P = 0.058 0.73 

Tree-line presence   * * *** 0.67 

Ditch presence ** *  * *** 1.00 

Road adjacent *    * 0.61 

Width of margin *** * ***  *** 1.00 

Pasture adjacent **  * *** *** 1.00 

Silage ley adjacent      0.48 

Winter rape       0.64 

Beans adjacent  *    0.37 

n 185 185 347 387 1103  

Ratio of sample 

size to predictors 

21 21 32 35 123  
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Figure Legends 

 

Figure 1. Model selection bias in a simple simulation. Data were generated according 

to the model y = 1 + 0.5 x + e, where e was an error term with zero mean and standard 

deviation = 1. Datasets of sample size n = 10 were drawn, and a linear model fitted. 

Fig. 1A shows the distribution of estimates of the slope parameter. The slope 

parameter was tested against a slope of zero, and the linear model (main text, equation 

1) rejected in favour of the simpler model (main text, equation 2) if the test was non-

significant (i.e. a slope of zero was accepted for P < 0.05). Fig. 1B shows the resultant 

sampling distribution based on this model selection method.  

 
Figure 2. Cumulative probability curves for the models fitted to the data on 

yellowhammer distributions. The curves show the summed probabilities for the 

models ranked from lowest to highest AIC score. (a) Models fitted separately to the 

data from the four years separately (each line represents a different year). (b) Models 

fitted to the combined dataset. The horizontal lines show a probability of 0.95, i.e. 

encompassing the set of models which, under repeated sampling, would be expected 

to contain the AIC-best model with a probability of 0.95.  
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