
NBER WORKING PAPER SERIES

WHY DOES THE FED MOVE MARKETS SO MUCH? A MODEL OF MONETARY POLICY 
AND TIME-VARYING RISK AVERSION

Carolin Pflueger
Gianluca Rinaldi

Working Paper 27856
http://www.nber.org/papers/w27856

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
September 2020

We thank Adrien Auclert, Francesco Bianchi, John Campbell, Anna Cieslak, Rohan Kekre, 
Andreas Neuhierl, Adi Sunderam, Emil Siriwardane, Michael Weber, Luis Viceira, and seminar 
participants at the Dallas Federal Reserve, the University of Copenhagen, and the NBER SI 
Monetary Economics meeting 2020 for valuable comments. The paper was previously circulated 
under the title "A Finance-Integrated New Keynesian Model." The views expressed herein are 
those of the authors and do not necessarily reflect the views of the National Bureau of Economic 
Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2020 by Carolin Pflueger and Gianluca Rinaldi. All rights reserved. Short sections of text, not 
to exceed two paragraphs, may be quoted without explicit permission provided that full credit, 
including © notice, is given to the source.



Why Does the Fed Move Markets so Much? A Model of Monetary Policy and Time-Varying
Risk Aversion
Carolin Pflueger and Gianluca Rinaldi
NBER Working Paper No. 27856
September 2020
JEL No. E43,E44,E52,G12

ABSTRACT

We build a new model integrating a work-horse New Keynesian model with investor risk 
aversion that moves with the business cycle. We show that the same habit preferences that 
explain the equity volatility puzzle in quarterly data also naturally explain the large high-
frequency stock response to Federal Funds rate surprises. In the model, a surprise increase in the 
short-term interest rate lowers output and consumption relative to habit, thereby raising risk 
aversion and amplifying the fall in stocks. The model explains the positive correlation between 
changes in breakeven inflation and stock returns around monetary policy announcements with 
long-term inflation news.

Carolin Pflueger
University of Chicago
Harris School of Public Policy
1307 E 60th St
Chicago, IL 60637
and NBER
cpflueger@uchicago.edu

Gianluca Rinaldi
Harvard University
rinaldi@g.harvard.edu



1 Introduction

It is well understood that cyclical variation in investors’ capacity to bear risk is essen-
tial to understanding the link between the macroeconomy and financial markets (see
e.g. Cochrane (2017)). However, it is less clear how this time-varying link between the
real economy and financial markets affects high-frequency stock and bond movements
around monetary policy announcements, which are often used to assess the effectiveness
of monetary policy for the real economy (Bernanke and Kuttner (2005)).

Our contribution is twofold. First, we integrate a small-scale New Keynesian model of
monetary policy with the finance habit formation preferences of Campbell, Pflueger, and
Viceira (2020), whereby investors become less willing to hold risky assets in times when
output and consumption are low relative to a slowly-moving habit. These preferences
have been shown to successfully reconcile the equity volatility puzzle of Shiller (1981),
generate flight-to-safety in long-term Treasury bonds during the post-2001 period, and
imply an exactly log-linear Euler equation typical of New Keynesian models. We fill a
gap by departing from the reduced-form inflation and interest rate dynamics of Campbell,
Pflueger, and Viceira (2020), and newly integrate finance habit preferences with a model
of monetary policy.

Second, this new framework predicts how stocks and bonds should respond to mone-
tary policy news, where news may be either about the short-term policy rate or long-term
expected inflation. We show that our model, estimated to match quarterly macroeco-
nomic moments, also matches the empirical high-frequency response of stock returns to
monetary policy surprises around Federal Open Market Committee (FOMC) announce-
ments. The model implies that time-varying risk premia are quantitatively important for
stock responses to monetary policy, and especially so after declines in output.

We start by documenting empirically that stock returns around FOMC dates move
differently with short-term interest rates and long-term breakeven inflation, building on
an empirical literature that has documented that monetary policy announcements reveal
information about long-term inflation and the economy (Romer and Romer (2000), Naka-
mura and Steinsson (2018)).1 Figure 1, Panel A shows that a surprise decrease in the
short-term Federal Funds rate around FOMC announcements is typically accompanied
by a large increase in stock returns in the same time interval. This well-known result
of Bernanke and Kuttner (2005) has been interpreted as evidence that the Fed can ef-
fectively stimulate the economy by temporarily lowering interest rates. Panel B shows

1Figure 1, Panel A uses intraday changes in the Federal Funds rate from Gorodnichenko and Weber
(2016) and in the S&P from TAQ. Panel B uses one-day changes in 10-year breakeven computed as
the difference between Gürkaynak, Sack, and Wright (2007) nominal and Gürkaynak, Sack, and Wright
(2010) Treasury Inflation-Protected Securities (TIPS) bond yields and one-day value-weighted stock
returns from CRSP. For a detailed description of the empirical results see Section 4.5.

2



that an increase in long-term breakeven, which is defined as the difference between 10-
year nominal and real bond yields and often interpreted as a proxy of long-term inflation
expectations, has the opposite correlation with stock returns on FOMC announcement
dates, as recently documented by Jarociński and Karadi (2020) and Andrade and Ferroni
(2020). This finding is often interpreted as evidence of a “Fed information effect”, whereby
the Federal Reserve announcements reveal correlated news about long-term inflation and
economic activity. The comovement shown in Panel B zeros in on FOMC dates and hence
differs from the unconditional stock market beta of nominal bonds studied in Campbell,
Pflueger, and Viceira (2020).2

We derive log-linear macroeconomic dynamics from consumers’ intertemporal Euler
equation and firms’ profit optimization, and combine them with a log-linear Taylor-type
rule for short-term interest rates. We assume a representative consumer with finance
habit preferences, whereby utility is determined by consumption in excess of a slowly
moving habit, and surplus consumption dynamics take precisely the form needed to gen-
erate an exact log-linear consumption Euler equation. Different from Campbell, Pflueger,
and Viceira (2020) we link the household and firm problems by integrating leisure into
these preferences. Assuming that leisure is valued for its value in home production as in
the classic model of Greenwood, Hercowitz, and Huffman (1988) separates wages from
the intratemporal consumption-savings decision, thereby sidestepping the counterfactual
labor implications that have previously affected models of asset pricing habits within
production economies (Lettau and Uhlig (2000)).

We derive a standard log-linearized Phillips curve, assuming that firms set prices op-
timally subject to Calvo (1983) staggered price setting with backwards indexation. Pro-
ductivity features learning-by-doing (Lucas (1988)) to generate an endogenous stochastic
output trend, and predictable productivity growth. Euler equation and Phillips curve
shocks arise from shocks to habit and markups. All fundamental shocks are assumed
to be conditionally homoskedastic, so time varying risk premia arise endogenously from
preferences, rather than from auxiliary assumptions about time-varying quantities of risk.

We model monetary policy via a Taylor (1993)-type interest rate rule suited to study
variation in short-term interest rates and breakeven around FOMC dates. The rule has
two different types of shocks to match the multivariate stock return pattern documented

2Relatedly, Hanson and Stein (2015), and Nakamura and Steinsson (2018) have documented that
long-term real bond yields co-move with short-term interest rates on FOMC dates, and Nakamura and
Steinsson (2018) have linked this finding to news about economic growth. The empirical variation that we
emphasize is complementary and largely orthogonal, as most variation in breakeven changes on FOMC
days is uncorrelated with Federal Funds rate news over our sample period. While our model matches the
empirical comovement between nominal short-term and real long-term interest rates (Appendix F.2), we
emphasize the breakeven-stock comovement because of our focus on time-varying risk premia, which are
more important for stocks than for long-term real bonds.
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in Figure 1. The first shock is a traditional short-term monetary policy shock that raises
the the Federal Funds rate this quarter and lowers output and consumption through the
Euler equation. The second shock captures long-term economic news and is modeled via
a shock to trend inflation. A decline in long-term inflation expectations acts like a costly
disinflation similarly to Ball (1994) and Gürkaynak, Sack, and Swanson (2005), moving
the output gap and consumption expectations in the same direction as expected inflation.
These effects are in line with the effects of permanent interest rate shocks in Cochrane
(2018), Uribe (2018), and Schmitt-Grohé and Uribe (2018).

We model high-frequency stock returns and bond yield changes around FOMC dates
by decomposing the quarterly shock into pre-FOMC and FOMC components, and solving
for pre-FOMC asset prices at the expected state vector conditional on the pre-FOMC
shock. Our solution for asset prices preserves their full nonlinearity, following the best
practices numerical solution of Wachter (2005). Nonlinear asset prices imply that after a
sequence of bad shocks, when consumption is close to habit, required compensation for
holding risky assets – such as stocks – is high and required compensation for holding safe
asses – such as nominal Treasury bonds – is low or even negative. The highly nonlinear
nature of risk premia generates high and volatile stock returns and ensures that the
consumption Euler equation is log-linear. The main approximation we use in solving
the model is a standard log-linearization for the Phillips curve.3 By solving for log-
linear macroeconomic dynamics, we keep the asset pricing solution tractable and focus
on nonlinearities where they are most salient, namely in asset prices.

We estimate the model in two steps. We first calibrate the preference parameters,
the parameters governing the firms’ problem, and the monetary policy rule to standard
values in the literature. In a second step, we use simulated method of moments (SMM) to
estimate the volatilities of shocks. Our estimation targets reduced-form macroeconomic
impulse responses for output, inflation, and the Federal Funds rate, and the volatil-
ity of quarterly changes in long-term breakeven, thereby matching basic volatilities and
comovements in macroeconomic data. Despite the significant additional structure, our
model is similarly successful in generating a low volatility of the output gap with a much
higher volatility of stock returns as in Campbell and Cochrane (1999), and a negative
stock market beta of long-term nominal Treasuries as in Campbell, Pflueger, and Viceira
(2020). We obtain an equity Sharpe ratio of 0.50, an annualized equity premium of 6.82%
and annualized equity return volatility of 13.55%. The model generates volatile excess
returns for 10-year real bonds and breakeven, defined as the difference between nominal
and real bond returns, though they are not as volatile in the data. Our model does not

3Because we preserve the full nonlinearity of asset prices, and the Euler equation and monetary policy
rule are already exactly log-linear, we do not mix different orders of approximation.
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match the average risk premium in long-term nominal or real bonds, which is however
hard to estimate reliably over a short sample of 20 years.

The model naturally explains the empirical evidence in Figure 1, Panel A, but only
if the stock return response is amplified by countercyclical risk aversion. In the model, a
positive shock to the short-term nominal rate leads to declines in output and consumption.
These model responses are hump-shaped, consistent with the data and the role of habits
in macroeconomic models.4 As consumption declines towards habit, risk aversion and
the return consumers require to hold risky stocks increase. Stock prices hence fall more
than expected dividends, and our model attributes about one-half of the decline in stock
prices to the higher required compensation for holding risk, in line with the empirical
decomposition in Bernanke and Kuttner (2005).

The model ascribes the empirical evidence on breakeven inflation in Figure 1, Panel
B, to information about long-term inflation being revealed on FOMC dates. In the
model, downward revisions to long-term inflation expectations tend to go along with
lower expected output, as a permanent decline in inflation acts as a costly disinflation.
The long-term monetary policy shock hence induces breakeven inflation and stock prices
to rise and fall together, matching the positive empirical comovement on FOMC dates.
Risk premia again amplify the model decline in stock prices as consumption falls towards
habit.

Our model generates the unique prediction that when times are bad, stock markets
react more strongly to monetary policy even if the real economy does not. This finding
suggests that during crises, such as the ongoing Covid-19 crisis, dramatic stock market
responses to monetary policy need not indicate equally dramatic effectiveness for the real
economy. This prediction arises naturally in our model from endogenous variation in
risk bearing capacity implied by finance habit preferences. When consumption is close to
habit, households’ marginal utility is particularly sensitive to consumption, so a monetary
policy action that lifts the economy has an especially strong calming effect on household
risk aversion, amplifying the risk premium effect on stocks that is present in normal
times. Consistent with this prediction, we find that stock return volatility around FOMC
announcements was amplified during the financial crisis of 2008-09.

This paper is complementary to recent innovations in understanding heterogeneous
consumer responses to monetary policy and their implications for macroeconomic out-
comes (Kaplan, Moll, and Violante (2018), McKay, Nakamura, and Steinsson (2016),
Auclert, Rognlie, and Straub (2020)) and financial asset prices (Drechsler, Savov, and
Schnabl (2018), Kekre and Lenel (2020)). We keep the representative agent assumption,

4Fuhrer (2000) include habits within a macroeconomic model, while Boldrin, Christiano, and Fisher
(2001) use habits that resolve the equity premium but not the smooth risk-free rate puzzle.
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but instead assume finance habit formation. The advantage of finance habits is that their
quantitative implications for asset prices are well-understood. We thereby provide a parsi-
monious model that jointly explains a number of empirical findings: high-frequency stock
return responses to both Federal Funds rate innovations and long-term inflation news,
volatile aggregate stock returns and a smooth risk-free rate, and hump-shaped macroe-
conomic impulse responses. Finance habits and heterogeneous agents would likely lead
to interesting interactions and amplify each other, though modeling these interactions is
beyond the scope of this paper. We similarly view our model as complementary to the
liquidity-based model of stock responses to Federal Funds rate innovations of Lagos and
Zhang (2020).

We also contribute to a growing literature jointly modeling financial asset prices with
endogenous macroeconomic dynamics, by allowing finance habit formation preferences to
be integrated into a standard small-scaled New Keynesian model. Prior work has used
ambiguity aversion (Bianchi, Ilut, and Schneider (2018)), disaster risks (Gourio (2012),
Kilic and Wachter (2018)) and long-run risks (e.g. Kung (2015), Gourio and Ngo (2020))
to understand asset pricing implications within models of the macroeconomy. While these
papers usually require an exogenously assumed link between the quantity of risk and other
state variables, our endogenous link between the level of monetary policy shocks and risk
premia in financial markets generates new predictions about the state-dependence of stock
return responses to monetary policy. Prior research, including Uhlig (2007), Dew-Becker
(2014), Rudebusch and Swanson (2008), Lopez (2014), Stavrakeva and Tang (2019), and
Bretscher, Hsu, and Tamoni (2019) has embedded simplified finance habit preferences
into a New Keynesian model. Following Campbell, Pflueger, and Viceira (2020), we
preserve the full non-linearity of Campbell and Cochrane (1999)’s consumption-based
habit formation preferences, and thereby retain their favorable asset pricing properties
generating volatile stock returns and stable short-term interest rates.

The paper is organized as follows. Section 2 presents the model. Section 3 solves the
model. Section 4 estimates the model and assesses its macroeconomic and asset pricing
implications. Section 5 concludes.

2 Model

2.1 Summary

The model is specified such that households’ and firms’ first-order conditions imply the
smallest scale New Keynesian work-horse model, i.e. a log-linear consumption Euler
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equation and Phillips curve:

xt = fxEtxt+1 + ρxxt−1 − ψ (rt − rat ) + vx,t, (1)

πt = fπEtπt+1 + ρππt−1 + κxt + vπ,t, (2)

while nesting the asset pricing habit preferences of Campbell, Pflueger, and Viceira
(2020), which, in turn, build on a long-standing literature of habits in finance (Con-
stantinides (1990), Campbell and Cochrane (1999), Wachter (2006)).

Here, rt denotes the log real risk-free interest rate that can be earned from time t to
time t + 1, the output gap, xt, equals log real output minus log potential output at the
hypothetical equilibrium without price–setting frictions (Woodford (2003), p.245), and
πt is log quarterly inflation. The rate rat is the frictionless real rate related to expected
productivity growth. The demand and Phillips curve shocks vx,t and vπ,t, and the positive
coefficients fx, ρx, ψ, fπ, ρπ, κ arise from consumer preferences and the firm’s problem.
The consumption Euler equation is exact, and the Phillips curve is derived from the usual
log-linearization. Both equations are specified up to a constant. We use lower-case letters
to denote log variables throughout.

2.2 Preferences

2.2.1 Finance habit

There is a representative agent whose utility depends on the difference between consump-
tion Ct and external habit Ht:

Ut = (Ct −Ht)1−γ − 1
1− γ = (StCt)1−γ − 1

1− γ . (3)

Here Ct is the quantity of market goods available for consumption, Ht is consumers’
habit level for market-produced goods, and γ is a curvature parameter. The surplus
consumption ratio

St = Ct −Ht

Ct
(4)

is the fraction of market consumption that is available to generate utility. Relative risk
aversion varies inversely with the surplus consumption ratio: −UCCC/UC = γ/St.

The consumer first-order condition implies that the gross one-period real return (1 +
Rt+1) on any asset satisfies

1 = Et [Mt+1 (1 +Rt+1)] , (5)

where the stochastic discount factor is related to the log surplus consumption ratio st+1
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and log consumption ct+1 by

Mt+1 = βU ′t+1
U ′t

= β exp (−γ(∆st+1 + ∆ct+1)) . (6)

2.2.2 Surplus consumption dynamics

We model implicitly how habit adjusts to the history of consumption through the dy-
namics for log surplus consumption:

st+1 = (1− θ0)s̄+ θ0st + θ1xt + θ2xt−1 + εs,t + λ(st)εc,t+1, (7)

εc,t+1 = ct+1 − Etct+1. (8)

Here, s̄ is steady-state log surplus consumption and εs,t is a serially uncorrelated ho-
moskedastic habit shock. The consumption shock εc,t will be derived as a function of fun-
damental shocks in equilibrium. For now, we note that it is conditionally homoskedastic
and serially uncorrelated with standard deviation σc. The sensitivity function λ(st) takes
the form:

λ(st) =


1
S̄

√
1− 2(st − s̄)− 1 st ≤ smax

0 st > smax
, (9)

S̄ = σc

√
γ

1− θ0
, (10)

s̄ = log(S̄), (11)

smax = s̄+ 0.5(1− S̄2). (12)

The downward-sloping relation between λ(st) and st has the intuitive implication that
marginal consumption utility is particularly sensitive to consumption innovations when
investors are close to their habit consumption level, as would be the case after a sequence
of bad shocks. The particular non-linear form of λ(st) implies that st drops out of the asset
pricing Euler equation for the real risk-free rate, because the associated intertemporal
substitution and precautionary savings terms cancel exactly. The terms θ1xt and θ2xt−1

make habit depend on the output gap. Our model has no real investment, so it is intuitive
to interpret the xt terms as consumption relative to a frictionless level entering into habit.
If θ1 > 0 and θ2 < 0, as in our empirical specification, the dependence of habit on the
most recent consumption lag increases relative to simple geometric weights, see Appendix
A. The habit shock εs,t captures independent fluctuations in habit and leads to a shock
in the consumption Euler equation. A positive εs,t lowers future expected habit and
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increases future expected surplus consumption, reducing risk aversion.5

2.2.3 Labor-leisure trade-off

Before describing the firm’s problem we need to specify households’ intratemporal labor-
leisure trade-off, which is at the heart of wage determination. To achieve a standard
functional form for the Phillips curve, we choose a labor disutility specification that en-
sures surplus consumption does not enter into the intratemporal labor-leisure trade-off.
Following the classic model of Greenwood, Hercowitz, and Huffman (1988), we assume
that the representative household’s total consumption, Ctot

t , is the sum of market con-
sumption, Ct, and home production Chome

t :

Ctot
t = Ct + Chome

t , (13)

Chome
t = AtNt

´ 1
0 (1− Li,t)1−χ di

1− χ . (14)

Here, Li,t denotes the differentiated labor used for production by firm i and (1 − Li,t)
is labor used for home production. Home production has decreasing returns to scale,
as in Campbell and Ludvigson (2001), and the parameter χ determines the elasticity
of market labor supply. The differentiated labor assumption follows Woodford (2003,
Chapter 3) and generates real rigidities from labor immobility across sectors (Ball and
Romer (1990)).

The utility function (3) is specified in terms of market consumption Ct and habit Ht,
which allows us to fit the model to data on market goods output. However, this utility
function is clearly equivalent to a power utility function over the difference between total
consumption and total habit, with total habit given by H tot

t = Ht + Chome
t . Intuitively,

home consumption drives up total habit one-for-one, and does not generate time-varying
risk aversion over market goods consumption.

2.3 Firm Problem

2.3.1 Demand

Demand for the differentiated good i is downward-sloping in its product price Pi,t:

Yi,t = Yt

(
Pi,t
Pt

)−θt
. (15)

5A similar intuition is captured by the reduced-form “moody investor” model of Bekaert, Engstrom,
and Grenadier (2010) and Bekaert, Engstrom, and Xu (2019). We go beyond this prior literature by
integrating preferences with typical New Keynesian microfoundations, and we separate habit shocks from
heteroskedasticity in fundamentals.
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Here, Pt =
[´ 1

0 P
−(θt−1)
i,t di

]− 1
θt−1 is the aggregate price level. The time-varying elasticity of

substitution θt is assumed to be log-normally distributed around steady-state θ. Shocks
to log θt are denoted εθ,t and assumed to be serially uncorrelated and homoskedastic.
Aggregate output and labor are Dixit-Stiglitz aggregates of differentiated goods Yi,t and
labor Li,t

Yt ≡
[ˆ 1

0
Y

θt−1
θt

i,t di

] θt
θt−1

, Lt ≡
[ˆ 1

0
L

(θt−1)(1−τ)
θt

i,t di

] θt
(θt−1)(1−τ)

. (16)

Because there is no time-varying real investment, consumption equals output Ct = Yt.6

2.3.2 Production

Firm i produces according to a Cobb-Douglas production function with capital share τ :

Yi,t = AtNtL
1−τ
i,t . (17)

Productivity is the product of technology, At, and human capital, Nt. Following Lucas
(1988), human capital depends on the average skill acquired by all agents, so agents do
not internalize the effect of acquiring skills on aggregate production. We assume that for
some constants 0 ≤ φ ≤ 1 and ν > 0, changes in log human capital are driven by past
market labor, lt−1:

nt = ν + nt−1 + (1− φ)(1− τ)lt−1. (18)

Alternatively, the process (18) can be interpreted as a simple endogenous capital stock,
similarly to Woodford (2003) (Chapter 5), if a fixed proportion of employment each
period is used as an input to produce investment goods. If real investment comes out of
labor, this interpretation would leave the relationship between consumption and output
unchanged and only the constants in the home production function (14) would change.
The purpose of nt is simply to detrend the output gap, so the specific interpretation is
not central for us.

We incorporate predictable productivity growth in the simplest possible manner, as-
suming that At is predictable one period ahead, i.e. that the change in log technology
∆at+1 is known at time t. To economize on state variables, we assume that productivity
growth is perfectly predictable and is a linear function of existing state variables, and in

6We do not include real investment in order to present the simplest possible model of monetary
policy and finance habits. Our analysis is therefore complementary to the classic paper of Jermann
(1998), which studies a real business cycle model with habit formation preferences.

10



particular the real risk-free rate deviation from the frictionless steady-state

∆at+1 = ρa(rt − r̄) (19)

This relationship captures the intuition that the central bank may try to set the real
risk-free rate following variation in the natural rate due to variation in expected growth
rates (Nakamura and Steinsson (2018)). We use the notation

rat = γ∆at+1 (20)

for the natural real rate due to expected productivity growth.7

2.3.3 Price setting

When a firm can update its product price, it maximizes the discounted sum of current
and future expected profits discounted at the stochastic discount factor while the price
remains in place. Firm profits equal output minus the cost of labor, subject to the
production function (17), demand for differentiated goods (15), and taking wages from
consumers’ labor-leisure trade-off as given.

Firms face price-setting frictions in the manner of Calvo (1983), where fraction 1−α
of firms can change prices every period with equal probabilities across firms. When firms
cannot update, their prices are indexed to lagged inflation (?Christiano, Eichenbaum,
and Evans, 2005). A firm that last reset its price at time t to P̃t, charges a nominal time
t+ j price P̃t

(
Pt−1+j
Pt−1

)
.

2.4 Monetary Policy

Motivated by the empirical evidence in Figure 1, we choose the simplest Taylor-type rule
with a two factor shock structure (ignoring constants):

it = ρiit−1 +
(
1− ρi

)
i∗t + vST,t, (21)

v∗t = v∗t−1 + vLT,t (22)

i∗t = γxxt + γππt + (1− γπ) v∗t (23)

The first shock, vST,t, is a short-term monetary policy shock and represents a standard
7Our main model results for high-frequency stock returns against innovations in the Federal Funds

rate and breakeven are robust to setting ρa = 0, see Appendix F.1. The purpose of time-varying expected
productivity growth is simply to generate volatility in real bonds, and to drive down the real bond return
correlation with output and stock returns. Note that the frictionless real rate, more broadly defined,
would encompass both rat and shocks to preferences (Woodford (2003)).
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innovation to the short-term nominal interest rate. The second shock, v∗LT , is a long-term
monetary policy shock and shifts the random walk component of inflation expectations,
v∗t , thereby moving the entire term structure of nominal interest rates.8 We assume that
short-term and long-term monetary policy shocks are uncorrelated, motivated by the
empirical correlation between Fed Funds rate and breakeven innovations on FOMC dates
in our sample being close to zero. Here, i∗t denotes the central bank’s interest rate target,
to which it adjusts slowly with a smoothing coefficient ρi.

To keep the macroeconomic dynamics tractable and log-linear we use the common
log-linear approximation for the nominal log short-term interest rate

it = rt + Etπt+1. (24)

The approximation error stemming from (24) in our estimated model is small and within
the range of measurement error of bond yields. We do not approximate longer-term bond
prices, instead solving for time-varying risk premia numerically.

2.5 Stocks

We model stocks as a levered claim on consumption, as in Abel (1990) and Campbell
(2003), while preserving the cointegration of consumption and dividends. Let P c

t denote
the price of a claim to the entire future consumption stream Ct+1, Ct+2,... At time t
the aggregate firm buys P c

t and sells equity worth δP c
t , with the remainder of the firm’s

position financed by one-period risk-free debt worth (1 − δ)P c
t . Stocks in our model

should therefore simply be interpreted as a financial asset with pro-cyclical dividends,
rather than a financial claim tied specifically to firm cash flows.9

3 Model Solution and Discussion

3.1 Steady-State and Output Gap

We log-linearize output, consumption, and labor around the steady-state with Ȳt =
AtL̄

1−τ , where L̄ is the labor supply consistent with flexible prices and steady-state
8We do not explicitly model the zero-lower-bound (ZLB) for simplicity, leaving this application for

future research. One simple way to incorporate the ZLB explicitly into the model would be through a
Markov regime switching model, which would preserve the tractability of the model.

9Alternatively, one could models stocks as a claim on firm profits rather than consumption. However,
this would require modeling infrequent wage setting to match the cyclical behavior of dividends (Favilukis
and Lin (2016)). Since our goal is to understand the implications of a time-varying price of risk in response
to monetary policy more generally, it is not crucial for us whether stocks represent a claim on profits.
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markups. We use hats to denote log deviations from this steady-state. In a flexible-price
equilibrium, each firm wishes to charge a markup θt

θt−1 over real marginal cost.
The log output gap xt is the deviation of log output from the flexible-price equilibrium

(up to a constant):

xt = yt − nt − at = ct − (1− φ)
∞∑
j=0

φjct−1−j −
∞∑
j=0

φj∆at−j. (25)

Here, we have used the resource constraint yt = ct and the process for human capital (18).
Equation (25) has the appealing feature that the empirical output gap from the Bureau
of Economic Analysis closely resembles stochastically detrended consumption (Campbell,
Pflueger, and Viceira (2020)). Inverting equation (25) gives an intuitive expression for
consumption growth in terms of the output gap and productivity growth:

∆ct+1 = xt+1 − φxt + ∆at+1. (26)

3.2 Euler Equation

We obtain the exact log-linear Euler equation (1) in terms of preference parameters:

xt = 1
φ− θ1︸ ︷︷ ︸
fx

Etxt+1 + θ2

φ− θ1︸ ︷︷ ︸
ρx

xt−1 −
1

γ(φ− θ1)︸ ︷︷ ︸
ψ

(rt − rat ) + 1
φ− θ1

εs,t︸ ︷︷ ︸
vx,t

. (27)

This expression is the no-arbitrage condition (5) for the one-period real risk-free bond,
substituting in the stochastic discount factor (6), log surplus consumption dynamics (7),
and the updating equation for consumption growth (26). The log-linear Euler equa-
tion (27) does not depend on the specific microfoundations for consumption and output,
provided that consumption is homoskedastic and satisfies the updating equation (26).

Our modeling choices simplify the no-arbitrage condition for the one-period real risk-
free bond, and ensure that it takes exactly the form of a New-Keynesian consumption
Euler equation. The specific nonlinear form of the sensitivity function λ(st) has the
unique advantage that the precautionary savings and intertemporal substitution terms
from st cancel, and st is not a state variable for macroeconomic dynamics. Surplus con-
sumption dynamics are of course linked to the consumption Euler equation (27) through
consumption and habit shocks.

The Euler equation (27) shows that θ2 > 0 generates a lagged output gap term. As
a lagged output gap term is known to be crucial for matching hump-shaped output gap
responses to monetary policy shocks (Boldrin, Christiano, and Fisher (2001) and Fuhrer
(2000)), this parameter is essential for linking the finance and monetary policy sides of
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our model. In our estimation, we constrain the parameter θ1 so that the forward- and
backward-looking terms in the consumption Euler equation sum to one.

The habit shock microfounds risk-centric demand shocks in the Euler equation, and
shows that shocks to risk-bearing capacity enter into macroeconomic dynamics in line
with a growing literature including Christiano, Motto, and Rostagno (2014), Caballero
and Simsek (2020), Pflueger, Siriwardane, and Sunderam (2020), and Kekre and Lenel
(2020). Demand shocks from other microfoundations, such as a gap between interest
earned by consumers relative to the interest rate controlled by the central bank (Smets
and Wouters (2007)), or a shock to the rate of time preference (e.g. Justiniano and
Primiceri (2008), Albuquerque, Eichenbaum, Luo, and Rebelo (2016)), would lead to
similar macroeconomic dynamics but different asset pricing implications. Demand shocks
microfounded from habit allow us to use a single stochastic discount factor to price all
assets, and drive real bonds and stocks in opposite directions similarly to the data.

3.3 Phillips Curve

Combining the labor-leisure choice (14) with external habit preferences (3) and log-
linearizing around a steady-state with L̄i,t = L̄ gives a standard expression for the log-
linearized real wage in terms of labor supply (up to a constant):

ŵi,t =
(
χ

L̄

1− L̄

)
︸ ︷︷ ︸
Inverse Frisch η

l̂i,t. (28)

Equation (28) makes clear that the log-linearized real wage takes a standard form inde-
pendent of habit, thereby sidestepping the issue noted by Lettau and Uhlig (2000) that
habit may affect labor supply decisions in a production economy. Comparing to standard
New Keynesian models (e.g. Galí (2008)) our log real wage is even somewhat simpler
because it does not depend on aggregate consumption.10 When consumption is close
to habit the marginal utility from both market and home consumption is high, leaving
the wage unaffected. In practice, this might capture that after an adverse shock con-
sumers shift from eating out to cooking at home, as documented in Aguiar, Hurst, and
Karabarbounis (2013). The assumption that home production increases with aggregate
productivity, AtNt, ensures that the labor-leisure trade-off does not become irrelevant
over time (Kehoe, Lopez, Midrigan, and Pastorino (2019)), consistent with empirical
evidence (Chodorow-Reich and Karabarbounis (2016)).

We then proceed with standard log-linearization of the firms’ price-setting problem
10Because labor supply and consumption are linked in equilibrium, this has no effect on the qualitative

nature of the log-linearized Phillips curve and a negligible quantitative effect.
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around the random walk component v∗t (Cogley and Sbordone (2008)) to obtain the
log-linearized Phillips curve:

πt = βg
1 + βg︸ ︷︷ ︸
fπ

Etπt+1 + 1
1 + βg︸ ︷︷ ︸

ρπ

πt−1 + κxt +
(
− κ

ω(θ − 1)

)
εθ,t︸ ︷︷ ︸

vπ,t

. (29)

Here, βg = βexp (−(γ − 1)g) is the growth-adjusted time discount rate, and the slope
of the Phillips curve equals κ = 1−α

α
1−βgα
1+βg

ω
1+ωθ . The parameter ω = (τ + η) / (1− τ)

captures the steady-state elasticity of real marginal cost vs. own-firm output.
A complementary approach to separate wages from consumption habit would be to

introduce separate habits for consumption and leisure combined with labor market fric-
tions, though matching asset pricing moments can be challenging in such a setup (Uhlig
(2007), Rudebusch and Swanson (2008), Lopez (2014)). Our formulation is more parsi-
monious and requires only one parameter, closely related to the Frisch elasticity of labor
supply, to describe preferences over leisure (χ). Because of this parsimony we consider
our model a useful template to study the interaction between labor market frictions and
habits in future research.

3.4 Macroeconomic Equilibrium Dynamics

We first solve for log-linear macroeconomic dynamics, and second for highly nonlinear
asset prices. The tractability of this two step solution method is achieved because the
surplus consumption ratio does not appear directly in the Euler equation or the Phillips
curve, though finance and macroeconomics are connected through habit and consumption
shocks. Equilibrium macroeconomic dynamics are determined by the real rate Euler
equation (27), the log-linearized Phillips curve (29), and the monetary policy rule (21)
through (23). The macroeconomic state vector is:

Yt = [xt, πt − v∗t , it − v∗t ]′, (30)

and the vector of structural shocks is

vt = [vx,t, vπ,t, vST,t, vLT,t]′. (31)

The vector of shocks vt is assumed to be homoskedastic with a time-invariant diagonal
variance-covariance matrix. Further, vt is assumed to be serially uncorrelated and multi-
variate normal. We denote the standard deviations σx, σπ, σST , and σLT . We solve for a
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minimum state variable equilibrium of the form:

Yt = BYt−1 + Σvt, (32)

whereB and Σ are [3×3] and [3×4] matrices, respectively. We solve for the matrixB using
Uhlig (1999) formulation of the Blanchard and Kahn (1980) method. For our estimation,
we choose a monetary policy rule that raises real rates in response to an increase in
inflation (γπ > 1), so there exists a unique equilibrium of the form (32) in which all
eigenvalues of B are less than one in absolute value. However, New Keynesian models
are subject to well-known equilibrium multiplicity issues and equilibria with additional
state variables or sunspots may exist (Cochrane (2011)), and resolving these issues is
beyond this paper.

3.5 Solving for Asset Prices

We use numerical best practices to preserve the full nonlinearity of asset prices (Wachter
(2005)). We use the following recursion to solve for the price-consumption ratio of an
n-period zero-coupon consumption claim:

P c
nt

Ct
= Et

[
Mt+1

Ct+1

Ct

P c
n−1,t+1

Ct+1

]
. (33)

The price-consumption ratio for a claim to aggregate consumption is equal to the infinite
sum of zero-coupon consumption claims:

P c
t

Ct
=
∞∑
n=1

P c
nt

Ct
. (34)

The price of the levered equity claim equals P δ
t = δP c

t . Leverage hence scales stock
returns roughly proportionally, increasing stock return volatility but leaving the Sharpe
ratio unchanged. We initialize the recursions for real and nominal zero coupon bond
prices:

P1,t = exp (−rt) , P $
1,t = exp(−it). (35)

The n-period zero coupon prices follow the recursions:

Pn,t = Et [Mt+1Pn−1,t+1] , (36)

P $
n,t = Et

[
Mt+1 exp(−πt+1)P $

n−1,t+1

]
. (37)
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Log bond yields for real and nominal zero coupon bonds with maturity n are defined by
yn,t = − log (Pn,t) /n and y$

n,t = − log
(
P $
n,t

)
/n.

The model generates an intuitive flight-to-safety effect, driving up safe asset prices
and decreasing risky asset prices when surplus consumption is low. To gain intuition, we
solve analytically for the risk premium of a one-period consumption claim. This claim
pays aggregate consumption in period t+1 and pays nothing in all other periods, thereby
sharing the cyclical properties of stocks but having a shorter horizon. We denote the log
return on the one-period consumption claim by rc1,t+1. The risk premium, adjusted for a
standard Jensen’s inequality term, equals the conditional covariance between the negative
log SDF and and log output:

Et
[
rc1,t+1 − rt

]
+ 1

2V ar
(
rc1,t+1

)
= Covt (−mt+1, xt+1) = γ (1 + λ (st))σ2

c . (38)

Equation (38) shows that risk premia are time-varying and increase with the sensitivity
function λ(st). Investors require a higher expected return for holding risky assets when
surplus consumption is highly sensitive to consumption, as is the case when surplus
consumption is low. The relationship between risk premia and surplus consumption has
the reverse sign for safe assets that comove positively with SDF.

We solve for asset prices numerically on a four-dimensional grid consisting of the
macroeconomic state vector Ŷt and the surplus consumption ratio st. Iterating along a
grid, as opposed to local approximation or global solution methods, is the best practice for
this type of numerical problem because it imposes the least structure (Wachter (2005)).
By contrast, approximation with polynomials would miss the particularly strong non-
linearity of the sensitivity function as the log surplus consumption ratio becomes small,
distorting numerical asset prices even around the steady-state. Grid iteration is facilitated
in our framework because macroeconomic dynamics are log-linear. For details of the
numerical solution see the Appendix.

3.6 Modeling High-Frequency Asset Prices around Monetary
Policy Announcements

We make the simplifying assumption that FOMC dates occur at the end of the quarter,
so post-FOMC asset prices correspond to end-of-quarter asset prices.11 In order to model
the discrete arrival of news on FOMC dates, we assume that the quarterly fundamental

11Given that our results are robust to varying the volatility of news released on FOMC dates (Appendix
C.7), modeling FOMC dates as occurring every six weeks is unlikely to change our findings.
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shock vector vt consists of independent pre-FOMC vpret and FOMC vFOMC
T components

vt = vpret + vFOMC
t .

The vector of FOMC shocks vFOMC
t is assumed to have a diagonal variance-covariance

matrix with standard deviations σFOMC
x = 0, σFOMC

π = 0, σFOMC
ST < σST , and σFOMC

LT <

σLT .
Pre-FOMC asset prices in our model differ from quarter t−1 asset prices because they

also reflect information encoded in vpret , which in our application is assumed to include
the full habit and Phillips curve shocks realized in quarter t as well as substantial portions
of the quarter t short-term and long-term monetary policy shocks. We compute quarter t
pre-FOMC asset prices at the expected quarter t state vector conditional on information
available at the end of period t−1 and vpret . We model FOMC announcements as occurring
instantaneously, so no dividends are paid and the aggregate price level is constant during
the short FOMC interval. The model high-frequency log stock return around monetary
policy news then simply equals the post- minus the pre-FOMC log price for the levered
consumption claim. The model high-frequency change in breakeven around monetary
policy news equals post- minus pre-FOMC log 10-year breakeven. For details of model
high-frequency asset price changes see Appendix C.7.

4 Estimated Model

We estimate the model in two steps. In a first step, we set preference parameters, firm
parameters, and monetary policy parameters to standard values from the literature. In a
second step, we use a Simulated Method of Moments (SMM) procedure to estimate the
standard deviations of shocks.

4.1 Calibrated Parameters

Table 1, Panel A lists the calibrated parameters. The consumption growth rate, utility
curvature, steady-state real risk free rate, persistence of surplus consumption, and the
learning-by-doing parameter φ responsible for detrending output are taken from Camp-
bell, Pflueger, and Viceira (2020). We choose the preference parameters θ1 and θ2 to
match the macroeconomics literature. We choose θ2 = 0.6 in line with the habit param-
eters in Fuhrer (2000), Smets and Wouters (2007), Christiano, Eichenbaum, and Evans
(2005). The parameter θ1 is set to ensure that the forward- and backward-looking pa-
rameters in the real rate Euler equation sum to one.

On the firm side, we follow Galí (2008). We set the price-stickiness parameter to
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0.67, meaning that the average price duration is three-quarters. The capital share of
production is set to a standard value of τ = 1/3. The cross-goods substitutability is set
to θ = 6, implying a steady-state markup of 20%. The steady-state Frisch elasticity of
labor supply, which in our model equals

(
χ L̄

1−L̄

)−1
, is set to one. We set the leverage

parameter to 0.4. We interpret this leverage parameter broadly, to include operational
leverage. The main purpose of this parameter is to match the volatility of equity returns,
while leaving the equity Sharpe ratio unchanged.

We also choose conventional monetary policy parameters. The reaction coefficients for
inflation and output fluctuations are from Taylor (1993) and equal γx = 0.5 and γπ = 1.5.
We set the monetary policy smoothing parameter to ρi = 0.9 to match the larger root in
interest rates, and ρa = 0.34 = 0.68/γ to match the relationship between the frictionless
real rate embedded in growth expectations and the actual real rate from Nakamura and
Steinsson (2018).

4.2 SMM Estimation

Having calibrated this initial set of parameters, we estimate the vector of standard devi-
ations σ = [σx, σπ, σST , σLT ] by minimizing the objective function

J(σ) = (Ψ(σ)− Ψ̂)′Ŵ (Ψ(σ)− Ψ̂). (39)

Following Christiano, Eichenbaum, and Evans (2005), the vector Ψ̂ collects empirical
macroeconomic impulse responses, and we weight the moments by a diagonal matrix Ŵ
with the inverses of the bootstrapped variances along the diagonal. Our sample begins
in 2001Q2, when the relationship between inflation and empirical output gap measures
displays a structural change (Campbell, Pflueger, and Viceira, 2020), and ends in 2019Q2.
The vector Ψ(σ) collects the corresponding model moments, obtained by applying the
same procedure to simulated data of the same length. Our moments are from a one lag
VAR in the log output gap, the one-quarter change in inflation, and the difference between
the nominal Federal Funds rate and inflation, thereby respecting the joint unit root in
inflation and nominal interest rates in the model.12 Impulse responses are orthogonalized
so shocks to the Fed Funds rate do not contemporaneously affect inflation or output, and
inflation innovations do not enter into the same period output. This orthogonalization

12Quarterly real GDP, real potential GDP, and the GDP deflator in 2012 chained dollars are from the
FRED database at the St. Louis Federal Reserve. Since output, unlike asset prices, is a flow over a
quarter, it can be treated either as occurring at the beginning or end of a quarter. We follow Campbell
(2003) and align output reported for quarter t with interest rates and stock prices measured at the end
of quarter t − 1. The log output gap is in percent units. We use the Federal Funds rate averaged over
the last week of the quarter from the Federal Reserve’s H.15 publication. Interest rates and inflation are
in annualized percent.
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does not directly identify the structural shocks in our model, and merely defines a unique
set of empirical macroeconomic moments that are comparable to the literature. We
target the output gap, inflation, and Fed Funds rate responses in periods 0, 1, 2 , 4, 8,
and 12 quarters after the initial shock. Since σLT is not well identified from the reduced-
form macroeconomic impulse responses, we additionally target the standard deviation of
quarterly changes in inflation swap rates for 10-year inflation starting 10 years from now,
which we estimate to equal 0.26% over our sample.13 For details of the SMM procedure
see Appendix E.

The estimated standard deviations of shocks are shown in Table 1, Panel B. The
Phillips curve shock is somewhat more volatile than the demand and short-term monetary
policy shocks. The long-term monetary policy shock is the least volatile, and its volatility
of 0.22% closely matches the standard deviation of quarterly changes in 10 on 10-year
breakeven inflation in the model, which equals 0.26% just like in the data.

4.3 Model Fit

4.3.1 Macroeconomic Dynamics

Figure 2 shows that the model matches the empirical volatilities of the output gap,
inflation, and Fed Funds rate, their persistence over time, and their comovements. It is
important to keep in mind that the impulse responses shown in Figure 2 are not structural,
only a statistical decomposition, and that each innovation reflects a combination of the
underlying structural shocks. We turn to structural impulse responses in Section 4.4.1.

Both in the model and in the data the output gap, inflation, and the Federal Funds rate
tend to move together in response to all innovations, with the exception of the interest rate
innovation. The interest rate innovation has a negative but quantitatively small output
gap response both in the model and in the data. The overall positive inflation-output
gap comovement in Figure 2 is consistent with prior literature, which documents that
the output gap-inflation correlation is positive and long-term nominal bonds are hedges
for the post-2001 period (Baele, Bekaert, and Inghelbrecht (2010), Campbell, Sunderam,
Viceira, et al. (2017), Song (2017), Campbell, Pflueger, and Viceira (2020), Gourio and
Ngo (2020)).

4.3.2 Asset Prices

Table 2 shows that our model also generates volatile stock returns with an empirically
plausible equity Sharpe ratio of 0.50, an equity premium of 6.82%, and annualized equity

13Inflation swap rates, in annualized percent, are from Bloomberg.
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return volatility of 13.55%. This high stock return volatility is achieved through time-
varying risk premia of the form (38).14 The model fits the negative breakeven beta
with respect to the stock market, which Campbell, Pflueger, and Viceira (2020) argue
is important to generate endogenous flight-to-safety towards nominal bonds when equity
risk premia rise. The real bond-stock beta in the model is slightly positive, compared to
a slightly negative real bond beta in the data. Breakeven excess returns are volatile at
4.76% similarly to the data, and real bond excess returns in the model have substantial
volatility at 1.56%. The empirical volatility of 10-year TIPS excess returns exceeds the
real bond return volatility in the model at 6.82%. However, this empirical volatility
is likely overestimated because TIPS contain large and time-varying liquidity premium
(Gürkaynak, Sack, and Wright (2010), Fleckenstein, Longstaff, and Lustig (2014)).

While the model matches the data well along many dimensions, it misses realized
excess bond returns over our sample period. We face a choice between fitting betas or
term premia and we prefer to fit second moments, which are measured more precisely
over short samples. The fundamental tension between matching a positive term premium
and a negative bond beta is not specific to our model and arises for most single-factor
models. For example, the seminal contribution of Wachter (2005) obtains a positive term
premium from a positive bond-stock beta, which however has turned negative in our more
recent sample. Regime switches in monetary policy can potentially resolve this tension
(Song (2017)), and although exploring them is beyond this current paper the convenient
log-linear macroeconomic dynamics would make our model a tractable building block for
such an analysis.

4.4 Model Drivers

To better understand the model mechanisms, we show impulse responses to the structural
innovations vx,t, vπ,t, vST,t and vLT,t.

4.4.1 Structural Macroeconomic Responses

Figure 3 confirms that the macroeconomic side of our model behaves like a standard
three-equation New Keynesian model. A habit shock acts as a demand shock and leads

14To compute the empirical asset pricing moments, we use value-weighted combined NYSE/AMEX/-
Nasdaq stock returns including dividends from CRSP. The dividend-price ratio is constructed using data
for real S&P 500 dividends and the S&P 500 real price from Robert Shiller’s website. For both bonds
and stocks, we consider log returns in excess of the log T-bill rate, where the end-of-quarter three-month
T-bill is from the CRSP monthly Treasury risk-free rate file. Log bond returns are derived from changes
in yields in the data. End-of-quarter bond yields for both nominal Treasuries and TIPS are from the
daily zero coupon curves of Gürkaynak, Sack, and Swanson (2005) and Gürkaynak, Sack, and Wright
(2010). All yields and returns are continuously compounded.
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to a temporary increase in output, and a smaller temporary increase in inflation. A
positive Phillips curve shock, due to an increase in markups, leads to a decline in output
and an increase in inflation. A short-term increase in the short-term interest rate causes
a decline in output through consumers’ consumption-savings decision, and lower inflation
through the Phillips curve. Finally, a negative long-term monetary policy shock leads to
a costly disinflation, lowering inflation expectations ahead of nominal interest rates, and
thereby raising the real rate and contracting output. The backward-looking component
in the consumption Euler equation ensures a hump-shaped output gap responses as in
Fuhrer (2000) and Boldrin, Christiano, and Fisher (2001).

4.4.2 Structural Asset Price Responses

Figure 4 shows that the structural impulse responses for stocks and bonds follow natu-
rally from the macroeconomic impulse responses. The first row shows cumulative equity
returns in excess of the steady-state return, and the subsequent rows show yields on
10-year nominal and real bonds. Because bond yields are inversely related to prices, an
increase in the 10-year yield implies a decrease in the corresponding bond price.

Comparing the first rows across Figures 3 and 4 shows that stock prices move in the
same direction as output gap responses, with the overall stock response quantitatively
dominated by time-varying risk premia.15 The second row of Figure 4 shows that long-
term nominal bond yields respond in the same direction as the Federal Funds rate in
Figure 3. The third row of Figure 4 shows that 10-year real bond yields respond in
the same direction as the short-term real rate and are almost exclusively driven by the
risk-neutral component.

The first column of Figure 4 helps understand the habit shock, and shows that it affects
asset prices through both intertemporal substitution and risk aversion. The expected
increase in surplus consumption generates an incentive for intertemporal substitution,
driving down risk-neutral prices of both real bonds and stocks. Because bond yields move
inversely with prices, risk-neutral long-term real bond yields increase. Higher expected
surplus consumption also affects risk premia, because it leads to higher consumption
today through the consumption Euler equation, raising surplus consumption and driving
up stock prices. The risk premium effect dominates the stock price response, whereas
the risk-neutral component dominates the real bond yield response. The demand shock
therefore has the unique ability to drive down the real bond-stock beta towards zero.

15The risk neutral response for all asset prices is computed as if assets were priced by a risk neutral
agent, holding macroeconomic dynamic fixed. The risk premium component is the difference between
the total and the risk neutral responses.
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4.5 Stock Returns around Monetary Policy News

Having seen that time-varying risk premia amplify stock return responses to macroeco-
nomic shocks, we now turn to the implications for high-frequency stock price changes
around monetary policy news. In this section, we first expand on the motivating evi-
dence reported in Figure 1 and then show how the model can account for these empirical
patterns. Appendix F.2 shows that the model matches the comovement between the
short-term policy rate and long-term real bond yields documented by Hanson and Stein
(2015) and Nakamura and Steinsson (2018), in part because the natural real rate moves
together with expected growth through (19) in our model.

4.5.1 Empirical Stocks Returns around Monetary Policy News

In Table 3, we formally establish the empirical relationships described in Figure 1. Col-
umn (1) corresponds to the left panel of Figure 1, and replicates the classic result of
Bernanke and Kuttner (2005). We find that a 25 bps surprise increase in the Federal
Funds rate leads to a one percentage point drop in the stock price on average. Column
(2) mirrors the right panel of Figure 1 and shows that breakeven changes on FOMC
dates have a statistically significant and economically meaningful positive relationship
with stock returns around FOMC announcements. In contrast to column (1), a 25 bps
surprise increase in 10-year breakeven tends to be associated with a 1.5 percentage point
increase in stock returns.16 To establish that FOMC dates reveal separate information
about short-term interest rates and long-term inflation expectations, we report multi-
variate regression results in column (3). Both coefficients are statistically significant and
quantitatively similar to the univariate regressions in columns (1) and (2). Column (4)
further shows that changes in 10-year breakeven, as a proxy for long-term inflation expec-
tations, are uncorrelated with Federal Funds rate surprises around FOMC announcements
over our sample period.

4.5.2 Model Stock Returns around Monetary Policy News

Table 4 shows the corresponding model regressions. We compute high-frequency model
stock returns, short-term interest rate changes, and 10-year breakeven changes using post-

16We collect the release date of FOMC statements from January 1st 2001 until Dec 31st 2019 from the
Federal Reserve’s website. To construct an empirical counterpart to the short-term monetary policy shock
in our model, we collect one-hour changes in Federal Funds rate around scheduled FOMC announcements
from the updated data of Gorodnichenko and Weber (2016), while for the long-term monetary shock
we use one-day changes in zero coupon nominal Treasury yields and TIPS yields are from Gürkaynak,
Sack, and Swanson (2005) and Gürkaynak, Sack, and Wright (2010). We are unable to construct higher
frequency proxies for this shock due to data availability for long-term bond yields. The equity return
outcome variable is measured using S&P 500 returns in the same one-hour windows around FOMC
announcement constructed from Trade and Quote data, accessed through WRDS.
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minus pre-FOMC asset prices to compute, where we split aggregate quarterly shocks
into pre-FOMC and FOMC components as described in Section 3.6. As in the data, we
assume that FOMC date monetary policy shocks represent only a portion of the quarterly
volatility of monetary policy shocks. To match the volatilities of Federal Funds and 10-
year breakeven changes around FOMC dates and their lack of a significant relationship
in our sample, we assume that the FOMC date short-term monetary policy shock has
a standard deviation of σFOMC

ST = 4.3 bps, the FOMC date long-term monetary policy
shock has a standard deviation of σFOMC

LT = 3.3 bps, and the two shocks on FOMC dates
are uncorrelated.17

Table 4, column (2) shows that the model matches the baseline empirical regression
in Table 3, column (3). Table 4, column (3) replaces the change in 10-year breakeven by
its risk-neutral counterpart. Both regression coefficients remain unchanged, showing that
10-year breakeven changes proxy for a shock to long-term inflation expectations in these
regressions, and therefore capture long-term monetary policy shocks in the model.

In column (4) we highlight the amplification effect from countercyclical risk-aversion,
showing that the model attributes roughly half of the stock market’s response to both
monetary policy shocks to time-varying risk premia. This large risk premium component
for the stock market response to monetary policy news is quantitatively in line with the
empirical decomposition into cash flow news versus discount rate news by Bernanke and
Kuttner (2005).

Why do stock returns move so much in response to short-term monetary policy news?
The macroeconomic and asset pricing responses to a short-term interest rate increase in
Figures 3 and 4 show that such a shock leads to a hump-shaped decrease in output and
consumption. As surplus consumption declines towards habit, investors require higher
compensation for holding risky stocks. The fall in stocks due to lower expected con-
sumption is therefore compounded by risk premia. Because time-varying risk premia in
our model are quantitatively important in equilibrium, they are similarly quantitatively
important around monetary policy news events, helping to explain why stock returns
decrease so much in response to a surprise increase in the Federal Funds rate in the data.

To understand the relationship between high-frequency changes in 10-year breakeven
and stock returns around the FOMC shock in the model, note that Figures 3 and 4
show that long-term monetary policy shocks move long-term inflation expectations and
the output gap in the same direction, but have little immediate impact on short-term
interest rates. The long-term monetary policy shock therefore has the potential to move
stock returns in the same direction as 10-year breakeven around monetary policy news

17We show in Appendix Figure A1 that the model regression slope coefficients are not sensitive to
varying the volatilities of monetary policy news on FOMC dates.

24



events, independently of movements in the short-term nominal rate. As output and
consumption decline, investors become more risk averse, amplifying the fall in stocks
in response to a negative long-term monetary policy shock. In contrast to stocks, the
risk premium component in breakeven is smaller because breakeven returns have a stock
market beta that is much smaller than one in magnitude, and changes in breakeven are
hence closely correlated with long-term monetary policy shocks.18 Appendix Table A1
shows that the results in Table 4 are robust to switching off various model components.

The average model monetary policy effects in Table 4 conceal substantial state-
dependence with respect to the level of surplus consumption. In Figure 5 we estimate the
model high-frequency stock response to monetary policy news separately in ten different
sub-samples, one for each decile of the pre-FOMC surplus consumption ratio. The figure
shows that the overall effect (solid lines) of both long- and short-term monetary policy
shocks increases in magnitude when surplus consumption is low, as would be the case
after a sequence of output declines. Since the macroeconomic consequences of the shocks
reported in Figure 3 are invariant to the level of surplus consumption, the risk neutral
component (dashed lines) is flat. The variation in stock return responses to long- and
short-term monetary policy shocks is driven by more volatile risk premia (dotted lines)
when consumption is low relative to habit. In line with this model prediction, we confirm
that during the height of the financial crisis (defined as October 2008 through December
2009), stock returns on FOMC dates were fifty percent more volatile than in the rest
of our sample even though Federal Funds rate surprises and breakeven changes were no
more volatile.19 The model prediction of greater stock return sensitivity to announce-
ments during recessions is also consistent with the empirical evidence from macroeconomic
announcements by Law, Song, and Yaron (2019).

5 Conclusion

We integrate a small-scale New Keynesian model of monetary policy with countercyclical
risk premia using the habit formation preferences of Campbell and Cochrane (1999) and
Campbell, Pflueger, and Viceira (2020), and apply it to understand asset price move-
ments around monetary policy announcements. The model easily matches the large

18While our results support the notion that FOMC dates reveal news about long-term inflation, we
cannot speak to whether specific tools and or communications move investors’ long-term inflation expec-
tations, which may very well be time-varying (Goodfriend and King (2005)), context-specific (Coibion,
Gorodnichenko, and Weber (2020)), and depend on behavioral channels (Orphanides and Williams
(2004), Gabaix (2019)).

19In Appendix G, we find that the point estimates from our benchmark regression in Table 3 also
increase in magnitude for this crisis subsample, though the coefficients are not statistically significant
due the small number of observations.
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stock return response to traditional monetary policy shocks, but only if stock responses
are amplified by time-varying compensation for risk. Our model attributes the large and
positive empirical relationship between breakeven inflation innovations and stock returns
around monetary policy announcements to correlated news about long-term inflation and
output, supporting the notion that monetary policy announcements reveal news about
the economy in a “Fed information effect”.

Taken together, our analysis suggests that volatile stock returns in lower frequency
data and quantitatively large stock return responses to monetary policy announcements
are internally consistent and two sides of the same coin. This has important implications
for interpreting asset price reactions to monetary policy. Our model suggests that policy
makers, economists, and market observers need to be careful to not extrapolate from
average relationships during crises, as risk bearing capacity and stock markets may react
a lot even to monetary policy announcements with modest real effects.

Our framework is tractable and portable towards broader macroeconomic models. We
anticipate that our framework will be useful to interpret macroeconomic drivers of asset
price fluctuations beyond the channels considered in this basic macroeconomic model,
such as wage rigidities or heterogeneity in price-setting frictions (Weber (2015)). We
also believe that the framework will be useful to understand the role of time-varying
risk premia in other empirical puzzles, such as the empirical finding that equity returns
are typically high prior to FOMC dates (Lucca and Moench (2015), Cieslak, Morse, and
Vissing-Jorgensen (2019), Cieslak and Pang (2019), Laarits (2019)).
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Table 1: Model Parameters

Panel A: Calibrated Parameters
Consumption Growth Rate g 1.89
Utility Curvature γ 2.00
Steady-State Riskfree Rate r̄ 0.94
Persistence Surplus Consumption Ratio θ0 0.87
Dependence Output Gap θ1 -0.67
Dependence Lagged Output Gap θ2 0.60
Capital Share of Production τ 0.33
Learning-by-Doing φ 0.93
Frisch Elasticity χ L̄

1−L̄ 1.00
Price Stickiness α 0.67
Cross-Goods Substitutability θ 6.00
Productivity Growth - Real Rate ρa 0.34
Leverage δ 0.40
MP Coefficient Output γx 0.50
MP Coefficient Inflation γπ 1.50
MP Persistence ρi 0.90

Panel B: Estimated Parameters
Std. Demand Shock (%) σx 0.37
Std. PC Shock (%) σπ 0.49
Std. Short-Term MP (%) σST 0.37
Std. Long-Term MP (%) σLT 0.22

Panel C: Implied Parameters
Discount Rate β 0.90
Steady-State Surplus Consumption Ratio S̄ 0.04
Maximum Surplus Consumption Ratio Smax 0.07
Euler Equation Lag Coefficient ρx 0.37
Euler Equation Forward Coefficient fx 0.63
Euler Equation Real Rate Slope ψ 0.08
Phillips Curve Lag Coefficient ρπ 0.51
Phillips Curve Forward Coefficient fπ 0.49
Phillips Curve Slope κ 0.06

Note: Panel A shows the parameters we calibrate following previous
literature, as detailed in Section 4.1. Panel B displays the parameters
we estimate by matching the empirical impulse response functions and
the volatility of long-term breakeven as described in Section 4.2. Panel
C reports moments implied by the other parameters listed above. Con-
sumption growth and the steady-state risk-free rate are in annualized
percent. The discount rate and the persistence of surplus consumption
are annualized. The monetary policy coefficients and the Phillips curve
slope are reported in units corresponding to our empirical variables, i.e.
the log output gap is in percent, and inflation, the Fed Funds rate are
in annualized percent. The implied Euler equation real rate slope is
hence reported as 1

4ψ and the implied Phillips curve slope is reported as
4κ. We report quarterly standard deviations of shocks to percent out-
put gap, annualized percent inflation, the annualized percent Fed Funds
rate, and the annualized percent long-term monetary policy target.
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Table 2: Asset Prices

Model Data
Stocks

Volatility 13.55 16.96
Equity Premium 6.82 7.41
Sharpe Ratio 0.50 0.44

10Y Breakeven
Volatility 4.76 7.01
Breakeven-Stock Beta -0.13 -0.23
Excess Returns -0.67 0.55
Sharpe Ratio -0.14 0.08

10Y Real Bonds
Volatility 1.56 6.83
Real Bond-Stock Beta 0.03 -0.08
Excess Returns 0.07 3.76
Sharpe Ratio 0.05 0.55

Note: This table reports the unconditional asset pricing moments
both empirically and in model simulated data. The equity premium is
computed as the quarterly log return on the value-weighted combined
NYSE/AMEX/Nasdaq stock return including dividends from CRSP
in excess of the log 3-month Treasury bill plus one-half times the log
excess return variance to adjust for Jensen’s inequality. Breakeven ex-
cess returns are defined as nominal minus real bond excess returns.
Real bond excess returns are quarterly log returns on 10-year real
Treasury bonds in excess of the log nominal 3-month Treasury bill re-
turn. We compute empirical log returns on the 10-year nominal Trea-
sury bond and inflation-indexed bond (TIPS) from log bond yields:
r$
n,t = −(n−1)y$

n−1,t+ny$
n,t and rTIPSn,t = −(n−1)yTIPSn−1,t+nyTIPSn,t +πt.

We obtain continuously compounded 10-year zero-coupon yields from
Gürkaynak, Sack, and Wright (2007, 2010). We report average ex-
cess real bond and breakeven log returns plus one-half times the log
excess return variance. Excess returns and volatilities are in annual-
ized percent. Our sample period is from 2001Q2 until 2019Q2, except
for TIPS data which begins in 2003Q1. Model moments follows the
same procedures as above on simulated data and are averaged over 2
simulations of length 10000.
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Table 3: Empirical High-Frequency Stock Returns on FOMC Dates

Dependent variable:
S&P 500 Return 10Y Breakeven

(1) (2) (3) (4)
FF Shock −4.89∗∗∗ −4.11∗∗∗ −0.15

(1.64) (1.50) (0.11)

10Y Breakeven 5.90∗∗ 5.05∗
(2.54) (2.60)

Constant 0.07 0.06 0.05 0.004
(0.05) (0.06) (0.06) (0.003)

Observations 146 146 146 146
R2 0.08 0.09 0.14 0.03
Adjusted R2 0.07 0.08 0.13 0.03
Note: Columns (1) to (3) show regressions of the form: rδ,FOMC

t = b0 +
b1∆FOMCit + b2∆FOMCb10,t + εt. ∆FOMCin,t is the change in the Federal
Funds rate in the one hour around FOMC announcements and ∆FOMCb10,t
is the daily change in the 10-year breakeven rate, defined as the difference
between 10-year nominal and 10-year real bond yields. We include these
variables separately in columns (1) and (2), and jointly in column (3). The
data on Federal Fund rate surprises is from Gorodnichenko and Weber (2016),
breakeven rate changes are constructed using the data of Gürkaynak, Sack, and
Wright (2007) and Gürkaynak, Sack, and Wright (2010), and one hour S&P
500 returns are from TAQ data. Column (4) reports a regression of the form
∆FOMCb10,t = b0 +b1∆FOMCbn,t+εt. Our sample consists of scheduled FOMC
days from January 2001 up to March 2019. Heteroskedasticity adjusted stan-
dard errors are reported in parentheses below the estimates. ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01
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Table 4: Model High-Frequency Stock Returns around Monetary Policy News

Dependent variable:
S&P 500 Return

Data Overall Risk Premium
(1) (2) (3) (4) (5)

FF Shock −4.11∗∗∗ -5.27 -5.35 -2.54 -2.58
(1.50)

10Y Breakeven 5.05∗ 5.89 2.70
(2.50)

10Y Breakeven RN 5.96 2.73

Note: This table compares the asset price reactions around monetary policy
news in the model and in the data. Column (1) repeats the empirical
estimates from Table 3, column (3). Column (2) estimates the analogous
regression on model simulated data, assuming that FOMC dates are subject to
uncorrelated long-term and short-term monetary policy shocks. The standard
deviations of the ST and LT monetary policy shocks on FOMC dates are set
to σFOMC

ST = 4.3bps and σFOMC
LT = 3.3bps to match the volatilities of one-hour

Fed Funds surprises and daily breakeven changes on FOMC dates in the data.
Column (3) uses the risk neutral component of the 10-year breakeven change
on the right-hand-side instead. Columns (4) and (5) report model regressions,
with the component of stock returns due to time-varying risk premia as the
left-hand-side variable. For details of model FOMC asset prices see Section
3.6. Risk neutral asset prices are the asset prices that would obtain under
a risk neutral investor taking macroeconomic dynamics as given. The risk
premium component of stock returns is the difference between the overall
return minus the risk neutral return. Heteroskedasticity adjusted standard
errors are reported in parentheses below the empirical estimates. ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01
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Figure 1: Stocks and Bonds on FOMC Dates

Panel A: Stocks and the Federal Funds Rate
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Panel B: Stocks and Breakeven Inflation
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Note: Panel A shows the relationship of Federal Funds rates surprises in an hourly window around FOMC announcements from Gorodnichenko and Weber
(2016) and S&P 500 returns in the same window constructed from TAQ data, where each data point corresponds to a FOMC meeting. Panel B shows
the relationship of the daily change in 10-year breakeven inflation rates and daily S&P 500 returns where again each data point corresponds to a FOMC
meeting. The breakeven rate is the difference between the 10-year nominal Treasury yield and 10-year TIPS yield from Gürkaynak, Sack, and Wright
(2007, 2010). The green lines are linear regression best fit lines. The sample of scheduled FOMC days is from the start of 2001 until end of 2019. For
Panels B and C, the data begins from the start of 2003 since this is when the TIPS data start.
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Figure 2: Reduced Form Macro Impulse Responses
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Note: This figure shows macroeconomic impulse responses to reduced-form output gap, inflation, and Federal Funds rate innovations in the model and
in the data. The estimation of impulse responses is identical on actual and simulated data and is described in detail in Section 4.2. All impulses are
one-standard deviation shocks and are orthogonalized so innovations to the Fed Funds rate do not contemporaneously affect inflation or the output gap,
and inflation innovations do not enter into the same period output gap. The first row shows the response of output in percent, the second row shows the
response of inflation in annualized percent. The third row shows the response of the Federal Funds rate in annualized percent. The horizontal axis of each
panel shows the number of quarters after the shock.
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Figure 3: Structural Macro Impulse Responses
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Note: Each column of this figure shows the macroeconomic impulse responses to one of the structural shocks, namely the demand shock, the Phillips
Curve (PC) shock, the short-term monetary policy shock, and the long-term monetary policy shock. All impulses are one-standard deviation shocks. The
first row shows the response of the output gap in percent, the second row shows the response of inflation in annualized percent. The third row shows the
response of the Federal Funds rate in annualized percent. The horizontal axis of each panel shows the number of quarters after the shock.
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Figure 4: Structural Asset Price Impulse Responses
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Note: Each column of this figure shows the impulse responses of asset prices to one of the structural shocks, namely the demand shock, the Phillips Curve
(PC) shock, the short-term monetary policy shock, and the long-term monetary policy shock. All impulses are one-standard deviation shocks. The first
row shows the response of unexpected equity returns in percent, the second row shows the response of nominal yield in annualized percent. The third row
shows the response of the real yield in annualized percent. The horizontal axis of each panel shows the number of quarters after the shock. Responses are
decomposed into the risk neutral component, which is computed as if assets were priced by a risk neutral agent, and the risk premium component. The
risk neutral and risk premium components add up to the total response. Unexpected equity returns are computed subtracting from each quarter’s return
the steady state equity return in the absence of shocks.
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Figure 5: State-Dependence of Model High-Frequency Stock Returns
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Note: This figure shows model regressions of the same form as in Tables 3 and 4 conditional on the
model surplus consumption ratio: rδ,FOMC

t = b0 +b1∆FOMCit+b2∆FOMCb10,t+εt. The left panel plots
the coefficient b1 on the y-axis against surplus consumption deciles on the x-axis. The right panel plots
the coefficient b2 against surplus consumption deciles on the x-axis. ∆FOMC is the change in the short
term interest rate around the FOMC date, ∆FOMCb10,t is the change in the breakeven rate around in
the same time period and rδ,FOMC

t is the equity return. The simulated data is split into ten sub samples
according to the deciles of the surplus consumption ration ŝ so a lower decile corresponds higher effective
risk aversion. We plot the coefficients obtained by running the regression separately within each of these
ten subsamples. Solid lines use overall equity returns as the left-hand-side variable, dashed lines use risk
neutral stock returns, and dotted lines use the risk premium component of stock returns. Risk neutral
and risk premium coefficients add up to the overall coefficient. For details of model FOMC asset prices
see Section 3.6 and for details of the decomposition into risk neutral and risk premium returns see Table
4. The results are obtained by averaging over 5 model simulations of length 30000.
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A Loglinear habit dynamics around steady state
This section derives the loglinear dynamics of the habit stock using a first order approx-
imation around the steady state St = S̄. We write log habit ht as a distributed lag of
moments of consumption, the habit shock εs,t, and the output gap, which also equals
the deviation of log consumption from the frictionless level. This loglinear expansion
therefore implies that we can broadly view habit as a function of (lags of) consumption
moments, and the shock εs,t, which for this reason we refer to as a “habit shock”.

In the paper, we model how habit adjusts to consumption implicitly by modeling
the evolution of the log surplus consumption ratio. In order to solve for log habit we
need an approximate relation between log habit, log consumption, and the log surplus
consumption ratio. Defining ŝt = st − s̄, we develop a first-order Taylor expansion of ŝt
in terms of ct − ht. We take the first derivative of ŝt with respect to ct − ht:

dŝt
d(ct − ht)

= d

d(ct − ht)

(
log

(
1− exp(−(ct − ht))

S̄

))
, (A1)

= S̄

1− exp(−(ct − ht))
exp(−(ct − ht))

S̄
, (A2)

= −
(

1− 1
St

)
, (A3)

so at the steady state this first derivative equals:

dŝt
d(ct − ht)

∣∣∣∣∣
St=S̄

= −
(

1− 1
S̄

)
. (A4)

The first order Taylor expansion for ŝt in terms of ct−ht around the steady-state therefore
equals (up to constant):

ŝt ≈
(

1− 1
S̄

)
(ht − ct) , (A5)

or

ht ≈ ct + ŝt
1− 1

S̄

. (A6)

The relation (A6) is approximate rather than exact because we ignore second- and
higher-order terms in (ct − ht). Further approximating λ(st) ≈ λ(s̄) = 1

S̄
−1, the approx-

imate dynamics for ŝt near the steady state are given by:

ŝt+1 ≈ θ0ŝt + θ1xt + θ2xt−1 + εs,t +
( 1
S̄
− 1

)
εc,t+1. (A7)
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Combining (A6) with (A7) gives the approximate dynamics for log habit:

ht+1 ≈ ct+1 + 1
1− 1

S̄

ŝt+1, (A8)

≈ ct+1 + 1
1− 1

S̄

(
θ0ŝt + θ1xt + θ2xt−1 + εs,t +

( 1
S̄
− 1

)
εc,t+1

)
, (A9)

≈ ct+1 − εc,t+1 + θ0 (ht − ct)−
θ1

1
S̄
− 1xt −

θ2
1
S̄
− 1xt−1 −

1
1
S̄
− 1εs,t, (A10)

≈ θ0ht + (1− θ0)ct + Et∆ct+1 −
θ1xt + θ2xt−1

1
S̄
− 1 − 1

1
S̄
− 1εs,t, (A11)

where we use ∆ct+1 = ct+1 − ct to denote the change in log consumption from time t to
time t+ 1. We now iterate (A11) to obtain:

ht+1 ≈
∞∑
j=0

θj0

(
(1− θ0)ct−j + Et−j∆ct−j+1 −

1
1
S̄
− 1εs,t−j −

θ1xt−j + θ2xt−j−1
1
S̄
− 1

)
,(A12)

≈ (1− θ0)
∞∑
j=0

θj0ct−j +
∞∑
j=0

θj0Et−j∆ct−j+1 −
1

1
S̄
− 1

∞∑
j=0

θj0εs,t−j −
θ1

1
S̄
− 1xt (A13)

−θ0θ1 + θ2
1
S̄
− 1

∞∑
j=0

θj0xt−j−1. (A14)

The expansion (A14) shows that approximate log habit depends on lagged moments of
consumption, the output gap, and the habit shock. The resource constraint implies that
output equals consumption, so the output gap equals the deviation of log consumption
relative to a frictionless level.

In order to understand the compounded dependence of habit on the first and second
lags of consumption, we substitute in for xt from equation (25) in the main paper:

ht+1 ≈ (1− θ0)
∞∑
j=0

θj0ct−j +
∞∑
j=0

θj0Et−j∆ct−j+1 −
1

1
S̄
− 1

∞∑
j=0

θj0εs,t−j (A15)

− θ1
1
S̄
− 1

(
ct − (1− φ)

∞∑
i=0

φict−1−i −
∞∑
i=0

φi∆at−i
)

(A16)

−θ0θ1 + θ2
1
S̄
− 1

∞∑
j=0

θj0

(
ct−j−1 − (1− φ)

∞∑
i=0

φict−j−2−i −
∞∑
i=0

φi∆at−i−1

)
. (A17)

The Campbell and Cochrane (1999) case corresponds to θ1 = θ2 = 0 and constant
expected consumption growth. In that case, expression (A17) shows that log habit is
approximately an exponentially-weighted moving average of lagged log consumption with
exponential parameter θ0.

Our estimated model has θ1 < 0 and θ2 > 0, which allows us to generate hump-shaped
output responses to monetary policy shocks that have been documented in macroeco-
nomic data. Because 1

1
S̄
−1 > 0 and 1 − φ is close to zero, a negative value for θ1 raises

the sensitivity of habit to the first two lags of consumption, while a positive value for θ2
lowers the sensitivity of habit with respect to the second lag of consumption. Our model
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uses −θ1 > 0, and θ1(1 − φ) − (θ0θ1 + θ2) = 0 (which is the condition ensuring that the
forward- and backward-looking coefficients in the log-linear macro Euler equation sum to
one). Equation (A17) then implies that habit loads more on the first lag of consumption
than in the Campbell-Cochrane case, but the loading onto the second consumption lag
is unchanged.

B Proof of Phillips Curve
The derivation of the log-linearized Phillips curve is tedious, but almost all the steps in
our derivation are standard. Our asset pricing habit preferences potentially enter in two
places. This section shows that the log-linearized Phillips curve is invariant to both of
these channels for the following two reasons:

1. Firms’ real marginal cost depends on the real wage, which depends on preferences.
The log-linearized Phillips curve is invariant to this channel, because we separate
the intertemporal consumption-savings decision and the intratemporal labor-leisure
choice as in Greenwood, Hercowitz, and Huffman (1988). We therefore obtain a
standard functional form for log-linearized real marginal cost that does not depend
on habit or surplus consumption.

2. The SDF enters into firms’ first-order condition for the optimal price-setting deci-
sion. The log-linearized Phillips curve is invariant to this channel, because up to
first-order our SDF is standard and second-order terms drop out of the log-linearized
first-order condition, leading to a standard log-linearized Phillips curve.

We log linearize inflation around its random walk component v∗t and output and labor
around the steady-state with Ȳt = AtL̄

1−τ and L̄ the labor supply consistent with steady-
state markups when prices are flexible. We use bars to denote steady-state values and
hats to denote log deviations from this steady-state. We use lower-case letters to denote
logs.

B.1 Marginal Cost of Production and Steady-State
The New Keynesian Phillips curve links inflation to the marginal cost of production. By
linking the marginal cost of production to the output gap, one then obtains a relationship
between inflation and output. It is therefore important to check that our asset pricing
preferences give rise to a standard log-linearized expression for the real marginal cost of
producing another unit of output. In this section, we show that log deviation of marginal
cost from steady-state takes the form:

m̂ci,t = a0ŷt − a1 (pi,t − pt) , (A18)

i.e. it increases in the log deviation of output from the steady state, and decreases in the
log own-firm price deviation from the log aggregate price level where both a0 and a1 are
positive constants.
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The labor-leisure trade-off implies that the real wage paid by firms producing good i
equals:

Wi,t =
(
dU

dCt

)
/

(
dU

dLi,t

)
= At (1− Li,t)−χ . (A19)

The total cost of producing a quantity Yi,t of good i equals:

Cost(Yi,t) = Wi,t

(
Yi,t
At

)1/(1−τ)
(A20)

Taking the derivative with respect to Yi,t gives the marginal cost of supplying good i:

MC(Yi,t) = 1
1− τ

Wi,t

At

(
Yi,t
At

) τ
1−τ

, (A21)

= 1
1− τ

(
1−

(
Yi,t
At

)1/(1−τ))−χ (Yi,t
At

) τ
1−τ

. (A22)

Note that here we have assumed that the producer is a wage taker following Woodford
(2003, p.148). We define the steady-state labor supply L̄ to be the amount of labor
supplied if markups are equal to the steady-state value µ̄ = θ

1−θ , and all firms charge the
same price. From (A22), we see that L̄ must be the solution to

µ̄−1 = 1
1− τ

(
1− L̄

)−χ
L̄

τ
1−τ . (A23)

We log-linearize around the steady-state output:

Ȳt = AtL̄
1−τ . (A24)

Log-linearizing the real wage around the flexible-wage steady-state gives:

ŵi,t = χ
L̄

1− L̄
l̂i,t, (A25)

= ηl̂i,t, (A26)

where η ≡ χ L̄
1−L̄ is the inverse of the steady-state Frisch elasticity of labor supply.

The elasticity of real marginal cost with respect to own-firm output near the steady-
state equals:

dMCi,t
dYi,t

Yi,t
MCi,t

= τ

1− τ + η

1− τ , (A27)

≡ ω. (A28)

Using θ to denote the steady-state value of θt, we then approximate firm i’s deviation of
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marginal cost from µ̄−1 log-linearly:

m̂ci,t = log (MCi,t)− log
(
µ̄−1

)
,

= ωŷi,t, (A29)
= ωŷt − ωθ(pi,t − pt), (A30)

In the last step, we have used the demand function (15), log-linearized around the steady-
state elasticity of substitution θ, to substitute ŷi,t − ŷt = θ (pi,t − pt). We hence obtain
the functional form (A18) with a0 = ω and a1 = ωθ.

We can compare (A30) to the log real marginal cost obtained with standard prefer-
ences (e.g. Woodford, 2003), where the real wage is given by

Wt =
Lηi,t
C−γt

, (A31)

where η is the inverse of the Frisch elasticity of labor supply and γ is risk aversion. This
expression is log-linearized to

ŵi,t = γŷt + ηl̂i,t. (A32)

If instead, the log-linearized real wage took the form (A32), we would obtain the
following log-linearized expression for the real marginal cost:

m̂ci,t = (ω + γ) ŷt − ωθ(pi,t − pt), (A33)

i.e. a0 = ω + γ and a1 = ωθ. Comparing expressions (A30) and (A33) shows that the
log-linearized real wage in our model takes the same functional form as under standard
preferences, which is why the log-linearized Phillips curve will also take the same form.

B.2 Discount Factor for Phillips Curve
We now derive the first-order approximation of the stochastic discount factor, which is
needed for the derivation of the log-linearized Phillips curve. We show that because
the first-order approximation of our stochastic discount factor is standard, our asset
pricing preferences do not affect the log-linearized Phillips curve. In the steady-state, log
consumption grows at rate g and st is constant at s̄. The steady-state SDF for discounting
time t+ j real cash flows at time t takes the standard form:

M̄t,t+j = βjexp(−γgj). (A34)

We denote log deviation of the SDF from this steady-state:

m̂t,t+j = log
(
Mt,t+j/M̄t,t+j

)
. (A35)

We will see that m̂t,t+j drops out of the log-linearized price-setting first-order condition,
which is why we can apply all the standard tools for deriving the log-linearized Phillips
curve.
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B.3 Price Level Law of Motion
The price level law of motion is standard. Because we have a unit root in inflation, we
are careful to follow Cogley and Sbordone (2008) in log-linearizing inflation around its
random-walk trend v∗t . Log deviations in inflation from steady-state are defined as

π̂t = πt − v∗t (A36)

and we log-linearize around π̂t = 0.
Since the probability of being able to adjust the price-level is independent and equal

across firms, each firm that has the chance to re-set its price at time t chooses the same
price P̃t. The law of motion for the price level is

P
−(θt−1)
t = α

(
Pt−1

Pt−1

Pt−2

)−(θt−1)

+ (1− α)P̃−(θt−1)
t . (A37)

Dividing (A37) by P−(θt−1)
t gives

1 = αexp ((θt − 1) (π̂t − π̂t−1 + vLT,t)) + (1− α)
(
P̃t
Pt

)−(θt−1)

. (A38)

Using p̃t to denote log deviations of P̃t
P

from one, the log-linearized law of motion becomes:

p̃t = α

1− α (π̂t − π̂t−1 + vLT,t) . (A39)

B.4 Price-Setting First-Order Condition
The firm’s first-order condition for optimal price-setting is standard and follows Walsh
(2017) while adding markup shocks and price indexing as in Cogley and Sbordone (2008)
and Smets and Wouters (2007). A firm that re-sets its price at time t and does not get
to re-set again during the next j periods indexes its price to the aggregate price increase
from time t − 1 to t − 1 + j as in Smets and Wouters (2007). This means that such a
firm has time t+ j price:

P̃t (Pt−1+j/Pt−1) . (A40)

A firm that has the opportunity to re-set prices at time t chooses P̃t to maximize expected
discounted profits conditional on the price still being in place:

max
P̃t

Et
∞∑
j=0

αjMt,t+jYt+j

( P̃t
Pt

Pt−1+j/Pt−1

Pt+j/Pt

)1−θt+j

− Cost (Yi,t+j)
Yt+j

 (A41)
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the first-order condition:

P̃t
Pt
Et

∞∑
j=0

αjMt,t+jYt+j(θt+j − 1)
(
Pt−1+j/Pt−1

Pt+j/Pt

)1−θt+j

= Et
∞∑
j=0

αjMt,t+jYt+jθt+j

(
Pt−1+j/Pt−1

Pt+j/Pt

)−θt+j
MCi,t+j. (A42)

B.5 Log-Linearization
We now log-linearize the first-order condition (A42) following the steps outlined in Walsh
(2017), Chapter 8.7. In the flexible-price equilibrium with θt at its steady-state value θ,
all firms charge the same price so MC = µ̄−1 = θ−1

θ
. Denoting the log of steady-state

output by ȳt ≡ log Ȳt we have that

ȳt+1 − ȳt = nt+1 − nt + ∆at+1, (A43)
= ν + (1− φ)(1− τ)lt + ∆at+1, (A44)
= g + (1− φ)ŷt + ∆at+1, (A45)

where the relationship between the steady-state growth rate g, ν, and φ is given by

g = ν + (1− φ)(1− τ)l̄. (A46)

To save on notation, we define:

βg = βexp(−(γ − 1)g) (A47)

and

p̃t = log
(
P̃t/Pt

)
. (A48)

The log-linear expansion for the left-hand-side of (A42) conditional on Ȳt becomes:

(1 + p̃t)Et
∞∑
j=0

[
(βgα)j Ȳt(1 + ŷt+j)(1 + (ȳt+j − ȳt − g)) (1 + m̂t,t+j)

(
θ(1 + θ̂t+j)− 1

)
×

(
1 + (1− θ(1 + θ̂t+j))

(
π̂t − π̂t+j + (vLTt+1 + ...+ vLTt+j)

))]
.

(A49)

Dropping second-order terms and collecting terms that are independent of j gives

Ȳt(θ − 1)
1− βgα

+ Ȳtp̃t(θ − 1)
1− βgα

+Ȳt(θ − 1)Et
∞∑
j=0

(βgα)j
(
ŷt+j + (ȳt+j − ȳt − g) + m̂t,t+j + µ̄θ̂t+j + (1− θ) (π̂t − π̂t+j)

)
.

(A50)
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Next, we approximate the right-hand-side of (A42) log-linearly. This gives

Et
∞∑
j=0

[
(βgα)j Ȳt(1 + ŷt+j)(1 + (ȳt+j − ȳt − g)) (1 + m̂t,t+j) θ(1 + θ̂t+j)×(

1− θ(1 + θ̂t+j)
(
π̂t − π̂t+j + (vLTt+1 + ...+ vLTt+j)

))
MC(1 + m̂ct+j)

]
. (A51)

Next, we use θMC = θ − 1, note that EtvLTt+k = 0 for k > 0, substitute in (A30), and
drop second-order terms:

Ȳt(θ − 1)
1− βgα

+ Ȳt(θ − 1)Et
∞∑
j=0

(βgα)j
(
ŷt+j + (ȳt+j − ȳt − g) + m̂t,t+j + θ̂t+j

)

+Ȳt(θ − 1)Et
∞∑
j=0

(βgα)j (−θ (π̂t − π̂t+j) + m̂ct+j) , (A52)

= Ȳt(θ − 1)
1− βgα

+ Ȳt(θ − 1)Et
∞∑
j=0

(βgα)j
(
ŷt+j + (ȳt+j − ȳt − g) + m̂t,t+j + θ̂t+j

)

+Ȳt(θ − 1)Et
∞∑
j=0

(βgα)j (−θ (π̂t − π̂t+j) + a0ŷt+j)

−a1

 Ȳt(θ − 1)p̃t
1− βgα

+ Ȳt(θ − 1)Et
∞∑
j=0

(βgα)j (π̂t − π̂t+j)
 . (A53)

Equating (A50) and (A53), cancelling common terms, and dividing by Ȳt(θ − 1) gives

(1 + a1)
 p̃t

1− βgα
+ π̂t

1− βgα
− Et

∞∑
j=0

(βgα)j π̂t+j


= Et

∞∑
j=0

(βgα)j (a0ŷt+j + µ̂t+j) , (A54)

where the log deviation of the markup from steady-state is given by

µ̂t+j = dµt+j
dθt+j

µt+j
θt+j

θ̂t+j = 1
θ − 1 θ̂t+j = (1− µ̄) θ̂t+j. (A55)

Note in particular that m̂t,t+j drops out of (A54). Because this is the main place where
we differ from the standard New Keynesian model, this makes clear that our asset pricing
preferences drop out of the log-linearized optimal price-setting decision.
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B.6 Substituting out p̃t
Next, we follow a number of standard steps (e.g. Walsh (2017)) to solve for π̂t. From
equation (A54) we have:

p̃t + π̂t = (1− βgα)Et
∞∑
j=0

(βgα)j
(
a0ŷt+j + µ̂t+j

1 + a1
+ π̂t+j

)
, (A56)

= 1− βgα
1 + a1

(a0ŷt + µ̂t) + (1− βgα)π̂t

+βgα(1− βgα)Et
∞∑
j=0

(βgα)j
(
a0ŷt+1+j + µ̂t+1+j

1 + a1
+ π̂t+1+j

)
,

= 1− βgα
1 + a1

(a0ŷt + µ̂t) + (1− βgα)π̂t + βgαEt (p̃t+1 + π̂t+1) (A57)

This equation relates the optimal relative price to the current-period marginal cost,
current-period optimal markup, and the next-period expected optimal relative price.
Subtracting π̂t from both sides gives

p̃t = 1− βgα
1 + a1

(a0ŷt + µ̂t)− βgαπ̂t + βgαEtπ̂t+1 + βgαEtp̃t+1. (A58)

Substituting in the log-linearized law of motion for inflation (A39) and multiplying by
1−α
α

gives

(
π̂t − π̂t−1 + vLTt

)
= 1− α

α

1− βgα
1 + a1

(a0ŷt + µ̂t)− βgπ̂t + βgEtπ̂t+1 (A59)

Solving for π̂t gives the New Keynesian Phillips Curve (ignoring constants)

π̂t = βg
1 + βg

Etπ̂t+1 + 1
1 + βg

π̂t−1 + κŷt + κ

a0
µ̂t −

1
1 + βg

vLTt , (A60)

where the Phillips curve slope coefficient on ŷt equals

κ = 1
1 + βg

1− α
α

(1− βgα) a0

1 + a1
. (A61)

Finally, we use that (up to a constant)

µ̂t = 1
1− θεθ,t (A62)

xt = ŷt, (A63)
a0 = ω, (A64)
a1 = ωθ, (A65)

and add the unit root component v∗t to both sides of (A60) to obtain the log-linearized
New Keynesian Phillips curve (29) in the main paper.

Note that the Phillips curve slope κ is identical to Woodford(1999, p.342) with three
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exceptions. First, β is replaced by βg because we have equilibrium growth in our model.
Second, the factor 1

1+βg is new. This is due to indexing. Third, a0 = ω, whereas in
Woodford (2003) the sensitivity of marginal cost with respect to aggregate log output
is ω + γ. This is due to our separation between the intertemporal consumption-savings
trade-off and the intratemporal labor-leisure trade-off as in Greenwood, Hercowitz, and
Huffman (1988). However, (Woodford (2003, p.341)) estimates a very small value for the
curvature parameter from macroeconomic data of γ = 0.16, so the log-linearized Phillips
curve in our model is not only qualitatively but also quantitatively in line with this prior
work.

C Model Solution

C.1 Output gap and consumption relationships
With the assumption on the evolution of human capital (18), we can iterate to obtain

nt = ν + nt−1 + (1− φ)(1− τ)lt−1, (A66)
= ν + nt−1 + (1− φ)(yt−1 − at−1), (A67)

= ν

1− φ + (1− φ)
∞∑
j=0

φj (yt−1−j − at−1−j) . (A68)

The deviation of output from the flexible-price equilibrium then equals (up to a constant):

xt = yt − nt − at, (A69)

= yt − (1− φ)
∞∑
j=0

φj (yt−1−j − at−1−j)− at, (A70)

= ct − (1− φ)
∞∑
j=0

φjct−1−j −
∞∑
j=0

φj∆at−j, (A71)

i.e. equation (25) in the main paper. Because ∆at is stationary and the geometric series
φj has a finite sum, the deviation between the output gap xt and stochastically detrended
consumption is stationary. Consumption growth then takes the following simple form (up
to a constant):

∆ct+1 = (xt+1 +
∞∑
j=0

φj∆at+1−j)− φ(xt −
∞∑
j=0

φj∆at−j), (A72)

= xt+1 − φxt + ∆at+1, (A73)

i.e. equation (26) in the main paper.

10



C.2 Deriving the macro Euler equation
With the updating equation for log consumption growth (A73), the asset pricing Euler
equation for the one-period real risk-free rate is given by:

rt = γEt∆ct+1 + γEt∆ŝt+1 −
γ2

2 (1 + λ(st))2 σ2
c , (A74)

= γEt∆ct+1 + γ(θ0 − 1)ŝt + γθ1xt + γθ2xt−1 + γεs,t −
γ2

2 (1 + λ(st))2 σ2
c , (A75)

= γ∆at+1 + γEtxt+1 − γφxt + γ(θ0 − 1)ŝt + γθ1xt + γθ2xt−1 + γεs,t −
γ2

2 (1 + λ(st))2 σ2
c

The sensitivity function has just the right form so that surplus consumption ŝt drops out
and (up to a constant):

rt = γ∆at+1 + γEtxt+1 − γφxt + γθ1xt + γθ2xt−1 + γεs,t (A76)

Rearranging and continuing to ignore constants gives:

xt = 1
φ− θ1

Etxt+1 + θ2

φ− θ1
xt−1 −

1
γ(φ− θ1) (rt − γ∆at+1) + 1

φ− θ1
εs,t. (A77)

With the definition of the growth frictionless rate (20), this gives the log-linear Euler
equation (27) in the main paper. Note that we have not made any approximations in the
derivation of (27).

C.3 Solving for macroeconomic dynamics
We want to find a solution of the form

Yt = BYt−1 + Σvt, (A78)

where the matrix B is [3× 3], the matrix Σ is [3× 4], and the state vector Yt is defined
in equation (30) in the main paper. Throughout, we use Σv to denote the (diagonal)
variance-covariance matrix of the vector of shocks, vt. Substituting in for predictable
productivity growth from equation (19) in main paper into (A77), We collect the log-
linear equations describing the macroeconomic equilibrium dynamics:

xt = fxEtxt+1 + ρxxt−1 − ψ (rt − γρart − γεs,t) , (A79)
πt = fπEtπt+1 + ρππt−1 + κxt + vπ,t, (A80)
i∗ = γxxt + γππt + (1− γπ)v∗t , (A81)
it = ρiit−1 + (1− ρi)i∗t + vST,t, (A82)
v∗t = v∗t−1 + vLT,t (A83)
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Writing this in terms of the elements of Yt and using that vx,t = γψεs,t gives

Y1,t = fxEtY1,t+1 + ρxY1,t−1 − ψ(1− γρa) (Y3,t − EtY2,t+1) + vx,t, (A84)
Y2,t = fπEtY2,t+1 + ρπY2,t−1 + κY1,t + vπ,t − ρπvLT,t, (A85)
Y3,t = ρiY3,t−1 + (1− ρi) (γxY1,t + γπY2,t) + vST,t − ρivLT,t, (A86)
v∗t = v∗t−1 + vLT,t. (A87)

The same thing in matrix form:

0 = FEtYt+1 +GYt +HYt−1 +Mvt,

where the matrices F , G and H are given by

F =

 fx ψ(1− γρa) 0
0 fπ 0
0 0 0

 ,

G =

 −1 0 −ψ(1− γρa)
κ −1 0

(1− ρi)γx (1− ρi)γπ −1

 ,

H =

 ρx 0 0
0 ρπ 0
0 0 ρi

 .
The matrix M is [3× 4] and equals:

M =

 1 0 0 0
0 1 0 −ρπ
0 0 1 −ρi

 (A88)

Following Uhlig (1999), we solve for the generalized eigenvectors and eigenvalues of
the matrix Ξ with respect to the matrix ∆, where

Ξ =
[
−G −H
I3 03

]
, (A89)

∆ =
[
F 03
03 I3

]
(A90)

To obtain a solution, we then pick three generalized eigenvalues λ1, λ2, λ3 with gen-
eralized eigenvectors [λz′1, z′1]′, [λ2z

′
2, z2]′, and [λ3z

′
3, z
′
3]′. We denote the diagonal matrix

of these eigenvalues by Λ = diag (λ1, λ2, λ3), and the matrix of the lower [3× 1] portion
of the eigenvectors by Ω = [z1, z2, z3]. The corresponding solutions for B and Σ are then
given by:

B = ΩΛΩ−1, (A91)
Σ = [FB +G]−1M. (A92)
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In our empirical application, there exist exactly three generalized eigenvalues with abso-
lute value less than one, and we pick the non-explosive solution corresponding to these
three eigenvalues.

C.4 Rotated state vector
Our state space for solving for asset prices is five-dimensional: It consists of Z̃t, which
a scaled version of Yt, the surplus consumption ratio relative to steady-state ŝt, and the
lagged output gap xt−1. The lagged output gap xt−1 is not actually needed as a state
variable and we have verified that our numerical solutions for asset prices do not vary
with xt−1. Our code includes xt−1 as a state variable for legacy reasons.

We next describe the definition of Z̃t. To simplify the numerical implementation of
the asset pricing recursions, we require that shocks to the scaled state vector Z̃t are
independent standard normal and that the first dimension of the scaled state vector is
perfectly correlated with output gap innovations. This rotation facilitates the numerical
analysis, because it is easier to integrate over independent random variables. Aligning the
first dimension of the scaled state vector with output gap innovations (and hence surplus
consumption innovations) helps, because it allows us to use a finer grid to integrate
numerically over this crucial dimension over which asset prices are most non-linear.

If the scaled state vector equals Z̃t = AYt for some invertible matrix A, the dynamics
of Z̃t are given by:

Z̃t = AYt, (A93)
Z̃t+1 = ABA−1︸ ︷︷ ︸

B̃

Z̃t + AΣvt+1︸ ︷︷ ︸
εt+1

. (A94)

We hence want a matrix, A, such that

V ar (εt+1) = AΣΣvΣ′A′, (A95)

=

 1 0 0
0 1 0
0 0 1

 . (A96)

Finding such a matrix A should in general be possible, because the matrix M and there-
fore ΣΣvΣ′ hence generally have rank three. We require that the first dimension of εt+1
is perfectly correlated with the consumption shock. We can therefore find the three rows
of A using the following steps:

1. Set A1 = e1√
e1ΣΣvΣ′e′1

.

2. We use the MATLAB function null to compute the null space of A1ΣΣvΣ′. Let n2
denote the first vector in null (A1ΣΣvΣ′). We then define the second row of A as
the normalized version of n2:

A2 = n2√
n2ΣΣvΣ′n′2

. (A97)
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3. Let n3 denote the first vector in null (A1ΣΣvΣ′, A2ΣΣvΣ′). We then define the third
row of A as the normalized version of n3:

A3 = n3√
n3ΣΣvΣ′n′3

. (A98)

It is then straightforward to verify that equation (A96) holds for

A =

 A1
A2
A3

 . (A99)

C.5 Asset pricing recursions
Before deriving the recursions for the numerical asset pricing computations, we derive
a convenient form for the dynamics of the log surplus consumption ratio. We use ei to
denote a row vector with 1 in position i and zeros elsewhere. The matrix

ΣM = e1Σ (A100)

denotes the loading of consumption innovations onto the vector of shocks vt, where e1 is
a basis vector with a one in the first position and zeros everywhere else. The volatility
of consumption surprises equals:

σ2
c = ΣMΣvΣ′M . (A101)

To simplify notation, we define ŝt as the log deviation of surplus consumption from its
steady state. The dynamics of ŝt are:

ŝt = st − s̄, (A102)
ŝt = θ0ŝt−1 + θ1xt−1 + θ2xt−2 + εs,t−1 + λ(ŝt−1)εc,t, (A103)

where with an abuse of notation we write:

λ(ŝt) = λ0

√
1− 2ŝt − 1, ŝt ≤ smax − s̄, (A104)

λ(ŝt) = 0, ŝt ≥ smax − s̄. (A105)

The steady-state surplus consumption sensitivity equals:

λ0 = 1
S̄
. (A106)

In our calculations of asset prices, we repeatedly substitute out expected log SDF
growth, which equals:

Et [mt+1] = log β − γEt∆ŝt+1 − γEt∆ct+1, (A107)
= −rt −

γ

2 (1− θ0)(1− 2ŝt). (A108)

14



We often combine this with rt = r̄ + (e3 − e2B)Zt and r̂t = (e3 − e2B)Zt.
Including the constant, consumption growth is given by:

∆ct+1 = g + xt+1 − φxt + ∆at+1, (A109)
= g + xt+1 − φxt + ρar̂t. (A110)

The steady state real short-term interest rate at xt = 0 and st = s̄ is the same as in
Campbell and Cochrane (1999):

r̄ = γg − 1
2γ

2σ2
c/S̄

2 − log(β). (A111)

The updating rule for the log surplus consumption ratio can then be written in terms
of the state variables as:

ŝt+1 = ŝt + Et∆ŝt+1 + λ(ŝt)εc,t+1, (A112)

= ŝt − Et∆ĉt+1 + 1
γ

(
log β + r̂t + r̄ + γ

2 (1− θ0)(1− 2ŝt)
)

+ λ(ŝt)εc,t+1,(A113)

= θ0ŝt + 1
γ

(e3 − e2B)A−1Z̃t − e1 [B − φI]A−1Z̃t − ρar̂t + λ(ŝt)εc,t+1, (A114)

= θ0ŝt + 1
γ

(1− γρa) (e3 − e2B)A−1Z̃t − e1 [B − φI]A−1Z̃t + λ(ŝt)εc,t+1.(A115)

C.5.1 Recursion for zero-coupon consumption claims

We now derive the recursion for zero-coupon consumption claims in terms of state vari-
ables Z̃t, ŝt and xt−1. Let P c

nt/Ct denote the price-dividend ratio of a zero-coupon claim
on consumption at time t+ n. The outline of our strategy here is that we first derive an
analytic expression for the price-dividend ratio for P c

1t/Ct. For n ≥ 1 we guess and verify
recursively that there exists a function Fn(Z̃t, ŝt, xt−1), such that

P c
nt

Ct
= Fn

(
Z̃t, ŝt, xt−1

)
. (A116)

The ex-dividend price-consumption ratio for a claim to all future consumption is then
given by

Pt
Ct

= F
(
Z̃t, ŝt, xt−1

)
, (A117)

where we define

F
(
Z̃t, ŝt, xt−1

)
=

∞∑
n=1

Fn
(
Z̃t, ŝt, xt−1

)
. (A118)

We now derive the recursion of zero-coupon consumption claims in terms of state
variables Z̃t and ŝt. The one-period zero coupon price-consumption ratio solves:

P c
1,t

Ct
= Et

[
Mt+1Ct+1

Ct

]
(A119)
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We simplify

Mt+1Ct+1

Ct
= βexp (Etmt+1 + Et∆ct+1 − γ(ŝt+1 − Etst+1)− (γ − 1)(ct+1 − Etct+1)) .

Using the notation fn = log(Fn), this gives the log one-period price-consumption ratio
as:

f1
(
Z̃t, ŝt, xt−1

)
= −rt −

γ

2 (1− θ0)(1− 2ŝt) + g + ∆at+1 + Etxt+1 − φxt

+1
2 (γλ(ŝt) + (γ − 1))2 σ2

c , (A120)

= g + e1 [B − φI]A−1Z̃t + 1
2 (γλ(ŝt) + (γ − 1))2 σ2

c

−r̄ − (1− ρa) (e3 − e2B)A−1Z̃t −
γ

2 (1− θ0)(1− 2ŝt) (A121)

Next, we solve for fn, n ≥ 2 iteratively. Note that:

P c
nt

Ct
= Et

[
Mt+1Ct+1

Ct

P c
n−1,t+1

Ct+1

]
= Et

[
Mt+1Ct+1

Ct
Fn−1

(
Z̃t+1, ŝt+1, xt

)]
(A122)

This gives the following expression for fn:

fn(Z̃t, ŝt, r̂t−1) = log
[
Et
[
exp

(
g + e1[B − φI]A−1Z̃t

−r̄ − (1− ρa)(e3 − e2B)A−1Z̃t −
γ

2 (1− θ0)(1− 2ŝt)

−(γ(1 + λ(ŝt))− 1)σcε1,t+1

+fn−1(Z̃t+1, ŝt+1, r̂t)
)]]

. (A123)

Here, ε1,t+1 denotes the first dimension of the shock εt+1.

C.5.2 Recursion for zero-coupon bond prices

We use P $
n,t and Pn,t to denote the prices of nominal and real n-period zero-coupon bonds.

The strategy is to develop analytic expressions for one- and two-period bond prices. We
then guess and verify recursively that the prices of real and nominal zero-coupon bonds
with maturity n ≥ 2 can be written in the following form:

Pn,t = Bn(Z̃t, ŝt, xt−1), (A124)
P $
n,t = exp(−nv∗t )B$

n(Z̃t, ŝt, xt−1), (A125)

where Bn(Z̃t, ŝt, xt−1) and B$
n(Z̃t, ŝt, xt−1) are functions of the state variables. As dis-

cussed in the main paper, we assume that the short-term nominal interest rate contains
no risk premium, so the one-period log nominal interest rate equals it = rt + Etπt+1.
Taking account of the constants, one-period bond prices equal:

P $
1,t = exp(−Y3,t − v∗t − r̄), (A126)
P1,t = exp(−Y3,t + EtY2,t+1 − r̄). (A127)
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We next solve for longer-term bond prices including risk premia. Substituting in
(A126) into the bond-pricing recursion gives:

P $
2,t = Et

[
Mt+1P

$
1,t+1 exp(−v∗t+1 − Y2,t+1)

]
(A128)

= Et
[
Mt+1 exp(−Y3,t+1 − 2v∗t+1 − Y2,t+1 − r̄)

]
. (A129)

We can now verify that the two-period nominal bond price takes the form (A125):

B$
2(Z̃t, ŝt, xt−1) = exp (Et (mt+1 − Y3,t+1 − Y2,t+1)− r̄)

×Et

exp


−γ (λ(ŝt) + 1) ΣM − [(e2 + e3)Σ + 2e4]︸ ︷︷ ︸

v$

 vt+1


 .

(A130)

Here, we define the vector v$ to simplify notation. The random walk component of
inflation v∗t does not appear in (A130), because B$

2 is already scaled by exp(−2v∗t ) by
definition (A125). Taking logs, substituting out for Etmt+1, and using the definition for
the sensitivity function λ(ŝt), we get:

b$
2 = −e3[I +B]A−1Z̃t + 1

2v$Σvv$′

+γ (λ(ŝt) + 1) ΣMΣvv
′
$ − 2r̄. (A131)

We similarly solve for two-period real bond prices in closed form:

P2,t = exp (Et (mt+1 − Y3,t+1 + Y2,t+2)− r̄)

×Et

exp

(−γ(λ(ŝt) + 1)ΣM − (e3 − e2B)Σ︸ ︷︷ ︸
vr

)vt+1




(A132)

We define the vector vr to simplify notation. Taking logs, substituting out for Etmt+1,
and using the definition for λ(ŝt) gives:

b2(Z̃t, ŝt, xt−1) = −(e3 − e2B) [I +B]A−1Z̃t + 1
2vrΣvv

′
r + γ (λ(ŝt) + 1) ΣMΣvv

′
r − 2r̄.

(A133)

For n ≥ 3, we repeatedly substitute out for Etmt+1 to obtain the following recursion
for real bond prices:

Bn(Z̃t, ŝt, xt−1) = Et
[
exp

(
mt+1 + bn−1(Z̃t+1, ŝt+1, xt)

)]
= Et

[
exp

(
−r̄ − (e3 − e2B)A−1Z̃t −

γ

2 (1− θ0)(1− 2ŝt)

−γ(1 + λ(ŝt))σcε1,t+1 + bn−1(Z̃t+1, ŝt+1, xt)
)]
. (A134)
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The recursion for nominal bond prices with n ≥ 3 is similar. It is complicated by
the fact that we need to integrate over long-term monetary policy shocks, which are not
necessarily spanned by εt+1:

B$
n(Z̃t, ŝt, xt−1) = Et

[
exp

(
mt+1 − Y2,t+1 − nvLTt+1 + b$

n−1(Z̃t+1, ŝt+1, xt)
)]
.(A135)

To reduce the number of dimensions along which we need to integrate numerically, we
split vLTt+1 into a component that is spanned by εt+1 plus an orthogonal shock. This
is useful because we can then use analytic expressions to integrate over the orthogonal
component. We use the standard expression for conditional distributions of multivariate
normal random variables. The distribution of vLTt+1 conditional on εt+1 is normal with:

vLTt+1 |εt+1 ∼ N

(AΣΣve
′
4)︸ ︷︷ ︸

vec∗

′
εt+1, (σLT )2 − (AΣΣve

′
4)′(AΣΣve

′
4)︸ ︷︷ ︸

σ2
⊥

 . (A136)

We then write vLTt as the sum of two independent shocks:

vLTt+1 = vec∗εt+1 + ε⊥t+1, (A137)

where ε⊥t+1 is defined as

ε⊥t+1 := vLTt+1 − vec∗εt+1 (A138)

We integrate analytically over ε⊥t+1 in equation (A139):

B$
n(Z̃t, ŝt, xt−1) = Et

[
exp

(
mt+1 − Y2,t+1 − nvec∗εt+1 + n2

2 (σ⊥)2 + b$
n−1(Z̃t+1, ŝt+1, B

$xt)
)]

,

= Et
[
exp

(
−r̄ − e3A

−1Z̃t −
γ

2 (1− θ0)(1− 2ŝt)

−(γ(1 + λ(ŝt))σc + e2A
−1e′1︸ ︷︷ ︸

vpi1

+ nvec∗e′1)ε1,t+1

−

e2A
−1e′2︸ ︷︷ ︸

vpi2

+ nvec∗e′2

 ε2,t+1

+n
2

2 (σ⊥)2 + b$
n−1(Z̃t+1, ŝt+1, xt)

)]
. (A139)

We define the vectors vpi1 and vpi2 as given above to avoid computing them repeatedly
in our numerical algorithm.
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C.5.3 Computing returns

The log return on the consumption claim equals:

rct+1 = log
(
P c
t+1 + Ct+1

P c
t

)
, (A140)

= ∆ct+1 + log

1 + P ct+1
Ct+1

P ct
Ct

 . (A141)

Real and nominal log bond yields equal:

yn,t = − 1
n
bn,t, (A142)

y$
n,t = − 1

n
b$
n,t + π∗t . (A143)

Real log bond returns equal:

rn,t+1 = bn−1,t+1 − bn,t. (A144)

Nominal log bond returns equal:

r$
n,t+1 = b$

n−1,t+1 − b$
n,t − (n− 1)v∗t+1 + nv∗t . (A145)

Real and nominal bond log excess returns then equal:

xrn,t+1 = rn,t+1 − rt, (A146)
xr$

n,t+1 = r$
n,t+1 − it. (A147)

C.5.4 Levered stock prices and returns

We note that the price of the levered equity claim is δP c
t , so the price-dividend ratio

equals:

P δ
t

Dδ
t

= δ
Ct
Dδ
t

P c
t

Ct
. (A148)

Using the expression

Dδ
t+1 = P c

t+1 + Ct+1 − (1− δ)P c
t exp (rt)− δP c

t , (A149)

and

P δ
t = δP c

t (A150)
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gives the gross return on levered stocks:

(
1 +Rδ

t+1

)
= Dδ

t+1 + P δ
t+1

P δ
t

, (A151)

= 1
δ

P c
t+1 + Ct+1 − (1− δ)P c

t exp(rt)
P c
t

, (A152)

= 1
δ

(
1 +Rc

t+1

)
− 1− δ

δ
exp (rt) . (A153)

Log stock excess returns then equal:

xrδt+1 = rδt+1 − rt. (A154)

To mimic firms’ dividend smoothing in the data, we report simulated moments for
the price of equities dividend by dividends smoothed over the past 64 quarters:

P δ
t /
( 1

64(Dδ
t +Dδ

t−1 + ...+Dδ
t−63)

)
. (A155)

C.6 Risk-premium decomposition
We use the superscript rn for risk-neutral, superscript cf for cash flow, and rp for risk pre-
mium. Risk-neutral valuations are expected cash flows discounted with the risk-neutral
discount factor, that is consistent with equilibrium dynamics for the real interest rate:

M rn
t+1 = exp(−rt). (A156)

C.6.1 Risk-neutral zero-coupon bond prices

We use analogous recursions to solve for risk-neutral bond prices. One-period risk-neutral
bond prices are given exactly as before by equations (A126) and (A127). For n > 1, we
guess and verify that the prices of real and nominal risk-neutral zero-coupon bonds with
maturity n can be written in the following form

P rn
n,t = Brn

n (Z̃t, ŝt, xt−1), (A157)
P $,rn
n,t = exp(−nv∗t )B$,rn

n (Z̃t, ŝt, xt−1). (A158)

for some functions Brn
n (Z̃t, ŝt, xt−1) and B$,rn

n (Z̃t, ŝt, xt−1).
We derive the two-period risk-neutral nominal bond price analytically:

P $,rn
2,t = exp(−rt)Et

[
P $,rn

1,t+1 exp(−v∗t+1 − Y2,t+1)
]

(A159)

= exp(−rt)Et
[
exp(−Y3,t+1 − 2v∗t+1 − Y2,t+1 − r̄)

]
. (A160)

We can hence verify that the two-period risk-neutral nominal bond price takes the form
(A125)

b$,rn
2 = −e3 [I +B]A−1Z̃t + 1

2v$Σuv$′ − 2r̄ (A161)
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Here, the vector v$ is identical to the case with risk aversion. Comparing expressions
(A161) and (A131) shows that they agree when γ = 0. We similarly solve for 2-period
real bond prices in closed form:

P rn
2,t = exp (−Y3,t + EtY2,t+1 − r̄)× exp (Et (−Y3,t+1 + Et+1Y2,t+2 − r̄))

×Et

exp

−(e3 − e2B)Σ︸ ︷︷ ︸
vr

vt+1


 . (A162)

The vector vr is again identical to the case with risk aversion. Taking logs gives:

brn2 (Z̃t, ŝt, xt−1) = −(e3 − e2B) [I +B]A−1Z̃t + 1
2vrΣuv

′
r − 2r̄. (A163)

We note that the risk-neutral bond prices (A163) and bond prices with risk aversion
(A133) are identical when the utility curvature parameter γ equals zero.

For n ≥ 3 the n-period risk neutral real bond price Brn
n satisfies the recursion:

Brn
n (Z̃t, ŝt, xt−1) = Et

[
exp

(
−r̄ − (e3 − e2B)A−1Z̃t + bn−1(Z̃t+1, ŝt+1, xt)

)]
(A164)

We obtain a similar recursion for risk-neutral nominal bond prices:

B$,rn
n (Z̃t, ŝt, xt−1) = Et

[
exp

(
Y3,t + EtY2,t+1 − r̄ − Y2,t+1 − nv∗t+1 + b$

n−1(Z̃t+1, ŝt+1, xt)
)]
.

We again use the decomposition v∗t+1 = vec∗εt+1 + ε⊥t+1 from Section C.5.2 to reduce the
dimensionality of the numerical integration:

B$,rn
n (Z̃t, ŝt, xt−1) = Et

[
exp

(
−Y3,t + EtY2,t+1 − r̄ − Y2,t+1 − n · vec∗εt+1 + n2

2 (σ⊥)2

+b$
n−1(Z̃t+1, ŝt+1, xt)

)]
, (A165)

= Et

exp

−r̄ − e3A
−1Z̃t − (e2A

−1e′1︸ ︷︷ ︸
vpi1

+ n · vec∗e′1)ε1,t+1

−

e2A
−1e′2︸ ︷︷ ︸

vpi2

+ n · vec∗e′2

 ε2,t+1 + n2

2 (σ⊥)2 + b$
n−1(Z̃t+1, ŝt+1, xt)


 .

(A166)

C.6.2 Risk-neutral zero-coupon consumption claims

Next, we derive recursive solutions for the risk-neutral prices of zero-coupon consumption
claims. Let P c,rn

nt /Ct denote the risk-neutral price-dividend ratio of a zero-coupon claim
on consumption at time t+n. The risk-neutral price-consumption ratio of a claim to the
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entire stream of future consumption equals:

P c,rn
t

Ct
=

∞∑
n=1

P c,rn
nt

Ct
. (A167)

For n ≥ 1, we guess and verify there exists a function F rn
n (Z̃t, ŝt, xt−1), such that

P c,rn
nt

Ct
= F rn

n

(
Z̃t, ŝt, xt−1

)
. (A168)

We start by deriving the analytic expression for F rn
1 . The one-period risk-neutral zero-

coupon price-consumption ratio solves

P c,rn
1,t

Ct
= exp (−Y3,t + EtY2,t+1 − r̄)Et

[
Ct+1

Ct

]
(A169)

Using (26) to substitute for consumption growth, we can derive the following analytic
expression for f rn1 :

f rn1 (Z̃t, ŝt, xt−1) = −(1− ρa) (e3 − e2B)A−1Z̃t − r̄ + g + e1[B − φI]A−1Z̃t + 1
2σ

2
c .

(A170)

Next, we solve for fn, n ≥ 2 iteratively:

P c,rn
nt

Ct
= exp (−Y3,t + EtY2,t+1 − r̄)Et

[
Ct+1

Ct
F rn
n−1

(
Z̃t+1, ŝt+1, xt

)]
(A171)

This gives the following expression for f rnn :

f rnn (Z̃t, ŝt, xt−1) = log [Et [exp (−(1− ρa) (Y3,t + EtY2,t+1)− r̄ + g − φxt + Etxt+1 + σcε1,t+1

+f rnn−1(Z̃t+1, ŝt+1, xt)
)]]

. (A172)

Finally, we re-write f rnn,t as an expectation involving f rnn−1,t+1, the state variables Z̃t, and
period t+ 1 shocks:

f rnn (Z̃t, ŝt, xt−1) = log
[
Et
[
exp

(
g + e1[B − φI]A−1Z̃t − r̄ − (1− ρa) (e3 − e2B)A−1Z̃t+

+σcε1,t+1 + f rnn−1(Z̃t+1, ŝt+1, xt)
)]]

. (A173)

C.6.3 Risk-neutral returns

We plug risk-neutral price-consumption ratios and bond prices into equations (A141)
through (A147). This gives risk-neutral returns on the consumption claim, risk-neutral
log excess bond returns, and risk-neutral bond yields. We then substitute risk-neutral
returns on the consumption claim into (A153)-(A154) to obtain risk-neutral log excess
stock returns.
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C.7 Modeling FOMC High-Frequency Asset Prices
In order to simulate high-frequency changes in stocks and bonds around FOMC announce-
ments, we decompose the quarterly shock into a pre-FOMC and an FOMC component,
which are assumed to be uncorrelated

vt = vpret + vFOMC
t . (A174)

We therefore effectively model FOMC dates as occurring always at the end of the quarter,
because that is the only date when we compute asset prices. The variance-covariance
matrix of shocks released prior to the FOMC announcement is

Σpre
v = Σv − diag

(
[σFOMC
x , σFOMC

π , σFOMC
ST , σFOMC

LT ]
)
. (A175)

We then split the rotated εt shock similarly according to

εpret = AΣvpret , (A176)
εFOMC
t = AΣvFOMC

t . (A177)

The aggregate dynamics and asset pricing solution are of course unchanged to before,
because the distribution of quarterly fundamental shocks vt is unchanged. But splitting
it into two independent shocks allows us to differentiate asset prices before vs. after the
FOMC shock vFOMC

t .
We compute pre-FOMC asset prices very simply at the expected quarter t state vec-

tor before the FOMC shock is realized. The expected pre-FOMC state variables plus
consumption are given by

Z̃pre
t = P̃ Z̃t−1 + εpret , (A178)

Y pre
t = PYt−1 + A−1εpret , (A179)
ŝpret = θ0ŝt−1 + θ1Y1,t−1 + θ2Y1,t−2 + ...λ(ŝt−1, S̄)σcεpre1,t , (A180)
cpret = g + ct−1 + (Y pre

1,t − φY1,t−1), (A181)
v∗,pret = v∗t−1 + vLT,pret . (A182)

We compute pre-FOMC stock and bond prices by substituting the pre-FOMC state
vector into the solutions from the asset pricing value function iterations:

P pre
t

Cpre
t

= F
(
Z̃pre
t , ŝpret , xt−1

)
, (A183)

P $,pre
n,t = exp (−nv∗,pret )B$

n

(
Z̃pre
t , ŝpret , xt−1

)
, (A184)

P pre
n,t = Bn

(
Z̃pre
t , ŝpret , xt−1

)
(A185)

The pre-FOMC nominal and real log bond yields are then given by

y$,pre
n,t = −n log

(
P $,pre
n,t

)
, (A186)

ypren,t = −n log
(
P pre
n,t

)
. (A187)
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Pre-FOMC breakeven is computed as

breakevenpren,t = y$,pre
n,t − ypren,t . (A188)

We then compute simulated changes in the short-term nominal interest rate, as well as
long-term bond yields and breakeven around FOMC announcements

∆iFOMC
t = (Y3,t + v∗t )−

(
Y pre

3,t + v∗,pret

)
, (A189)

∆y$,FOMC
n,t = y$

n,t − y
$,pre
n,t , (A190)

∆yFOMC
n,t = yn,t − ypren,t , (A191)

∆breakevenFOMC
n,t = breakevenn,t − breakevenpren,t . (A192)

Stock returns around the FOMC date are computed assuming that no consumption
takes place during the FOMC interval (equivalently, the FOMC intervals is infinitesimal),
so

rc,FOMC
t = log

exp(ct − cpret )
P ct
Ct

P c,pret

Cpret

 . (A193)

The levered return around the FOMC date then is

rδ,FOMC
t = log((1/δ)exp(rc,FOMC

t )− ((1− δ)/δ)), (A194)

which follows from using the standard formula for levered stock returns while setting the
real interest rate and consumption to zero, because the FOMC interval is infinitesimal.

D Solving for Asset Prices numerically
We evaluate asset prices by iterating on a grid for the state vector as in Campbell,
Pflueger, and Viceira (2020) building on Wachter (2005). Other numerical methodologies
are faster, but their cost is that they cannot replicate the economic properties of Wachter
(2005)’s numerical solution for Campbell-Cochrane. In unreported results, we verified
that analytic linear approximations to the sensitivity function λ (e.g. Lopez, López-
Salido, and Vazquez-Grande 2015), numerical higher-order perturbation methods using
Dynare (Rudebusch and Swanson 2008), and global projection methods give solutions for
Campbell-Cochrane that are economically very different from Wachter (2005)’s numerical
solution.

Other approaches in the literature are also not appropriate for our problem. While
Chen (2017) solves a model with habit and production using global projection and per-
turbation methods, his model features a linear sensitivity function and heteroskedastic
consumption. By contrast, we have homoskedastic consumption and a highly nonlinear
sensitivity function. Similarly, affine term structure models, such as Dai and Singleton
(2000), generate affine relations between risk premia and state variables by assuming an-
alytically convenient functional forms for the pricing kernel. In contrast to models that
assume more convenient pricing kernels, our preferences are consistent with the stan-
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dard log-linear New Keynesian consumption Euler equation and generate conditionally
homoskedastic macroeconomic dynamics.

While iterating on a grid is significantly slower than perturbation or global projection
methods, it is not prohibitively so. Our MATLAB algorithm for solving the asset pricing
recursions (described in Section D.1) takes 94 seconds to run on a Lenovo X280 laptop
with an i7-8650U CPU. Simulating the model (described in Section D.2) takes 35 seconds.
The risk-neutral asset pricing recursions and simulating the risk-neutral stock returns take
an additional 88 seconds and 37 seconds.

D.1 Implementing the asset pricing recursions
We implement the recursions in Sections C.5.1 and C.5.2 numerically through value func-
tion iteration on a grid. We solve for the functions fn, bn, and b$

n using value function
iteration along a five-dimensional state vector. We use a five-dimensional grid, with the
first three dimensions corresponding to Z̃t, the fourth dimension corresponding to ŝt, and
the fifth dimension corresponding to xt−1.

D.1.1 Grid

In this section, we use Z̃, ŝ, x to denote the corresponding time-t variables. We use
superscripts − to denote variables in the previous period and + to denote variables in the
next period. We solve numerically for fn, bn, and b$

n as functions of the vector of state
variables

[
Z̃, ŝ, x−

]
.

Our grid is densest along the ŝ dimension to capture important non-linearities of
asset prices with respect to the surplus consumption ratio. Following Wachter (2005), we
choose a grid for the surplus consumption ratio that consists of an upper segment and a
lower segment and covers a wide range of values for st. Let Sgrid,1 denote a vector of 20
equally spaced points between 0 and Smax with Smax included and sgrid,2 a vector of 30
equally spaced points between min (log (Sgrid,1)), and −50. The grid for ŝt = st − s̄ then
consists of the concatenation of sgrid,2 − s̄ and log (Sgrid,1)− s̄.

We find that bond and stock prices are close to loglinear in Z̃ and x̂−, so coarser grids
are sufficient along those dimensions of the state vector. In fact, the analytic expressions
for f1, b2, and b$

2 show that one-period zero-coupon consumption claims and two-period
bond prices are exactly log-linear in Z̃ and x−. Numerical results indicate that this
property translates to longer-period claims and fn, bn, and b$

n are still approximately
linear in Z̃ and x− for general n. To speed up the value function iteration, we therefore
use two grid points for each dimension of Z̃ and for x−.

For Z̃, we use an equal-spaced three-dimensional grid. Let N denote the number
of grid points along each dimension and m the width of the grid as a multiple of the
unconditional standard deviation of Z̃. For each dimension of Z̃, we choose a grid of
N equal-spaced points with the lowest point equal to −m × std(Z̃) and the highest
point equal to m × std(Z̃). Here, the unconditional variance-covariance matrix of Z̃ is
determined implicitly by the equation:

std(Z̃) =
√
B̃V ar

(
Z̃
)
B̃′ + diag(1, 1, 1). (A195)
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For our baseline grid, we set N = 2 and m = 2.
For x−, we consider an equal-spaced grid with sizexm points ranging from

min
(
e1AZ̃t : Z̃ ∈ grid

)
to max

(
e1AZ̃ : Z̃ ∈ grid

)
. This choice of grid ensures that the

grid for x− covers the entire range of output gap values implied by the grid for Z̃. In our
baseline evaluation, we set sizexm = 2.

With N = 2 grid points along each of the three dimensions of Z̃, 50 gridpoints for ŝ,
and sizexm = 2 grid points for x−, the combined grid has a total of 23 · 50 · 2· = 800
points.

D.1.2 Numerical integration

Following Wachter (2005), we use Gauss-Legendre quadrature to evaluate the expecta-
tions (A123), (A134), and (A139) numerically. Gauss-Legendre quadrature is orders of
magnitude faster than computing expectations by simulation. As in Wachter (2005),
we evaluate infinite integrals over the density of standardized consumption shocks (ε1,t)
using 40 integration node points and an integration domain ranging from −8 standard
deviations to +8 standard deviations. To conserve speed and memory, we integrate over
shocks orthogonal to surplus consumption (ε2,t) using a somewhat smaller number of in-
tegration node points, 15, but again an integration domain of ±8 standard deviations.
To evaluate bond and stock prices at points that are not on the grid, we use loglinear
multi-linear interpolation and extrapolation.

For completeness, we recap the key features of Gauss-Legendre integration. Let
xGLi, i = 1, ..., NGL and wGLi = 1, ..., NGL denote the Gauss-Legendre nodes and
weights of NGLth order. Gauss-Legendre quadrature then approximates a definite integral
of any smooth function f on the interval [−1, 1] by

´ 1
−1 f (x) dx ≈ ∑NGL

i=1 wGLif (xGLi).
By change of variable, it is immediate that we can approximate the integral of a smooth
function f on an interval [−ā, ā] by

ˆ ā

−ā
f (x) dx ≈

NGL∑
i=1

ā× wGLi︸ ︷︷ ︸
wGLāi

f

ā× xGLi︸ ︷︷ ︸
xGLāi

 . (A196)

Here, we use xGLāi and wGLāi to denote Gauss-Legendre node points and weights scaled
to the interval [−ā, ā].

We implement Gauss-Legendre quadrature to take expectations over εt+1 as follows.
Let N1 denote the number of Gauss-Legendre nodes and ā1 denote the integration domain
for the shock ε1,t, that is perfectly correlated with output innovations. We set xGL1,i =
xGLā1

i and wGL1,i = wGLā1
i for i = 1, ..., N1, where the weights and nodes are as defined

in equation (A196). Moreover, we set

pGL1,i = 1√
2π
exp

(
−xGL2

1,i

)
wGL1,i/

N1∑
i=1

(
1√
2π
exp

(
−xGL2

1,i

)
wGL1,i

)
, (A197)

and use the scaled weights pGL1,i for numerical integration. The scaling of (A197) ensures
that the numerical expectation of a constant is evaluated to be the same constant (or
intuitively that discretized probabilities sum to one).
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We then evaluate numerically the expectation of any smooth function f of ε1,t via:

E [f (ε1,t)] =
ˆ ∞
−∞

1√
2π
exp

(
−ε21

)
f (ε1) dε1, (A198)

≈
ˆ ā1

−ā1

1√
2π
exp

(
−ε21

)
f (ε1) dε1, (A199)

≈
N1∑
i=1

pGL1,if (xGL1,i) . (A200)

Accuracy increases with ā1 and N1. We follow Wachter (2006) in setting N1 = 40 and
ā1 = 8.

To take expectations over ε2,t and ε3,t, we similarly use Gauss-Legendre quadrature
with integration domain ā2 = 8 and number of nodes N2 = 15. We set xGL2,i = xGLā2

i

and wGL2,i = wGLā2
i for i = 1, ..., N2 and define the scaled weights:

pGL2,i = 1√
2π
exp

(
−xGL2

2,i

)
wGL2,i/

N2∑
i=1

(
1√
2π
exp

(
−xGL2

2,i

)
wGL2,i

)
, (A201)

The weights and nodes for ε3,t are identical to those of ε2,t.
Since ε1,t, ε2,t, and ε3,t are independent, we can evaluate the expectation of any smooth

function f (ε1,t, ε2,t, ε2,t) as

Ef (ε1,t, ε2,t, ε3,t) =
ˆ ∞
−∞

1√
2π
exp

(
−ε21

) ˆ ∞
−∞

1√
2π
exp

(
−ε22

) ˆ ∞
−∞

1√
2π
exp

(
−ε23

)
f (ε1, ε2, ε3) dε1dε2dε3,

≈
N1∑
i=1

pGL1,i

N2∑
j=1

pGL2,j

 N3∑
k=1

pGL3,kf (xGL1,i, xGL2,j, xGL3,k)
 . (A202)

D.1.3 Recursive step

Let a superscript num denote the numerical counterparts to the analytic functions fn, bn,
b$
n. We start by initializing fnum1

(
Z̃, ŝ, x−

)
, bnum2

(
Z̃, ŝ, x−

)
, and b$,num

2

(
Z̃, ŝ, x−

)
at each

grid point according to the analytic expressions (A121), (A131) and (A133).
Next, we apply the recursive expressions (A123), (A134), and (A139) along the grid.

Having computed fnumn−1 along the entire grid, we evaluate fnumn

(
Z̃, ŝ, x−

)
at a grid point
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(
Z̃, ŝ, x−

)
as follows. We compute the expectation (A123) numerically as:

fnumn (Z̃, ŝ, x−) = log
N1∑
i=1

pGL1,i

N2∑
j=1

pGL2,j

 N3∑
k=1

pGL3,k · exp
(
g + e1[B − φI]A−1Z̃

−r̄ − (1− ρa)(e3 − e2B)A−1Z̃ − γ

2 (1− θ0)(1− 2ŝ)

−(γ(1 + λ(ŝ))− 1)σc × xGL1,i

+fnumn−1

B̃Z̃ +

 xGL1,i
xGL2,j
xGL3,k

 , θ0ŝ+ θ1x+ θ2x
− + λ (ŝ)xGL1,i, x




 ,

(A203)

where we evaluate x as a function of the state vector as

x = e1A
−1Z̃. (A204)

To compute the right-hand-side of (A203), we need to evaluate fnumn−1 at points that are
not on our grid. We interpolate fnumn−1 linearly (and hence F num

n−1 log-linearly). When the
argument is outside the range of the grid, we extrapolate fnumn−1 linearly. It is clear from
(A121) that linear inter- and extrapolation gives a good approximation of f1. In fact,
we can see that f1 is exactly linear in Z̃, independent of x−, and that it depends on
λ(ŝ) = λ0

√
1− 2ŝ. We accommodate the fact that f1 is not linear in ŝ by choosing a

much denser grid along the ŝ dimension. We do not have analytic expressions for fn, n > 1
(after all, that’s why we need a numerical solution), but numerical solutions indicate that
linear inter- and extrapolation gives good approximations for fn with the chosen grid.

In terms of coding (A203), we face a trade-off between speed and readability of the
code. We pre-allocate matrices outside loops and we code linear interpolation by hand
(rather than using a pre-written interpolation routine) to conserve speed and memory.
We also inline the linear interpolation steps (i.e. write them directly into the main
function rather than calling a separate interpolation function). This speeds up the code
substantially, while reducing its readability.

There are different methods to interpolate multidimensional functions. Specifically, we
use multi-linear interpolation, corresponding to interpolating along each dimension one
at a time. In order to enhance computational speed we do not rely on a pre-programmed
interpolation routine, instead coding our own minimal interpolation routine. It is well-
known that the result of multi-linear (or in the two-dimensional case bi-linear) interpo-
lation does not depend on in which order one interpolates the different arguments. We
find it convenient to interpolate fnumn−1

(
Z̃, ŝ, x−

)
first along the x− dimension, then along

ŝ, then along Z̃1, and finally along the Z̃2 and Z̃3 dimensions.
Finally, we evaluate the price-consumption ratio for the aggregate consumption stream

by approximating it as the sum of the first 300 zero-coupon consumption claims:

F num
(
Z̃t, ŝt, xt−1

)
=

300∑
n=1

exp
(
fnumn (Z̃t, ŝt, xt−1)

)
. (A205)
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We iterate bnumn

(
Z̃, ŝ, x−

)
and b$,num

n

(
Z̃, ŝ, x−

)
similarly according to:

bnumn (Z̃t, ŝt, xt−1) = log
N1∑
i=1

pGL1,i

N2∑
j=1

pGL2,j

 N3∑
k=1

pGL3,k

· exp
(
−r̄ − (e3 − e2B)A−1Z̃ − γ

2 (1− θ0)(1− 2ŝ)

−γ (1 + λ(ŝ))σc × xGL1,i

+bnumn−1

B̃Z̃ +

 xGL1,i
xGL2,j
xGL3,k

 , θ0ŝ+ θ1x+ θ2x
− + λ (ŝ)xGL1,i, x




 ,

(A206)

and

b$,num
n (Z̃t, ŝt, xt−1) =

N1∑
i=1

pGL1,i

N2∑
j=1

pGL2,j

 N3∑
k=1

pGL3,k (A207)

· exp
(
−r̄ − e3A

−1Z̃ − γ

2 (1− θ0)(1− 2ŝ)

− (γ (1 + λ(ŝ))σc + vpi1 + n · vec∗e′1)× xGL1,i

− (vpi2 + n · vec∗e′2)xGL2,j + n2

2
(
σ⊥
)2

+b$,num
n−1

B̃Z̃ +

 xGL1,i
xGL2,j
xGL3,k

 , θ0ŝ+ θ1x+ θ2x
− + λ (ŝ)xGL1,i, x




 ,

(A208)

We again use multi-linear interpolation and extrapolation to evaluate b$,num
n−1 and bnumn−1 at

points that are not on the grid. We similarly implement the recursions (A164), (A166),
and (A173) numerically to obtain risk-neutral bond and consumption claim valuations
Brn,num
n , Brn,$,num

n , Grn,num.

D.2 Simulating the Model
We simulate a draw of length T . Results in Tables 2 and Table 4 use T = 10000 and dis-
card the first 100 simulation periods to ensure that the system has reached the stochastic
steady-state. We report model moments averaged across 2 independent simulations.

We use superscript sim to denote simulated quantities. We use the MATLAB function
mvnrnd to obtain independent draws vsimt ∼ N (0,Σv) for t = 1, 2, ..., T . We then obtain
the rotated shock according to εsimt = Avsimt and vLT,simt = e4v

sim
t . We generate draws for

Z̃sim
t , t = 1, ..., T by setting Z̃sim

1 = 0 and then updating according to (A94). We obtain
the simulated non-rotated state vector for t = 1, 2, ..., T through the relation Y sim

t =
A−1Z̃sim

t . We generate draws for the surplus consumption ratio by setting ŝsim1 = 0 and
xsim0 = 0 and then updating according to (A103). We generate the simulated random
walk component of inflation v∗t , t = 1, 2, ..., T by starting from v∗1

sim = 0 and updating it
according to equation (22) in the main paper. We initialize simulated log consumption
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at csim1 = 0 and update it using (26). We then drop the first 100 simulation periods to
allow the system to converge to the stochastic steady-state.

Having generated draws for the five state variables Z̃sim, ŝsim, and xsimt−1, we obtain the
simulated consumption-claim price-dividend ratio as (P c/C)simt = F num

(
Z̃sim
t , ŝsimt , xsimt−1

)
,

n-period real bond prices as
P sim
n,t = Bnum

n

(
Z̃sim
t , ŝsimt , xsimt−1

)
, and

B$,sim
n,t = B$,num

n

(
Z̃sim
t , ŝsimt , xsimt−1

)
. We obtain the corresponding risk-neutral valuation

ratios by plugging into the risk-neutral asset pricing solutions:
(P c/C)rn,simt = F rn,num

(
Z̃sim
t , ŝsimt , xsimt−1

)
,

P rn,sim
n,t = Brn,num

n

(
Z̃sim
t , ŝsimt , xsimt−1

)
, and

Brn,$,sim
n,t = Brn,$,num

n

(
Z̃sim
t , ŝsimt , xsimt−1

)
. We obtain nominal bond prices P $,sim

n,t by com-
bining B$,sim

n,t and v∗t
sim according to (A125). We similarly obtain risk-neutral nominal

bond prices P rn,$,sim
n,t by combining Brn,$,sim

n,t and v∗t sim according to (A125).
To deal with the fact that Z̃sim

t , ŝsimt , xsimt−1 are not usually on grid points we adopt a
similar linear interpolation strategy as in the numerical evaluation of the asset pricing re-
cursions described in Section D.1.3. We interpolate F num, Bnum

n , and B$,num
n log-linearly.

We simplify the interpolation strategy slightly compared to Section D.1.3. We use the
MATLAB function griddedInterpolant, sacrificing some computational speed for simpler
code. Even though rare events (and especially extremely negative realizations for ŝ)
matter for the value function iteration in Section D.1.3, low-probability events have very
little impact on the properties of simulated asset prices taking as given F num, Bnum, and
B$,num. We therefore simplify the log-linear interpolation by truncating Z̃sim

t , ŝsimt , and
xsimt−1 at the maximum and minimum values covered by the grid.

Having generated
(
P c

C

)sim
t

, t = 1, ..., T , we compute log returns on the consumption
claim rc,simt+1 according to (A141). We obtain simulated price-dividend ratios for levered
stocks by plugging into (A148). Finally, we obtain log bond yields and stock and bond
excess returns as described in Section C.5.3. Risk-neutral bond and stock returns are
computed by substituting

(
P c

C

)rn,sim
, P rn,$,sim

n,t , and P rn,sim
n,t into the same relations.

We simulate pre-FOMC asset prices as follows. We use the MATLAB function mvnrnd
to generate independent draws for the FOMC shock
vFOMC,sim
t ∼ N

(
0, diag

([
0, 0,

(
σFOMC
ST

)2
,
(
σFOMC
LT

)2
]))

, where t = 1, ..., T . Having

drawn the FOMC shock vFOMC,sim
t we obtain the simulated pre-FOMC component of the

overall quarterly simulated shock as

vpre,simt = vsimt − vFOMC,sim
t , (A209)

εpre,simt = Avpre,simt . (A210)

We then use the simulated values for Z̃sim
t−1 , Y sim

t−1 , csimt−1, ŝsimt−1, v∗t−1 and εpre,simt to compute
the simulated pre-FOMC state vector according to equations (A178) through (A182). We
then obtain pre-FOMC asset prices by substituting the simulated pre-FOMC state vector
into equations (A183) through (A182). Simulated yield changes around FOMC news are
then computed according to equations (A189) and (A192) and simulated FOMC stock
returns are obtained according to equation (A194).
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D.3 Parameter units
This subsection details the relation between parameter values in empirical (reported in
the paper) and natural units (used for solving the code). We solve the model in natural
units. However, it is most natural to report empirical moments and summary statistics
in empirical units for interpretability.

For comparability with empirical moments, Table 1 reports model parameters in units
that correspond to the output gap in annualized percent, and inflation and interest rates in
annualized percent. As in Campbell, Pflueger, and Viceira (2020), we report the discount
rate and the persistence of surplus consumption in annualized units. Concretely, Table 1
reports the following scaled parameters:

400× g, (A211)
400× r̄, (A212)

θ4
0, (A213)
β4, (A214)

4× γx (A215)
100× σx, (A216)
400× σπ, (A217)

400× σST , (A218)
400× σLT , (A219)

1
4 × ψ, (A220)

4× κ (A221)

All other parameters reported in Table 1 do not need to be scaled.

E Details: Simulated Method of Moments

E.1 Reduced-Form Impulse Responses
This section describes how we estimate the macroeconomic impulse responses reported
in Figure 2. We follow the procedure described below for both actual and simulated
data, with the simulated data length matching the length of the empirical sample. Model
impulse responses in Figures 2 are averaged over 100 simulations. In this section, we
use subscripts IRF if variable names would otherwise be similar to different variables
elsewhere in the paper.

To account for the unit root in inflation in the model, we estimate a vector error
correction model of the form

YIRF,t = ΠYIRF,t−1 + εt (A222)
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where we define the vector for the VECM as:

YIRF,t = [xt−1, πt − πt−1, it − πt]. (A223)

This definition of the VAR(1) vector guarantees that each of the variables is stationary
when the data is simulated from our model since the unit root affects the short-term
interest rate it only through its effect on inflation πt.

The shocks εt are not orthogonal and we denote their estimated variance-covariance
matrix by Σε. Next, we rotate the innovations to be orthogonal. This means that we
need to re-write (A222) in the form:

R−1YIRF,t = ΠRYIRF,t−1 + ηt (A224)

where ηt is a vector of uncorrelated shocks, R is an invertible matrix, and ΠR = R−1Π.
We write the variance-covariance matrix of ηt as:

Ση = Eη′tηt =

σ(η1)2 0 0
0 σ(η2)2 0
0 0 σ(η3)2

 (A225)

We pick R−1 to be lower-diagonal with ones along the diagonal. Having estimated Π
and Σε we obtain R, ΠR, and Ση using Cholesky factorization.

We then construct impulse responses. We start with a unit standard deviation or-
thogonalized shock to output gap:

η1 = [σ(η1), 0, 0] (A226)

which is equivalent to
ε1 = R[σ(η1), 0, 0]. (A227)

The n-th response to a one standard deviation shock to the output gap then is com-
puted as:

Πn−1ε1 = Πn−1R[σ(η1), 0, 0]. (A228)

We can similarly compute the responses for the change in inflation πt − πt−1 and the
difference between the nominal interest rate and inflation it−πt. In order to then obtain
the corresponding responses of inflation, we cumulate the responses of πt−πt−1 and finally
add the response of inflation to that of it − πt to obtain the response of the short-term
nominal interest rate.

E.2 Confidence intervals and objective function
We use a bootstrap method to compute confidence intervals for the empirical impulse
responses shown in Figure 2 and for the variances of the impulse responses used in the
SMM estimation. Let Π and Σε denote the coefficient matrix and the variance-covariance
matrix of shocks from estimating (A222) on actual data. We then generate bootstrapped
data by simulating Y boot

IRF,t of identical sample length as the true data according to

Y boot
IRF,t = ΠY boot

IRF,t−1 + εboott , (A229)
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where εboott are drawn as iid normal with mean zero and variance-covariance Σε. On the
bootstrapped data, we then apply the methodology for IRFs described in Section E.1.
That is, we re-estimate (A222) on the bootstrapped data and use the resulting estimates
to construct bootstrapped impulse response functions. We generate 1000 independent
bootstrap samples. Figure 2 shows confidence intervals, such that 95% of the time the
bootstrapped impulse responses are within the interval.

For our objective function, we define the empirical target moments as follows. Ψ̂ is
[15 × 1]. It includes 15 = 6 · 3 − 3 impulse responses. We have 15 impulse response
moments, because we have nine impulse responses at zero (shock period), one, two, four,
eight, and twelve quarters each. However, three of the shock period impulse responses are
zero by our choice of orthogonalization and we exclude them from the objective function.

Let V̂ denote the bootstrapped variance-covariance matrix of Ψ̂boot − Ψ̂. We then
define the weighting matrix Ŵ for the SMM objective function as the diagonal matrix
with the inverse variances for the 15 impulse response moments along the diagonal:

Ŵ = diag(inv(V̂1,1), inv(V̂2,2), ..., inv(V̂51,51)). (A230)

The SMM objective function is then given by equation (39) in the main text.

E.3 Grid search
We minimize the objective function J(σ) using a two-step grid search. To reduce the
need to compute (computationally expensive) asset prices along the grid, we separate the
parameters into [σx, σπ, σST ] and σLT . The first step of the grid search finds the parameter
values for [σx, σπ, σST ] that minimize the objective function while holding the volatility
of the long-term monetary policy shock constant at σLT = 0.25, which we have chosen to
match roughly the volatility of changes in 10-on-10-year breakeven, which equals 0.26% in
our empirical sample. In this first grid search step, we solve and simulate macroeconomic
dynamics and reduced-form impulse responses (but not asset prices) over a grid for the
first three volatility parameters. We choose an equally-spaced grid with 20 points between
0.01 and 1 for each of σx, σπ, and σST , so we evaluate the macroeconomic dynamics at
a total of 203 = 8000 gridpoints in this step. We discard parameter values in this step,
where asset prices do not exist.

In a second step, we find the volatility of the long-term monetary policy shock σLT
by minimizing the distance between the volatility of changes in 10-on-10 year breakeven
in the model and in the data, while holding all other model parameters constant. This
second step requires solving for asset prices at each grid point, and is hence substantially
slower than the first step. We evaluate the model volatility of changes in 10-on-10-year
breakeven inflation on an equally-spaced grid for σLT with 20 points between 0.01 and 1.
Because it takes about 2 minutes to solve for macroeconomic dynamics and asset prices,
this second step of the grid search takes about 2 × 20 = 40 minutes. We again discard
parameter vectors where asset prices do not exist.
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F Additional Model Results

F.1 Switching off model components
Table A1 shows that the model results described in Table 4 are robust to switching off
individual model components. For instance, reducing the equilibrium volatility of Phillips
curve, short-term monetary policy, or long-term monetary policy shocks leaves the rela-
tionship of stock returns and monetary policy surprises on FOMC dates unchanged. For
the counterfactual exercises in columns (5) and (6) of Table A1 monetary policy shocks
on FOMC dates are still non-zero, but they are unanticipated and out-of-equilibrium
because the equilibrium volatility of monetary policy shocks set to zero.

The model results for high-frequency stocks and bonds around FOMC announcements
are robust to switching off the link between expected growth and the short-term real rate
by setting ρa = 0. Table A1, column (1) shows that the model regression coefficients
are actually somewhat larger when we switch off this link, and that time-varying risk
premia continue to represent about 50% of the overall stock response to monetary policy
news. With ρa = 0, a surprise increase in the short-term monetary policy rate is not
accompanied by higher growth expectations, so stocks fall even more than in our baseline
calibration. The link between the short-term real rate and expected growth (ρa > 0) in
our baseline calibration therefore helps, because it ensures that the stock return response
to monetary policy shocks is not too large compared to the data, as in Nakamura and
Steinsson (2018).

Switching off the habit shock in column (3) also increases the model slope coefficients
around FOMC announcements, and continues to imply a substantial risk premium re-
sponse, as in the baseline calibration. Intuitively, in the absence of independent habit
shocks the consumption claim is conditionally perfectly correlated with surplus consump-
tion, so stocks are even riskier for investors.
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Table A1: Model Decomposition

(1) (2) (3) (4) (5) (6)
Baseline ρa = 0 σx = 0 σπ = 0 σST = 0 σLT = 0

Panel A: Overall monetary policy shocks effect
Slope(S&P 500 Return, Fed Funds) -5.27 -11.38 -15.43 -5.15 -4.96 -5.20
Slope(S&P 500 Return, 10Y Breakeven) 5.89 11.54 17.00 5.74 5.54 5.81

Panel B: Monetary policy shocks effect on risk premia
Slope(S&P 500 Risk Premium, Fed Funds) -2.54 -7.71 -14.16 -2.49 -2.21 -2.46
Slope(S&P 500 Risk Premium, 10Y Breakeven) 2.7 7.57 15.34 2.64 2.35 2.63

Panel C: Bond Betas
Real Bond-Stock Beta 0.03 0.07 0.17 0.02 -0.02 0.01
Breakeven-Stock Beta -0.13 -0.16 -0.22 -0.13 -0.11 -0.04

Note: This table compares asset pricing moments while switching off individual model components. The real and breakeven stock
betas are computed as in Table 2, and the asset price reactions around monetary policy dates are as in Table 4. Column (1) of Panel
A repeats the model regression of Table 4, column (2). The remaining columns of Panel A report the corresponding model regression
coefficients while switching off individual model components. Panel B reports regression estimates corresponding to Table 4, column
(4), where the dependent variable is the risk premium component of equity returns. For all panels, column (1) repeats the baseline
model results. Column (2) switches off predictable technology growth. Column (3) sets the demand shock to zero. Column (4) sets the
Phillips curve shock to zero. Column (5) sets the short-term monetary policy shock to zero. Column (6) sets the long-term monetary
policy shock to zero. For the counterfactual exercises in columns (5) and (6) of Table A1 monetary policy shocks on FOMC dates are
still non-zero, but they are unanticipated and out-of-equilibrium because the equilibrium volatility of monetary policy shocks set to
zero. All other parameters are held constant at the values listed in Table 1.
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F.2 Model Real Bond Yields around FOMC Announcements
In this Appendix Section, we show that our model matches the comovement between the
short-term nominal interest rate and long-term real bond yields around FOMC dates,
which Nakamura and Steinsson (2018) and Hanson and Stein (2015) have documented.

Table A2: Data and Model Real Bond Yields around FOMC Announcements

(1) (2) (3)
Data Model Model (ρa = 0)

Slope(5Y Real Yield, Fed Funds) 0.42∗ 0.36 0.32
(0.22)

Risk Neutral 0.35 0.29

Slope(10Y Real Yield, Fed Funds) 0.28∗ 0.17 0.18
(0.16)

Risk Neutral 0.17 0.15

Note: This table compares the comovement of long-term real bond yields and short-term
nominal interest rates around monetary policy announcements in the model and in the
data. The table reports coefficient estimates from regressions of the form ∆FOMCyn,t =
b0 + b1∆FOMCit + εt, where ∆FOMCyn,t is either the change in the 10-year or 5-year
real bond yield from the day before the FOMC announcement to the day after. We use
zero-coupon TIPS yields from Gürkaynak, Sack, and Wright (2010). The surprise in the
Federal Funds rate and the sample are as in Table 4. Model asset price changes around
FOMC announcements are also as described in Table 4. Risk neutral rows show the slope
coefficients when model long-term real bond yields are computed from the stochastic
discount factor of a risk neutral investor taking macroeconomic dynamics as given.

Table A2 shows that our model matches the empirical relationship between long-term
real yields and short-term nominal yields on FOMC days:

∆FOMCyn,t = b0 + b1∆FOMCit + εt, (A231)

where ∆FOMCyn,t is the change in either the 10-year or the 5-year real bond yield and
∆FOMCit is the change in the Federal Funds rate. Table A2, column (1) shows that long-
term real bond (TIPS) yields indeed move with surprises in short-term interest rates in
our sample, consistent with prior empirical results. In the data, a 25 bps surprise increase
in the short-term nominal interest rate tends to be accompanied by a substantial 11 bps
increase in the 5-year TIPS yield and a 7 bps increase in the 10-year TIPS yield.

Column (2) shows that the model replicates the positive empirical relationship be-
tween long-term real bond yields and short-term nominal yields on FOMC dates. In the
model, a 25 bps point increase in short-term nominal yield is associated with a 9 bps
increase in the 5-year real bond yield, and a 4 bps increase in the 10-year real bond yield,
similarly to the data. Both of these coefficients are economically meaningful and within
two standard deviations of the empirical estimates, though smaller than in the data.

One might expect that setting ρa > 0 (as in our baseline calibration) should lead to
higher model regression coefficients in Table A2. The standard intuition in Nakamura
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and Steinsson (2018) is that when monetary policy is perceived to follow the natural
rate implied by expected growth, a surprise increase in the policy rate leads investors to
update about expected growth going forward, thereby raising long-term real bond yields.
Consistent with this intuition, column (3) shows that switching off the link between
productivity growth and the real yields (ρa = 0) indeed weakens the link between short-
term nominal and 5-year real bond yields. For the 10-year bond yields, setting ρa = 0
does not reduce the model slope coefficient of 10-year real bond yields onto the short-term
policy rate around monetary policy announcements.

Looking at the slope coefficients for risk-neutral real bond yields provides an answer
to this puzzling result. We compute risk-neutral real bond yields according to the ex-
pectations hypothesis, so they contain no risk premia. As expected, switching off the
real rate - growth link (ρa = 0) weakens the slope coefficients of model risk-neutral real
bond yields onto short-term policy rate surprises for both the 5-year and the 10-year real
bond maturities. The role for risk premia in our model arises because whether real bond
prices benefit from flight-to-safety is endogenous to the macroeconomic regime (including
ρa). Table A1, Panel C shows that when investors do not learn about growth (ρa = 0)
the real bond beta is positive, so real bonds are risky. Conversely, when investors learn
about expected growth from interest rates (ρa > 0), the real bond beta is closer to zero
and real bonds have greater hedging benefits for investors. Intuitively, when investors
associate high interest rates with growth, negative real bond returns are associated with
good macroeconomic news, driving down real bond betas and improving their risk profile
for the representative agent. In turn, investors prefer to hold real bonds when investor
risk aversion rises after a contractionary short-term monetary policy shock, dampening
the increase in long-term real bond yields. This countervailing risk premium channel
suggests that larger or more persistent changes in growth expectations may be required
to explain any given empirical link between long-term real bond yields and short-term
policy rates on FOMC dates.

Overall, we find that our model can replicate the empirical relationship between inno-
vations in short-term nominal and long-term real bond yields around FOMC announce-
ments, and endogenous flight-to-safety means that even greater variation in expected
growth may be justified to explain the data.

F.3 Robustness Model FOMC Results
Table 4 and Figure 5 report the slope coefficients b1 and b2 from running the following
regression on simulated model data

rδ,FOMC
t = b0 + b1∆iFOMC

t + b2∆breakevenn,t + εt. (A232)

We pick standard deviations for the ST and LT monetary policy shocks on FOMC
days to match the empirical standard deviations of our respective proxies for those shocks:
4.3 bps and 3.3 bps. To make sure that our results on the relationship of monetary policy
shocks and equity returns are not driven by the choice of those exact values, in Figure
A1 we plot the estimates for b1 and b2 while varying σFOMC

ST /σFOMC
LT .
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Figure A1: Model High-Frequency Regression Coefficients against Volatility of FOMC
ST Monetary Policy Shock
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Note: This figure shows regression coefficients b1 and b2 from the model regression (A232), also shown in
column (2) in Table 4 in the main paper. Each dot in the figure corresponds to a model simulation with
a different value for the volatility of short-term monetary policy shocks realized on FOMC dates σFOMC

ST .
We hold the volatility of the long-term monetary policy shock realized on FOMC dates constant at its
baseline value of σFOMC

LC = 3.3 bps. We plot the model regression coefficients b1 and b2 on the y-axis
against the ratio of the short-term to long-term monetary policy shocks realized on FOMC dates σF OMC

ST

σLT
F OMC

on the x-axis.

G Additional Empirical Results
Our model predicts that stock returns should be more sensitive to monetary policy news
following a sequence of bad shocks, such as during a crisis. To verify that this prediction
is in line with the data, in this section we tabulate the properties of stock returns in
narrow windows around FOMC announcements during the depth of the financial crisis
of 2008-09 (defined as October 2008 through December 2009).

In terms of summary statistics, we have 10 observations during this crisis period. The
standard deviation of 1-hour stock returns is 1.04%, the standard deviation of Fed Funds
rate innovations over the same time interval is 4.3 bps, and the standard deviation of
breakeven changes on FOMC days is 3.4 bps. For comparison, our full sample has 146
FOMC date observations, with a standard deviation of 1-hour stock returns of 0.67% and
virtually identical standard deviations for Federal Funds rate and breakeven surprises.
During the crisis period, stock returns around FOMC announcements were hence about
50% more volatile, even though the proxies for monetary policy news were about equally
as volatile as during the full sample.
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Table A3 estimates the slope coefficients of stock returns onto Federal Funds rate
surprises and breakeven changes around FOMC announcements for the crisis period,
analogously to Table 3 columns (1) through (3). As predicted by theory, the slope
coefficients are larger in magnitude during this period, which was characterized by a
steep recession and high risk premia. Unfortunately, due to the small sample size, the
standard errors are substantially larger than before, and we lose statistical significance.

Table A3: Empirical Equity Returns and Monetary Policy Surprises during 2008-09
Financial Crisis

Dependent variable:
S&P 500 Return

(1) (2) (3)
FF Shock −6.66 −4.23

(4.85) (6.46)

10Y Breakeven 10.26 8.22
(8.81) (10.38)

Constant 0.33 0.07 0.07
(0.38) (0.25) (0.28)

Observations 10 10 10
R2 0.08 0.09 0.14
Note: Regressions are analogous to Table 3 columns
(1) through (3), except that this table uses the crisis
subsample (October 2008 through December 2009).
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