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Abstract
Tumors are like new organs and are made of multiple cell types and components. The tumor
competes with the normal microenvironment to overcome antitumorigenic pressures. Before that
battle is won, the tumor may exist within the organ unnoticed by the host, referred to as ‘occult
cancer’. We review how normal tissue homeostasis and architecture inhibit progression of cancer
and how changes in the microenvironment can shift the balance of these signals to the
procancerous state. We also include a discussion of how this information is being tailored for
clinical use.

“We find ourselves at the present time in the era of molecular biology, and we are
perhaps unduly influenced by the genetic code as the dominant principle in biology.
Perhaps, in a decade or two from now, the dominant principle may shift to another plane,
which in turn will influence our speculations about tumour causation.”1.

—Isaac Berenblum

Recently, we informed a sample of colleagues who are not oncologists (n = 9) that many
humans harbor potentially malignant tumors in their bodies without knowing it. Several
were taken aback, but one said “very interesting; so why don’t we know more people with
cancer?” Why not indeed?

Here we discuss research findings over the past century providing reasonable, and at times
unequivocal, evidence that many people do have ‘occult’ tumors. Why they had not
progressed to frank cancer has remained a mystery, and the body of research literature
provides few answers. We suggest that the microenvironment surrounding the tumor in these
cases provides tumor-suppressive signals as long as the architecture of the tissue
homeostasis is essentially controlled. However, once tissue homeostasis is lost, the altered
microenvironment can itself become a potent tumor promoter, as amply demonstrated in
recent research. We suggest that initiation of tumors is unavoidable, but their progression to
malignancy can and should be controllable.

Genetic predispositions affect how humans age, but these are not absolute; lifestyle choices
can help determine how long and how well the process can be delayed. We are optimistic
that in the next quarter century advances in the rapidly expanding and exciting area of study
of the normal microenvironment and lifestyle choices field will lead to revolutionary
improvements in all aspects of cancer biology, from understanding progression to
diagnosing and treating patients.
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Camouflaged: the occult cancers
The human body is comprised of approximately ten trillion cells2. From the moment of
conception and throughout life, these cells are assailed with radiation, oxidative damage and
more. Individuals’ own genetic susceptibility, damage from cigarette smoke and pollution,
lack of exercise, obesity and, of course, aging itself can cause many oncogenes to get
activated and many tumor suppressors to be inactivated. Yet these mutated cells that,
according to current dogmas, should lose control and become autonomous do not seem to
form as many cancers as would be expected from the number of harmful mutations. In fact,
the majority of people live cancer-free lives for decades.

How is this possible? Considering the trillions of cells in the human body and the number of
possible mutations that can or do occur and the ensuing genomic instability, the ability to
restrain the aberrant growth and behavior of precancerous cells is an astonishing feat of
evolutionary biology.

There are studies dating back nearly a century and now being rediscovered (for example, ref.
3), or added to, suggesting that precancerous lesions, and malignant tumors themselves, may
be much more prevalent within an organism than has been thought previously. In these
cases, ignorance is indeed bliss. These tumors, at their very earliest stages, have so far been
found only by a thorough microscopic investigation of organs, typically at autopsy. It is not
known how many of these would eventually have become frank malignant tumors. This
finding was first documented in the prostate by Arnold Rich in 1935 (ref. 4) (the recently
reprinted paper can be found in ref. 5). Upon routine examination of random sections of
autopsied prostate tissues from men who had died of unrelated causes, Rich observed
frequent “small carcinomata” in the earliest stages of prostate cancer. The frequency of these
frank prostate tumors was quite high; they were present in 42 of 292 (14%) prostate
specimens. Because only a single microscope slide per prostate was archived and available
for analysis, Rich argued that the frequency was likely to be higher owing to this sampling
bias. In fact, according to more recent studies, in which the entire gland was thoroughly
examined, the reported frequency of histologically frank tumors was indeed much higher,
34% in men in their forties6. Most surprising was the discovery that in situ carcinoma
(prostatic intraepithelial neoplasia) was present in 9% of men in their twenties, and the
prevalence increased considerably with age, in 27% and 34% of men in their thirties and
forties, respectively6. Interestingly, a similar percentage of women in their forties (39%)
were found to have histologic breast cancers by postmortem examination in another study7.
And other organs are not exempt. Similar findings are emerging for thyroid, lung, pancreas
and other tissues. In fact, the frequency of occurrence in the thyroid gland is so high that the
presence of these lesions is regarded as a ‘normal’ finding8, and the occurrence in lung
tissue, albeit less prevalent, has raised concerns about the overdiagnosis of lung cancer
detected by screening9. A high prevalence of in situ cancers, or genetic rearrangements
associated with cancer, is also found in the pancreas and in leukocytes. Pancreatic
intraepithelial neoplasias (in situ precursor lesions) are “remarkably common” and also are
more prevalent with age, and the Philadelphia chromosome (the chromosomal fusion
between the BCR and ABL genes associated with chronic myelogenous leukemia) was
detected, through the use of a sensitive PCR-based strategy, in the majority (12/16) of a
small sample of healthy adults10–12.

In some cases, primary tumors are not detected in the organ of origin but discovered as
metastases. For example, Patel et al.13 have reported that some breast cancers present
clinically as metastases to the auxiliary lymph nodes and not as palpable lumps in the breast.
Even after surgical removal and careful histological examination, the primary tumor
reportedly still remained undetectable in roughly half of the patients13. When primary
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tumors were discovered, they were often smaller than the metastasis found in the lymph
nodes. On the basis of these and related findings, it is evident that at least indolent or occult
tumors occur much more frequently than is commonly recognized but are restrained from
progressing into overt cancer by processes as yet not understood. Once the mechanisms of
this protective process are elucidated, it will be possible to design therapies to either prolong
protection from tumor progression and/or provide brakes when protection fails. The
examples cited above provide clinical evidence that once a tumor, not always a cancer (for a
more informative discussion, please see ref. 14).

Master and commander: benevolence of context
Each of the 10 trillion cells in the body has the same DNA sequence; thus, the genetic
information should be essentially the same from cell to cell within a single individual if
other factors do not intervene to cause shuffling of the information. As single cells multiply
and tissues are formed, there is splendid reciprocity: cells communicate with each other and
with the extracellular matrix (ECM) dynamically via junctions and receptors, hormones and
other soluble factors. It is this mutual interchange of information between cells and their
surroundings that permits the functional organization of the cells into tissues and guides
organogenesis during development15. The process is indispensable and absolutely required
for multicellular life. As such, it is not surprising that the components mediating the
communication between the cell and its surroundings have an ancient evolutionary history.
For example, the integrins, an important family of ECM receptors, have sequence elements
that predate the emergence of metazoans, and large portions of integrin sequences can be
found also in prokaryotes16,17. In fact, the large changes in the organization of cells and
tissues during the evolution of multicellular organisms have occurred concurrently with
changes in the diversity of the integrin subunits17 and surely also with the changes in
composition of the ECM surrounding the tissues and organs. Communication between cells
and their microenvironment occurs through a complex network of signals generated by cell-
ECM and cell-cell adhesion and junctional molecules, as well as by collaboration between
the epithelial, stromal and other organ-specific cell types. These ECM-molecules, together
with the enzymes that remodel them, organize and sculpt tissues but also directly signal to
the cells. The cells respond to both soluble and insoluble factors and in turn change their
microenvironment in a fugue-like reciprocity, the end result of which is a magnificent and
still somewhat mysterious integrated system that guides and allows maintenance of the
differentiated state. If the microenvironment were not dominant, each cell would have its
own way and the result would be either a uniform lump of similar fate or absolute chaos.

Early examples of the dominance of the microenvironment on the processes that unleash
cancer were gleaned from the study of the functional consequences of exposure to
carcinogenic chemicals. More than 200 years ago, Percivall Pott18 recognized the
association between soot and skin cancer, and ever since the effects of coal tar in the
tumorigenic process have been studied in one form or another. What has been learned from
this body of work is that the chemicals within the coal tar—for example, benzo(a)pyrene
derivatives—despite being known mutagens are not by themselves efficient carcinogens for
the skin. The skin microenvironment was shown in the 1940s to suppress the initiated
damages caused by chemical carcinogens, in effect acting as a ‘mutation/tumor
suppressor’19,20. Thus, overcoming the protective roles of the physiological
microenvironment requires ‘promotion’ by other toxic agents.

These studies demonstrated that, for tumors to form, at least two different insults are needed:
an ‘initiator’, usually frank mutagens, and one or more ‘tumor promoters’, typically agents
that cause aberrant repair and fibrosis (reviewed in ref. 21). Over time, many different
chemicals and treatments have been tested for their ability to either initiate or promote
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cancer. In fact, wounding can serve as a highly effective promoting stimulus22–25 (for a
historical review of the correlation between wounding and cancer, see ref. 26). As
researchers dig more deeply into the factors that are necessary for a tumor to become a
malignant cancer, it seems that there have to be many more hits than two. Yet, for three
decades most of the elegant studies on oncogenes have argued that a single hit may be all
that is needed. Indeed, many of the studies with mutated tumor viruses or engineered mice
can be, and have been, interpreted to support the single-hit conclusion. In particular, the
seminal experiment performed by Steve Martin in the 1970s27 used a temperature-sensitive
mutant of the transforming protein of Rous sarcoma virus (RSV), pp60 Src, to show that
chick embryo fibroblasts were morphologically ‘transformed’ at 37 °C (active Src) but not at
41 °C (inactive Src), elegantly supporting the contention that under these conditions
activation of a single transforming protein was sufficient to lead to transformation.
Nevertheless, when the cells at the nonpermissive temperature (inactive Src) were exposed
to a tumor-promoting agent (12-O-tetradecanoylphorbol 13-acetate, TPA), they showed an
exaggerated ‘transformed’ phenotype compared to normal chick embryo fibroblasts treated
with TPA28, raising the possibility that other factors could also contribute to the promotion
of oncogenesis. In fact, reports by Francisco Duran-Reynals in the 1930s and 1940s29 had
raised the possibility that embryonic context may inhibit RSV infection from causing
tumors. Whereas there was never any doubt that RSV injected into the wings of chickens
produced large and malignant tumors that killed the birds30, papers on inoculation of RSV
into embryos had been dismissed as artifacts of either eggs that contain other pathogens or
poor virus preparations. In the backdrop of compelling data such as those discussed above27,
the results of these older experiments in embryos29 were deemed an artifact. Nevertheless,
when David Dolberg and Mina Bissell repeated the experiment by injecting RSV into the
wings of early chick embryos that were specific pathogen free, the embryos developed
normally despite the presence of the active oncogene31. However, when these same
embryonic wings were removed from the embryo and dissociated, they quickly (overnight)
showed the transformed phenotype in a culture dish31,32. These experiments showed clearly
that the embryonic microenvironment could indeed override the ability of even potent
oncogenes to cause malignant transformation. However, this inhibition was not absolute: as
the embryos got closer to hatching and the microenvironment of the transduced oncogene
changed, blood vessels and other tissues showed signs of aberration and disintegration32.
Two corollary questions can be raised from these studies. First, how does the early embryo
protect against the overt and active oncogene? Second, why would, even in the chicken, the
RSV tumor induced by wing injection grow to kill the host with usually no additional
tumors elsewhere—despite the abundance of circulating virus in the blood? Answers to
these questions seem to be related to the role of the inflammatory response in oncogenic
transformation even in the case of the RSV-induced tumors in the chicken25. In subsequent
experiments it was shown that some form of injury or wounding was necessary to promote
tumor formation, even in the adult chickens. We identified the active molecule in wounding
responsible for ‘promotion’ of RSV infection to full-blown tumors to be transforming
growth factor-β (TGF-β)33, a surprising finding at the time, as this molecule has a different
role in normal tissues as a suppressor of growth. This finding showed that when there is an
initiating event such as a hit by a potent oncogenic virus, the physiological processes that
help regulate homeostasis (such as wound healing and TGF-β) can become agents of
destruction. However, everything is context dependent, as demonstrated beautifully in
another study from the laboratory of Hal Moses, where in crossbreeding experiments
involving the production of mice carrying transgenes encoding mouse mammary tumor virus
(MMTV)–TGF-β1 and MMTV–TGF-α, they observed a marked suppression of mammary
tumor formation, and the resulting hybrid mice were resistant to 7,12-
dimethylbenz[a]anthracene–induced mammary tumor formation.

Bissell and Hines Page 4

Nat Med. Author manuscript; available in PMC 2013 February 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



That context indeed matters had not been lost to some of the scientists in the field in the
1970s. There were a number of noteworthy papers by Barry Pierce34,35 and Leroy
Stevens36,37, showing that the presence of normal cells can suppress the behavior of tumor
cells. In 1974, Ralph Brinster reported a potentially important finding where 1 in 60 mice,
that had been implanted with blastocysts containing teratoma cells delivered progeny with
some traits of the teratoma of origin38. However, in two provocative papers39,40, Beatrice
Mintz and Carl Illmensee reported that although teratocarcinoma cells from an agouti mouse
obtained from Stevens’s laboratory36 could form tumors in the flanks of 129/SV mice, when
these cells were instead placed in the blastocyst of a pseudopregnant nonagouti (C57BL/6)
mouse, the offspring showed many of the traits of the parental tumor cell and yet remained
perfectly normal and tumor free. Further, they reported that the second mating with another
nonagouti mouse was a complete agouti hybrid, indicating that the tumor cells were in the
germ line and that the F1 progeny were ‘completely normalized’. A more recent related
study, from the laboratories of Rudi Jaenisch and Lynda Chin41, using similar techniques
reported the transplantation of nuclei from leukemia, lymphoma and breast cancer cells into
enucleated oocytes. These progeny showed limited plasticity in their early embryonic
behavior: although all could progress to the blastocyst stage, none could produce embryonic
stem cells.

Additional evidence for the role of the stromal microenvironment in influencing, or even
instructing, the abnormal epithelia to become differentiated was provided by Gerry Cunha
and his collaborators, among others42,43. More recently, engineered animals and three-
dimensional culture models have made it possible to unequivocally show such plasticity and
tracking in the same population of cells and the mechanisms by which microenvironmental
signals, including the embryonic environment, ECM and tissue architecture, could lead to
tumor cell reversion. With the advent of a versatile three-dimensional assay from the
laboratories of Ole Petersen and Bissell, in which normal and malignant cells could be
distinguished rapidly and robustly44, a systematic study became possible when human breast
cancer cells in three-dimensional laminin-rich gels were shown to ‘revert’ to a near normal
phenotype45. That this was not selection from a heterogeneous population was shown by
dissociation of the reverted colonies (in the absence of the reverting agents), where the
malignant phenotype could be restored again and again46. Furthermore, the genome of the
reverted cells was shown by comparative genomic hybridization to be no different than the
mutated and malignant cells grown in two-dimensional cultures47,48. A series of elegant
studies from the laboratory of Mary Hendrix has also shown the plasticity of aggressive
melanoma cells under various conditions, including in a zebrafish49. Her laboratory has also
developed a three-dimensional model in which melanoma cells are cultured with human
embryonic stem cells (hESCs) and determined that exposure of tumor cells to different
hESC matrices induced a melanocyte-like phenotype with the ability to form colonies
similar to hESCs50. Similarly, Gil Smith recently showed that the mouse mammary gland
can reprogram human embryonal carcinoma cells into cells that have phenotypes of
differentiated mammary epithelial cell phenotypes51.

In summary, the microenvironment can and does constrain the malignant phenotype in the
right context, but, in the absence of evidence to the contrary, it is not necessary to insist that
the tumor cells either do not have mutations or that reverted cells have lost the mutations.
The phenotype is dominant over the genotype of even tumor cells; how else can one explain
the occult tumors and dormancy? Indeed, how else would one explain the tissue specificity
of heritable cancers, for example, BRCA1 and breast cancer, where, despite mutations in all
of more than 10 trillion cells, the tumors are not only tissue specific but also formed from
just one or a few cells of those tissues?
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The double-edged sword: microenvironment can promote and induce
cancer

We have shown above that the microenvironment can provide crucial signaling to maintain
tissue architecture, inhibit cell growth and suppress or revert the malignant phenotype. It
stands to reason then that the opposite must also be true: incorrect signals from the
microenvironment should lead to destabilization of tissue homeostasis and initiation and
promotion of normal cells to malignancy. And there is much compelling recent evidence for
this statement.

As people age, the collective complex referred to as ‘stroma’ (fibroblasts, vasculature,
immune cells and interstitial ECM) gradually changes and, over time, becomes so altered
that there is accumulated damage to the epithelia as a result of miscues, even in the absence
of any known genetic susceptibility. A correlation between fibrotic stroma and cancer is
well established in the liver52, and, in the breast, signs of aberrant stroma and epithelia may
exist long before there is overt carcinoma. In fact, increased stromal density correlates with
a higher likelihood of developing breast cancer53–55. Even in the absence of overt and
visible signals from the stroma, the epithelial cells accumulate mutations, begin to
misbehave, change shape (atypia), lose polarity and, in the breast, fill the ductal lumen to
form ductal carcinoma in situ. Despite the myriad of mutations and changes in the genome,
the majority of which are identical to those in the frank tumors56, many of these lesions
remain as ductal carcinoma in situ, and some even disappear. Compromising the integrity of
the basement membrane or the myoepithelial layer, which is now known to be responsible
for laminin 111 synthesis, allows the luminal cells to establish contacts with the stromal
ECM components, such as collagen I. In turn, this leads to signals for aberrant polarity57,
upregulation of matrix metalloproteinases (MMPs) (such as MMP-9 (ref. 58)), invasion and
metastasis. Meanwhile, these signals also recruit bone marrow–derived cells, for example,
macrophages, neutrophils, lymphocytes and mesenchymal stem cells, to the stroma
(reviewed in refs. 59,60), more associated fibroblasts become activated61–63 and tumors
generally become hypervascularized64 (Fig. 1).

In experimental animals, it has been shown that destroying the integrity of the basement
membrane with MMPs65 can lead to aberrant stroma66 and eventually mammary tumors67

through production of reactive oxygen species (ROS) in mitochondria and induction of
genomic instability68. A number of elegant studies with engineered mice have shown that
compromising the stroma by deleting the activity of one of the TGF-β receptors only within
the fibroblasts (and possibly endothelial cells) leads to epithelial tumors, but only in the
prostate and forestomach69. The amount of literature regarding the ability of the
microenvironment and stroma to cause—as well as support—tumors is growing by leaps
and bounds and will not be belabored further here; the reviews cited above lay out the
literature and argue the case convincingly. The dialogue occurring between the stroma and
the tumor at this early stage (to heal or not to heal?), however, is crucial for the fate of the
tumor as well as the patient. A better understanding of these earlier steps could have a
profound impact on the way cancer is detected, prevented and treated in the future. Such
understanding would entail a more detailed characterization and understanding of the types
and functions of stromal and immune cells within the tumor microenvironment.

Space constraints do not allow discussion of all the stromal components, but we will discuss
the most prominent of them, fibroblasts, in further detail. Fibroblasts are responsible for
production and deposition of the bulk of the ECM proteins, such as collagen I and
fibronectin. They have long been recognized as constituting part of the carcinoma and are
increasingly implicated as functional participants in tumor formation. We now know that
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fibroblasts are very heterogeneous and are also key sources of proteolytic enzymes, growth
factors and cytokines.

One of the earliest implications of the heterogeneity of fibroblasts and their possible role in
cancer promotion (and possibly induction) has come from the laboratory of Seth Schor and
Ana Schor in the 1980s. In a seminal experiment, they isolated 77 different samples of
fibroblasts from fetal, foreskin and adult normal skin and monitored their migration into
three-dimensional collagen gels. The migration of transformed fibroblast cell lines was also
measured. A cell density migration index (CDMI) was defined to express the rate of
fibroblast migration in quantitative terms70. The results showed that the CDMI values of
normal adult skin fibroblasts and transformed cell lines fell into two distinct, nonoverlapping
groups. The CDMI values of fetal cells defined a group intermediate between normal and
transformed cells, and both the bulk population and cloned fetal cells were observed to
undergo a stable transition to CDMI values characteristic of adult cells around passages 50–
55 in culture. What is most relevant here is that ostensibly normal (adult) skin fibroblasts
obtained from the majority of individuals with carcinoma of the breast, malignant
melanoma, familial polyposis coli, retinoblastoma or Wilms’ tumors, all had aberrant CDMI
values falling within the intermediate fetal range. Yet skin fibroblasts obtained from the
majority of subjects examined with genetic or chronic diseases (for example, rheumatoid
arthritis or Duchenne muscular dystrophy) showed CDMI values that fell within the normal
adult range71. A key finding was that the fetal fibroblasts made the transition from fetal to
adult behavior by ceasing to produce migration stimulatory factor, whereas the fibroblasts
from subjects with cancer did not make this shift72. More recent studies from the Schors’
laboratory have characterized migration stimulatory factor and shown it to be a truncated
form of the oncofetal isoform of fibronectin73.

Several papers published in the 1990s showed that fibroblasts can induce the tumorigenic
process. A group led by Leland Chung showed that transformed fibroblasts, when co-
injected with one of several nontumorigenic cell lines, will induce these cells to form
tumors74. Cunha, Thea Tlsty and their coworkers demonstrated that cancer-associated
fibroblasts (CAFs) from prostate tumors could stimulate tumor progression of “initiated”
prostate epithelial cells immortalized with the SV40 T antigen75. Fibroblasts treated with
radiation74,76 and senescent fibroblasts77 were also shown to have protumorigenic activity,
underscoring a relationship between aging and cancer.

Understanding the molecular mechanisms by which fibroblasts acquire an activated state
(also referred to as myofibroblasts) remains an area of intense investigation. Early
experiments demonstrated that culturing fibroblasts in a medium conditioned by cancer
cells, or exposing them to TGF-β, leads to their activation78 (for an early review of the roles
of activated fibroblasts, see ref. 79, and for the origin of myofibroblasts, see ref. 80).
Formation of myofibroblasts correlates with fibrosis and increased risk of cancer. The above
and many other studies have shown that fibroblasts are not merely spectators in the
tumorigenic process but often have a position at center stage, orchestrating and actively
participating in the transformation process63,69.

Pat Brown, Marc van de Vijver and their colleagues analyzed the response of 50 types of
cultured fibroblasts to serum treatment using expression microarrays and identified a gene
expression profile that accompanies a response referred to as the fibroblast ‘core serum
response’81 or wound-response signature82. This signature of activated fibroblasts contains
genes that have well-recognized roles in cytokine signaling, ECM remodeling, cell motility
and angiogenesis. Notably, the presence of this signature in the total tumor tissues predicts
poor outcome in people with breast, lung and gastric cancers remarkably well81,82. In situ
immunostaining of the tumor sections used in these studies revealed that a large number of
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the proteins encoded by genes identified in the signature are indeed expressed by the
embedded stromal cells80, clearly indicating that the CAFs within these tumors are
contributing to an expression profile that has a striking prognostic value. Similarly, when
stromal cells were isolated directly from breast tumors by laser-capture microdissection and
their expression patterns analyzed in a similar fashion, the resulting gene expression pattern
was also able to predict clinical outcome83.

In the last decade, much has been published on the mechanisms by which the
microenvironment can promote and even induce tumors. It is intriguing that the same
mechanisms that have been discovered to induce genomic instability, and eventual
transformation in epithelial cells using oncogenic viruses or chemicals in cultured cells, are
also induced in vivo by microenvironmental signals via the stroma or the immune cells.
Oxidative damage seems to be a governing factor induced by hypoxia-inducible factor-1α–
mediated stromal-derived factor (also known as CXCL12) signaling84,85, MMPs68 or
activated macrophages86 and provides another link between the inflammatory processes and
stromal activation. Given that the microenvironment in general, and stromal components in
particular, are now recognized as important determinants of tumor formation, a more
thorough understanding of their functional role in tumorigenesis would help translating the
knowledge to the clinic.

Tumors as organs: to heal “the wound that never heals”
So far, we have outlined the evidence for the existence of occult tumors, speculated that the
microenvironment most probably is the stabilizing influence behind their quiescent status
and provided some historical perspective and background on the now generally accepted
role of the microenvironment in the maintenance of tissue specificity and organ structure
and in progression to malignancy. We set out to convey in two words that ‘context matters’!

In a previous review, written almost a decade ago87, we argued that tumors evolve from an
organ and retain a memory of that organ; however, once they liberate themselves from the
constraints of the normal tissue microenvironment and lose the organ-specific structure as
they form bizarre masses, they evolve into ‘tumor organs’, literally new ‘evolutionary
forms’. The time course of their progression is clearly not at the evolutionary scale but is
extremely rapid, such that, at any given time, the tumor organ form and function will change
depending on the input from the host, the microenvironment of the tumor and the genetic
and epigenetic changes within the tumor cells. We referred to tumors as entities that
constantly redefine themselves by their ever-changing context87. This raises the following
conundrum: if both the tumor microenvironment and the tumors themselves are dynamic
and coevolving, can the tumor organ ever be targeted successfully? The fact that we have
not made more progress in curing glandular tumors may be a reflection of this conundrum.
However, because the field has begun to embrace the crucial role of the tumor
microenvironment in guiding tumor behavior, can it now gain enough knowledge about the
tumor organ, which is indeed a “caricature”88,89 of the actual organ from which it was
derived, so that we can increase the odds for success90? Could we indeed rephrase the
famous quotation by Dvorak on tumors—perhaps it is possible to “heal the wound that never
heals”91? We argue that we can—and must.

The involvement of tumor stroma as a regulator of tumor fate
The existence of a reactive stroma has been known for a long time. But it is now known that
the tumor need not always come first, as we discussed in the preceding sections. However,
once the tumor is formed, regardless of the mechanism, it not only modifies the stroma
drastically but also initiates an inflammatory reaction and complex immune response. The
former either already exists before the tumor is formed and, at least partially, is responsible
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for its progression, or the inflammatory cells are mobilized in response to signals emanating
from the tumor microenvironment. Either way, these cells eventually end up contributing to
the damage, partly because the immune system becomes co-opted by the tumor and other
stromal cells (much the same way that the normal regulatory tissue–specific pathways are
co-opted by the tumor organ)87,92,93. Indeed, the microenvironment can be used as a
window into the tumor’s past and future, and we have discussed above the clinical
prognostic potential of microarray expression signatures derived from fibroblasts and
microdissected tumor-derived stroma81–83. Rebecca Fitzgerald’s group has found that a gene
signature derived from microdissected stroma from tissues of various stages of esophageal
adenocarcinoma is informative in separating the stages of clinical progression94. This group
identified TGF-β and inflammatory pathways as major components of malignant
progression, which is in agreement with the long-held theory that inflammation was driving
the progression of Barrett’s metaplasia to adenocarcinoma.

In addition to the prognostic information, the predictive information of whether or not a
patient will respond to therapy can also be obtained from stromal-derived gene expression
signatures. With the hypothesis that the tumor microenvironment influences the response to
therapy—an aspect that is not accounted for in gene expression signatures derived from
cultured cells—Mauro Delorenzi’s group developed a unique analytical approach to
decouple the expression signals from mixtures of tumor and stromal cells. With this strategy,
they identified a stromal signature where increased expression of stromal genes predicted
patient response to neoadjuvant treatment with 5-fluorouracil, epirubicin and
cyclophosphamide95.

Remarkably, the activation or repression of specific genes or proteins within stromal cells
has also been correlated with clinical outcome. The most dramatic recent example of the
latter comes from studies of caveolin-1 (Cav-1), which is the principal component of
caveolar membranes and is involved in transmembrane transport and signal transduction.
Both epithelial and stromal cells express Cav-1. In 1995, Michael Lisanti’s group
recognized that Cav-1 expression becomes attenuated during malignant transformation96. To
decipher whether Cav-1 was an active participant or merely a bystander, they used xenograft
models and found that MMTV-PyMT tumor cells behaved differently in Cav-1–knockout
than in wild-type mice. Growth of the tumors was significantly enhanced in the former97. In
two recent independent studies, both the Lisanti group and Robin Anderson’s group, using
tissue microarrays of breast tumors from humans, have shown that the expression of Cav-1
is an independent predictor of increased patient survival, but only when present in the
stroma98,99. Contrary to what was believed initially, there was no correlation between
clinical parameters and Cav-1 expression in the epithelium in both of these studies.

Similar conclusions have been made for the aberrant expression within the stroma of
platelet-derived growth factor-β receptor (PDGF-βR)100 and lysyl oxidase–like-2
(LOXL2)101. In the case of PDGF-βR, increased expression occurred in both fibroblasts and
endothelial cells of colon and prostate tumors, and this was found to correlate with negative
prognostic markers as well as with decreased survival100. Within lung and liver specimens,
LOXL2, an enzyme responsible for cross-linking collagen and elastase, was also found to be
overexpressed in the tumor stroma101. Inhibition of LOXL2 with an inhibitory monoclonal
antibody in a xenograft tumor model reduced breast tumor growth and the amount of cross-
linked collagen, fibrosis, and cytokine and TGF-β signaling.

Drug discovery
Historically, drug development for cancer therapy has relied heavily on high-throughput
screens, using proliferation on plastic culture dishes as an endpoint, for the identification of
‘lead compounds’ (for discussion, see ref. 102). These methods have provided an
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overwhelming number of possible targets. Despite the marked efficacy of these compounds
in two-dimensional culture assays and even animal models, most have been ineffective at
best, and at times even harmful, or they have added only months, instead of years, to the
lives of patients with metastatic cancer. Even those drugs that seem to work more effectively
increase the life expectancy of patients by two to three years. This is a marked improvement,
but, judged against the spectrum of available therapies and the funding spent on
development and the incorporation of new agents into clinical practice over the past decade,
one would have hoped for more103. An unfortunate reality is that, in most cases, the clinical
approach for patients with metastatic cancer is palliative instead of curative, an aspect of
cancer treatment that the community must work to change.

Given knowledge of the interactions among the different pathways within the tumor organs,
as well as the various cell types comprising the tumor and its microenvironment, a goal
should be to incorporate this knowledge into organ-specific and physiological human culture
models (both nonmalignant and malignant) together with better animal models of human
cancers for drug testing. The tumor organ, just like normal organs, has a three-dimensional
architecture, and integration of signals and signaling pathways are very different between
two dimensions and three dimensions, even for tumor cells (for example, see ref. 104).
Tumors are composed of multiple cell types capable of supporting the malignant cells
through the complex network of interactions discussed above59,63,64,105,106. These types of
interactions are simply not recapitulated in two-dimensional cultures, and there is an
increasing body of literature suggesting that response to therapeutic agents is also quite
different for cells cultured in two dimensions versus three dimensions107–109. Studies of this
type have suggested the cellular response to drugs used in the clinic is, not surprisingly,
context dependent108,110,111. It is known also that a cell’s sensitivity to radiation is modified
when the cells are in three-dimensional cultures, findings that can be recapitulated in mice,
although not yet in orthotopic models112,113. Furthermore, several recent studies in animal
models have shown that concurrent administration of drugs that modify the
microenvironment can facilitate an adjuvant response with other chemotherapeutics.
Examples include the administration of the experimental hedgehog inhibitor IPI-926, which
depletes tumor-associated stromal tissue in a mouse model of pancreatic ductal
adenocarcinoma114, or the intravenous administration of a pegylated variant of
hyaluronidase (PEGPH20) into a prostate xenograft model115, a therapy that is now in phase
1 clinical trials. From these and related studies, it has become clear that targeting the cells
and components of the microenvironment is likely to provide profound clinical benefits.
Furthermore, the scientific community should support the development of more robust and
physiologically relevant assays and possibly animal models that are closer to humans
evolutionarily for testing drugs. The three-dimensional studies in the last two decades have
shown that cells simply behave differently when they assume structures that are closer to
organs in vivo. This can be the result of a number of factors, such as the physical change in
the cell structure (cells in the body do not stretch out as they do on plastic dishes), sensation
of tensile forces116 or integration of the signals derived from interaction among the
numerous components in the ECM, for example, laminin and collagen117,118. Researchers
need to develop more models that permit reciprocal interchange not only between the cell
and the ECM but with other cell types as well. This is now achieved by culturing epithelial
cells with only one other cell type, most frequently fibroblasts119. However, it is also being
extended to include a variety of cell types that would model the tissue microenvironment
much more closely than the three-dimensional models used currently (for examples see refs.
57,120), although much more remains to be designed.
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What we have not discussed
This review has not covered some of the most recent and exciting aspects of
microenvironmental control. We have not touched on the rapidly evolving fields of the bone
marrow–derived stem cells and the premetastatic niche121 or the role of exosomes122, and
we have barely discussed the extensive new work in the role of force and tension116, among
other topics. These are all highly relevant to the topic of this review and each deserves to be
the subject of additional reviews.

Recent trials with relevance to microenvironmental therapies
We have summarized in Table 1 our knowledge of therapies and clinical trials that touch on
the role of the microenvironment in various types of cancers. Some of these therapies have
already been approved by the US Food and Drug Administration (FDA) for the treatment of
several cancers; for example, the angiogenesis inhibitor bevacizumab (Avastin). Others have
been approved for conditions once seemingly unrelated to cancer but are now being tested in
the oncology arena. For instance, the anti-inflammatory agent onsenal (Celebra) was
originally approved by the FDA in 1998 for the treatment of osteoarthritis, but it is now
indicated also in the treatment of familial adenomatous polyposis and is in phase 2 clinical
trials for both prostate and pancreatic cancer for its reputed ability to suppress blood vessel
growth. Finally, there are other drugs, the majority of which are the multikinase inhibitors,
which inhibit tumor cell growth pathways (for example, BRAF, Bcr-Abl and c-Kit) and also
signaling from the microenvironment (for example, vascular endothelial growth factor
receptor-1 (VEGFR-1), VEGFR-2, VEGFR-3, PDGFR and colony-stimulating factor-1
receptor). Over time, and with more complex culture models, scientists may be able to better
discriminate amongst the effects of these pathways and treatments on the tumor cell, the
microenvironment or both to determine the relative contribution of each to any given clinical
response. Because neither of us is a physician or involved in clinical trials, we have
assembled this information without prejudice, but also without intimate knowledge of pros
and cons of these treatments. We have assembled Table 1 and Supplementary Table 1 from
primary and review articles, websites maintained by the US National Institutes of Health
(http://pubchem.ncbi.nlm.nih.gov/), the FDA (http://www.accessdata.fda.gov/scripts/cder/
drugsatfda/index.cfm) and the websites maintained by the individual drug manufacturers.
We apologize to the many scientists who have worked tirelessly to develop useful drugs if
we have not succeeded in listing all relevant drugs. In the context of cancer therapy,
targeting the microenvironment is still a relatively young field. Yet, as the extent of these
tables indicates, examples abound.

It is our sincere hope that the scientific and clinical community put the interests of people
with cancer above all other considerations and make a massive effort to discover effective
combinatorial approaches that target both the tumor and its microenvironment—of course
with the expectation that the side effects would not exceed, or would be even less than, those
for single compound therapy. We believe the time has come to start treating cancer as a
disease of organs. We also contend that it is time to start exposing young scientists to the
wonders of the microenvironment in basic biology and medical texts. Everyone appreciates
that DNA is central to all things, but, as we have argued before, “the sequence of our genes
are like the keys on the piano; it is the context that makes the music”123. Cancer biologists
realized the importance of context more than 100 years ago124, probably as a result of the
unavailability of sophisticated tools to probe cancer cells at the genetic level. Now that
researchers know so much about genes and have also rediscovered the importance of the
microenvironment, they need to make sure the twain remain acquainted!
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Figure 1.
The normal tissue microenvironment acts as a barrier to tumorigenesis. Under conditions of
normal tissue homeostasis, the microenvironment exerts suppressive forces to keep occult
tumors in check (bottom left in graph). But the microenvironment can also be permissive to
tumor growth, and the combination of mutagens, inflammation, growth factors and other
tissue-associated promotional forces can breach the barrier to tumor formation, resulting in
full-blown cancer (top right).
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Table 1

Treating the tumor microenvironment: selected examples

Common name (trade name) Company Drug information

Endostatin (Endostar) Simcere Endostatin is a 20-kDa peptide fragment derived from the extracellular
matrix protein collagen XVII125. Endostatin has a potent effect on
endothelial cell proliferation and angiogenesis. It is currently used
therapeutically (and in clinical studies) only in China under the trade
name Endostar.

Bevacizumab (Avastin) Genentech In 2004, Avastin became the first FDA-approved angiogenesis inhibitor.
It is a humanized monoclonal antibody with specific affinity for VEGF-A,
thus inhibiting the signaling between the tumor and endothelial cells in
the microenvironment126.

Sorafenib, BAY 43-9006
(Nexavar)

Bayer Approved by the FDA in 2005, sorafenib is a small-molecule kinase
inhibitor that inhibits many intracellular and extracellular kinases. Most
affected are Raf kinase, VEGFR and PDGFR, thus resulting in multiple
effects, such as reduced tumor growth and angiogenesis127.

MK-2461 Merck MK-2461 is a small-molecule inhibitor of c-MET kinase, the receptor of
the stromal-derived hepatocyte growth factor. c-MET activation has
proliferative and antiapoptotic effects in the tumor cells but also
stimulates endothelial cell–dependent angiogenesis128.

Zoledronate (Zometa) Novartis Zoledronate belongs to the bisphosphonate class of drugs. It is a small-
molecule pyrophosphate analog that binds hydroxyapatite crystals and
inhibits bone resorption by osteoclasts. It also inhibits the differentiation
of myeloid cells, thus tumor-associated macrophages are also
affected129,130.

Denosumab (Xgeva) Amgen Approved by the FDA in June of 2010, denosumab is a human antibody
that binds human receptor activator of nuclear factor-κB ligand
(RANKL). RANKL regulates osteoclastogenesis and is involved in
pathways regulating osteoclastogenesis, tumor cell metastasis to bone and
endothelial cell proliferation and apoptosis131,132.

Anastrazole (Armidex) Novartis Anastrazole is a third-generation inhibitor of aromatase, a cytochrome
p450 complex present in the stromal fibroblasts. Aromatase catalyzes the
conversion of androgens to estrogens, and the inhibitors are approved for
the treatment of breast cancer in postmenopausal women.

AMD070 Genzyme Currently in clinical trials, AMD070 belongs to a class of drugs that
inhibit CXCR4. CXCR4 is specific for stromal-derived factor-1 ligand,
which is predominantly expressed by fibroblasts and pericytes133.

DX2400 Dyax In development, DX2400 is a new generation of MMP inhibitor, a human
monoclonal antibody specific for MMP-14. Previous broad-spectrum
MMP inhibitors were generally plagued by a lack of efficacy, and the
majority of drug makers have since invested in other targets. However,
since the end of the previous trials, much has been learned about MMPs,
notably the need for drug specificity, as some MMPs are regarded as
being protective, and others not. Thus, these newer inhibitors are being
designed with specificity in mind134.

MK0822 Merck MK0822 is an inhibitor of cathepsin K, a secreted protease involved in
bone resorption. Similar to bisphosphonates, inhibitors of cathepsin K
proteases may protect against bone loss induced by metastatic tumor
cells135. Cathepsin inhibitors may be useful in other contexts, as well. In a
preclinical animal model of pancreatic cancer, administration of a
pancathepsin inhibitor, JPM-OEt, with cyclophosphamide led to a marked
reduction in tumor burden136.

IPI-926 Infinity Pharmaceuticals IPI-926 is a small-molecule inhibitor of the hedgehog pathway and is
currently in phase 2 clinical trials. In a preclinical mouse model,
inhibition of hedgehog signaling led to depletion of tumor-associated
stromal tissue and enhanced delivery of gemcitibine.

TGF-β2 AP12009 (Trabedersen) Antisense Pharma Trabedersen is an antisense oligodeoxynucleotide with specificity for
TGF-β2. It is currently in phase 1, 2 and 3 clinical trials and is being
developed for the treatment of tumors that frequently express high levels
of TGF-β2 (pancreatic carcinoma, melanoma and gliomas). Reductions in
TGF-β2 in the tumor are likely to be profound, affecting both tumor and
stromal cells (tumor cell growth, angiogenesis and immune response).
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Common name (trade name) Company Drug information

Celecoxib (Celebra) Pfizer Celecoxib is a specific inhibitor of cyclooxygenase-2 (COX-2). COX-2 is
present in both tumor and associated stromal cells, and inhibitors of
COX-2 can influence apoptosis, cell migration, proliferation and
angiogenesis. Other anti-inflammatory drugs are also being tested
clinically for their ability to alter the protumorigenic microenvironment in
chronic inflammation137.

AVE1642 ImmunoGen/ Sanofi-Aventis AVE1642, a humanized monoclonal antibody, is a specific antagonist of
the insulin-like growth factor-1 receptor (IGF-1R). IGF-1 derived from
bone marrow stroma promotes survival and growth of multiple myeloma
cells. IGF-1R signaling also contributes to angiogenesis via its influence
on hypoxia-inducible factor-1α and VEGF expression138.

BGJ398 Novartis Currently in clinical trials, BGJ398 is a small-molecule inhibitor of
fibroblast growth factor receptors (FGFRs). The ligands of these
receptors, FGFs, are expressed by the activated fibroblasts of tumor
stroma and have a protumorigenic effect.

Bortezomib, PS-341 (Velcade) Millenium Pharmaceuticals Bortezomib is an inhibitor of the 26S proteasome complex and is
indicated for the treatment of relapsed multiple myeloma and mantle cell
lymphoma. In addition to directly inhibiting the tumor cells, bortezomib
interferes with multiple myeloma tumor and bone marrow stromal cell
interactions, inhibiting cytokine signaling and angiogenesis139,140.

PG545 Progen Currently being tested in a phase 1 clinical trial, PG545 is a heparan
sulfate mimetic, designed to inhibit heparanase activity. Heparanase
inhibitors prevent ECM remodeling and release of sequestered growth
factors tethered to the heparan sulfate proteoglycans located near the
surface of cells, thus affecting cell growth, metastasis and angiogenesis.

PEGPH20 Halozyme PEGPH20 is a covalently modified form of hyaluronidase, which
catalyzes the degradation of the extracellular matrix component
hyaluronan. In preclinical animal models, PEGPH20 led to drastic
reductions of the tumor interstitial fluid pressure, subsequently enhancing
the delivery of coadministered drugs. PEGPH20 is currently in phase 1
clinical trials115.
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