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Why environmental scientists are becoming 

Abstract 

James S. Clark Advances in computational statistics provide a general framework for the high- 
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common spatiotemporal problems. The flexible framework means that parameters, 

variables and latent variables can represent broader classes of model elements than are 

treated in traditional models. Inference and prediction depend on two types of 

stochasticity, including (1) uncertaa');~g, which describes our knowledge of fixed quantities, 

it applies to all 'unobservables' (latent variables and parameters), and it declines 

asymptotically with sample size, and (2) variabdIs'p, which applies to fluctuations that are 

not explained by deterministic processes and does not decline asymptotically with sample 

size. Examples demonstrate how different sources of stochasticity impact inference and 

prediction and how allowance for stochastic influences can guide research. 
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INTRODUCTION 

Ecologists are increasingly challenged to anticipate ecosys- 

tem change and emerging vulnerabilities (Costanza et a/. 

1997; Daily 1997; Carpenter 2002; Peterson eta/. 2003; 

Pieke & Conant 2003). Efforts to predict ecosystem states 

highlight long-standing obstacles that apply not only to 

forecasts, but also to the seemingly pedestrian practice of 

inference. There is growing awareness of how difficult it can 

be to connect predictive intervals obtained from models 

back to the data that went into their construction. 

Models of nature, including experimental ones, rou- 

tinely entail dilemmas: simplify the research problem in 

the interest of generality, or admit the complexity to 

attain some realism. The tradeoffs are well known. On 

the one hand, simple experiments may not 'scale' to 

nature - the settings where we would like to apply them 

lie outside the experimental conditions. They engage 

situation-specific and scale-dependent effects (Levin 1992; 

Carpenter 1996; Skelly 2002). Likewise, simple models 

may not accommodate the range of influences that can 

operate in different settings and at different scales. On 

the other hand, complicated experiments are rarely 

feasible (Caswell 1988). Complicated models have tradi- 

tionally been specific, containing many deterministic 

relationships and associated parameters. Specifying many 

'effects' in models leads to overfitting, in the sense that 

we can fit this data set, yet promise little predictive 

capacity for the next. Arguably few ecological predictions 

with generality claim strong empirical support. 

Stochasticity is central to the complexity dilemma, 

because it encompasses the elements that are uncertain 

and those that fluctuate due to factors that cannot be f d y  

known or quantified. Decisions concerning what will be 

treated deterministically in models, what is assumed 

stochastic, and what can be ignored are the basis far model 
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and experimental design (Pearl 2002; Clark & LaDeau 2004; 

Dawid 2004). Such decisions define the complexity of the 

problem and, thus, the dunensionahty of models. 

Complexity and scale challenges translate directly to 

predction. Despite a long research tradition on demogra- 

phy, population dynamics, and species interactions, ecolo- 

gsts frequently have little to offer when confronted with 

pending clirnate-forced range shifts, fragmentation, design 

of reserves, and where and when biodiversity loss is likely to 

have feedback effects on ecosystem services (e.g. Emlen 

et a l  2002; Ellner & Fieberg 2003). When challenged for 

answers, there is temptation to abandon all pretence of 

prediction and fall back on scenarios that are loosely linked 

to data. Scenarios can help inform decisions (Clark e t  al  

2001; Carpenter 2002). But the data and models that fill 

scientific journals might have a more drect role. The 

capacity to more directly apply ecological understanding 

should be a compelling justification for research. 

Advances in computational statistics of the last decade 

have produced new tools for inference and predction. 

Whereas m o d e h g  constraints have long caused most of the 

complexity to be ignored, new hierarchical Bayes (HB) 

structures bring flexibility. Developing sampling-based 

algorithms allow for analysis of complex models. Ecologists 

will soon become consumers of new techniques, if not 

practitioners, and insightful interpretation will rely on grasp 

of terms and basic assumptions. In this paper, I describe the 

underlying structure of HB that can be exploited for a broad 

range of ecological problems. I attempt to clarify some of 

the motivation for Bayesian approaches and some concepts 

that are often vague or contradctory, even in statistics 

literature. Because techniques have developed in parallel 

across many dsciplmes, the literature on uncertainty is vast 

and diffuse. Several recent overviews include Pearl (2002), 

Halpern (2003) and Zidek (unpublished data). Some 

discussion from an ecological perspective is contained in 

Dixon & Ellison (1996), Hilborn & Mange1 (1997), Clark 

(2003), and Ellison (2004). Even a cursory summary of the 

'uncertainty literature' is beyond the scope of this paper. 

W e  HB is clearly not the only way to address uncertainty, 

it stands out as an approach that can accommodate complex 

systems in a fully consistent framework. That is, once there 

is a model, only accepted rules of probability take us from 

data to inference to prediction. 

For context, I begtn by outlining a different perspective 

on the relationship between classical and Bayesian inference 

from the one that is pervasive in most ecological discussions 

of the subject. I then move to a simple overview of HB 

structure, demonstrating capacity to efficiently exploit and 

combine information from multiple sources, and to generate 

predictive intervals that are compatible with the process and 

unknowns in ecological models. Space does not permit a full 

review or 'how-to' treatment of HB, principally because it 

demands some sophistication with distribution theory. 

Rather, I focus on basic concepts that distinguish it from 

the classical approach and from simple Bayes (SB), and I use 

examples to highlight how those differences affect inference 

and predction. Finally, I mention that, as complexity 

increases, computational issues emerge as an important 

challenge. 

P H I L O S O P H Y  A N D  P R A G M A T I S M  

Previous reviews of Bayesian inference in the ecological 

literature have emphasized phdosophical differences be- 

tween classical approaches and SB'. A comparison of results 

obtained for a process model analysed under the frame- 

works of classical vs. SB is often provided to emphasize the 

differences. I will only say enough about these familiar 

topics to motivate why I do not dwell on them and move 

immediately to HB. 

First, I do not believe that philosophical issues are the 

principal motivation for the direction of modern statistical 

computation. The philosophical emphasis of ecological 

writings on this subject do not raise new issues, but rather 

rework long-recopzed ones avadable in many texts on 

Bayesian inference. Debates in the statistical literature were 

especially lively in the 1960s through early 199Os, but have 

been around much longer. Ecological debates on this topic 

cover the same ground, reviewing the dfferent concepts of 

probability, how these views manifest themselves in classical 

and Bayesian inference, with attention to differences and 

points of potential controversy. Thrs emphasis can leave the 

impression that philosophy determines approach. Those 

leaning towards a subjective probability view go Bayesian; a 

frequency view of probability steers one in a classical 

drrection. 

This importance of philosophy seems to be reinforced 

by examples aimed at demonstrating, comparing, and/or 

contrasting classical vs. SB. Such examples show that, with 

similar underlying assumptions (e.g. vague priors), classical 

methods and SB yield near identical confidence envelopes - 
with a lot more work, one can expect to obtain a Bayesian 

credible interval (CI) that is not importantly different from 

a classical confidence interval. (I use this term 'confidence 

envelope' when I do not care to distinguish between a 

classical 'confidence interval' and a Bayesian CI). If one 

gets essentially the same answer, philosophy must be the 

motivation. Despite the counsel to start from one's view of 

probability, ecologists having no philosophical axe to grind 

might question the point; if Bayes requires more work to 

arrive at the same interpretation, why bother with Bayes? 

'BY 'simple Bayes', I mean a minimal model of likelhood and prior. An 

example will follow in the next section. 

02005 Blackwell Publishing Ltd/CNRS 
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Of course, there is more to discuss, classical hypothesis 

testing and the role of priors being central. And the 

importance of philosophy should not be understated. The 

tension between the need for objectivity in science and 

the inevitable subjectivity of statistics (Berger & Berry 1988) 

poses a serious challenge for philosophers and statisticians. 

The philosophical issues can be deeply metaphysical and 

bear on the very nature of probability (Dawid 2004 provides 

a recent perspective). The points I emphasize here are (1) 

that these issues are not new, (2) that they will be alive and 

well long after HB pervades a staggering breadth of 

scientific disciplines, and (3) that philosophy has little to 

do with the transformation in statistical computation that 

has emerged over the last decade. No philosophical war has 

been won to support an emerging consensus. Subjective or 

'personal' probability does not now occupy the high ground 

once held by a frequency interpretation of probablhty. 

Rather, there is a growing appreciation of the compatibilities 

between frequentist and subjective probability views 

(reviewed in Clark 2004). Those already possessing a healthy 

scepticism of classical hypothesis tests can continue to 

estimate classical confidence intervals without offending 

many Bayesians. 

The focus of this paper stems from an alternative view 

that the emergence of modern Bayes has little to do with 

philosophy, but comes rather from pragmatism. I have 

previously discussed how, from a pragmatic standpoint, one 

could find more to contrast between HB vs. both SB and 

frequentist views (Clark 2003). In that example, I demon- 

strated why frequentist and Bayesian assumptions about 

parameters are more similar than is apparent from many 

ecological writings on the subject. Although Bayesians speak 

of parameters as 'random', and frequentists do not, SB 

shares with classical approaches the assumption that there is 

an underlying 'true' parameter value that is incrementally 

approached with increasing sample size, in the same way 

and at the same rate as obtained with a frequentists 

confidence interval. HB relaxes this assumption in the sense 

that a 'parameter' can vary. I say more about this in the next 

section. 

A growing number of practitioners are willing to let the 

choice between frequentist and Bayes rest on complexity. 

Simple problems are most readily analysed with standard 

software options. Although Bayesians will not pay much 

attention to the P-values, they may not advocate unneces- 

sarily complicating the model when something off the shelf 

will do. While preferring the concept of a prior-likelihood- 

posterior update cycle in many applications, I find instances 

where a frequency interpretation of probability is sensible. 

The power of HB comes from a capacity to accommodate 

complexity. Clark et al. (2003) used a specific example to 

demonstrate how HB allows for errors in variables, random 

effects, hidden variables, and multiple data sets at dfferent 

scales. Yet, for a highly simplified version of the model, SB 

yielded results that d d  not importantly &ffer from a 

classical implementation. 

In the present paper I discuss the general framework of 

HB that makes it powerful. Rather than focus on specific 

examples, I emphasize the general framework and then 

dscuss several examples within the context of this 

framework. 

FROM SIMPLE TO H B  MODELS 

Hierarchical Bayes transformed computational statistics in 

the 1990s providing a framework that can accommodate 

nearly all high-dimensional problems (Gelfand & Smith 

1990; Carltn & Louis 2000). The structure is so flexible that 

it not only opens doors to complex problems informed by 

messy data. The intuitive approach facilitates a deeper 

understanding of the processes and the importance of 

treating unknown elements in appropriate ways. In 151s 

section I provide a brief overview of the framework with 

two examples. 

A decomposition for complexity 

Consider a model that involves equations with parameters 8. 
A traditional analysis involves embedding a deterministic 

process model within a stochastic shell (e.g. a 'sampling 

distribution') to allow for the scatter in data that the process 

model cannot account for. Together this deterministic 

process and its stochastic shell comprise the likelihood 

function. We yrite the probability for a data set y as ply 1 @, 
the probabhty of obtaining datay under the assumption that 

they are generated by a model containing parameters 8. The 

likelihood function is central to most methods of inference. 

However, by itself, it cannot accommodate complex 

relationships. 

Hierarchical Bayes accommodates complexity by allowing 

us to dissect the problem into levels. The likelihood still 

plays a prominent role, providing a first level, 

p(j I 8)  r p(data 1 process,pararneters). The likelihood can 

be our 'data model', which is conditioned on a process 

model and on parameters. We can write models for them, 

p@rocess I process,parameters) and p(all parameters). The 

full model is a joint distribution of unknowns, which 

includes parameters (and latent variables), 

 parameters lmode1,data) ocp(datalprocess,data parameters) 

x p(process 1 process parameters) 

x p(aU parameters) 

This decomposition comes from Berliner (1996), and has 

been adopted in a number of recent applications (Wikle et al. 

2001; Clark et  al. 2003, 2004; Clark 2003; Wikle 2003a). 

02005 Blackwell Publishing Ltd/CNRS 
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a) Standard b) Individual c )  Enor d) Integrating 

model effects in variables data sources 
,-------------_--__------------------------------------------------------------------------------------------------------- 

r------------------- 1 1 -------, i,--------,--,:, , , - -  1; - -  b ,  
! Parameters: 

Estimation error 

Variability Estimation error Estimation error 

: Hyperparameters: 

Estimation error 
I__________________-------------------------------------------------------------------------------------------------------~ 

Figure 1 Four examples of how the Bayesian framework admits complexity (see text). Models can be viewed as networks of components, 
some of which are known and many unknown. The stages shown here, Data, Process, Parameters, and Hyperparameters, represent an 
overarching structure that admits complex networks. A model might include structure in space, time, or among individuals or groups (b), 
hidden processes (c,d), and multiple sources of information that bear on the same process (d). Acknowledging variability in a 'parameter' O1 
(b) is accomplished by conditioning on additional parameters (03). Now O1 occupies a middle stage and is truly variable, not just uncertain; O3 
is asymptotic. Acknowledging variability in a predictor variable x (c) is accomplished in the same fashion. 

It represents but one of many ways in which we might care 

to structure a model under HB. We now have several levels 

- if the likelihood represents a single stage in the tradtional 

framework (Fig. la), HB might have elements organized 

over various levels (Fig. lb-d). We can think of a network, 

suggesting application of graphical methods. Consider some 

of the ways in which the network can develop, begvlning 

with SB, followed by straightforward extension to complex 

problems. 

Simple Bayes 

Beginning with SB, a model with two parameters (81, 82) 

looks like this 

p(O1, 021x,y) GC p(ylOl, B2, x )  {likelihood (data model) 

x p(Ol)p(e2) {prior (parameter model) 

where p( ) represents a distribution or density. On the left- 

hand side is the posterior, with a vertical bar that separates 

unknowns or 'unobservables' to the left and 'knowns' to the 

right. This is the posterior distribution of unknowns. 

Unknowns are assigned distributions - unknowns are stoch- 

astic. On  the right-hand side, there is no distribution for x, 

because this predictor variable is assumed to be known (the 

standard assumption). The response variable y is treated as 

known on the left-hand side, because it is already observed. 

On the right it is stochastic. There are distributions for the 

parameters. The priors allow for uncertainty; they are stoch- 

astic only in the subjective probability sense (see below). 

Parameters O1 and O2 need not be independent a priori. 

For example, a priori assumptions about the joint density 

p(e1,e2) can increase efficiency or allow for known 

dependencies. However, we may assume independence, in 

which case the data will determine their posterior relation- 

ship. If we have no external insight, we can make them 

rather flat. Such 'non-informative' priors are used to allow 

that data dominate the answer, rather than a combination of 

data and external information. Priors can admit information 

that does not enter through the likelihood. Asymptotics 

apply at the lowest stage - as sample size increases, 

uncertainty about the true values of el and O2 declmes to 

zero. Hereafter, when I speak of 'asyrnptotics' I mean it in 

this sample-size sense: the larger the sample size, the 

narrower the confidence envelope. 

The foregoing is the SB framework, and the credible 

interval that results may not substantially differ from a 

traditional confidence interval. For example, if priors are 

relatively flat, we would obtain parameter estimates close to 

those coming from a classical analysis. There can be 

important exceptions to this, but they apply primarily to 

complex models. 

Considerable confusion remains over the interpretation 

of parameters in the Bayesian context. The distinction 

between classical and SB usually emphasized is the 'random' 

nature of a Bayesian parameter. As I discussed in the 

context of demographc change, the estimate is random, not 

the parameter itself (Clark 2003). The posterior density 

02005 Blackwell Publishing Ltd/CNRS 
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describes uncertaing, not variabilig or jZuctuation in the sense 

that ecologsts use these terms. This is stochasticity in the 

subjective probability sense. The stochastic treatment of the 

estimate allows 'learning' as, say, data accumulate. Yet SB 

shares with the frequentist approach the assumption that the 

parameter itself is a fixed constant. This shared assumption 

that the true 'parameter' (as opposed to the estimate of it) is 

f i ed  makes classical and SB more compatible than is 

commonly believed. For simple problems (including non- 

informative priors), we can expect them to provide us with 

essentially the same confidence envelopes - they are subject 

to the same asymptotic relationships with sample size n. 

Then why bother with Bayes? 

At this stage, we might make a philosophical case for a 

classical or Bayesian approach. Or we could argue pragmat- 

ically that available software makes a classical treatment 

more expedient. If a confidence envelope is the goal, we 

could claim that Bayes provides no practical advantage for 

such simple problems. The limitations of classical approa- 

ches become formidable as we move beyond simple 

problems, because they place the full burden on the 

likelihood. SB is likewise limited. We have added priors, 

which allow us to learn about parameters, but we are 

stuffing everything else into the likelihood. 

The advantage of HB comes as complexity increases. By 

relying on straightforward probability rules for obtaining the 

posterior, Bayes has flexibility: we can construct models 

from simple interactions, factor complex relationships into 

simple pieces, and reorganize them to facilitate computa- 

tion. The term 'HB' refers to the fact that models can be 

constructed and solved in terms of stages. 

Hierarchical Bayes models 

Consider now the case of multiple sources of stochastic- 

ity, i.e. more unknowns. Suppose that our 'parameter' el 
is a demographic rate that might vary among individuals 

(Clark et al. 2003; Clark 2003) or locations (Wikle 2003a) 

due to processes that cannot be measured. We cannot 

ignore this variability, because the resulting confidence or 

confidence envelope will be inaccurate. Without changing 

basic model structure, we simply add a level to the 

foregoing model, 

p(el, e2, &~x,Y) O( P C Y I ~ I ,  e2, x)  likelihood 

x p(81 le3)p(e2) prior 

x ~ ( 0 3 )  hyperprior 

(Fig. Ib). Because the parameter el occupies a middle stage, 

it is no longer subject to the 'asymptotic collapse' with 

sample size. It is more like a variable, in the sense that our 

CI describes variability in the population. Like a parameter, 

it also possesses uncertainty. The parameters O2 and O3 are 

not condtioned on lower stages and, thus, are subject to 

'asymptotic collapse'. 

Alternatively, suppose that we cannot observe x (it is a 

latent variable) or it is sampled with error. This stochasticity 

in x entails an additional parameter 03, 

p(el,e2,e3, xb)  0~ pblel, e 2 7 ~ )  likelihood 

x P(xle3) process 

(Fig. Ic). Here again, there is stochasticity at several stages. 

The likelihood captures the variabdity associated with 

sampling. The process that generates the latent variable x, 

occupies a middle stage in Fig. Ic (right-hand side). We 

must estimate x (it possesses uncertainty), but it is not 

subject to asymptotic collapse (it is a variable). Moreover 

'collecting more data' means adding more things to be 

estimated (the xs). The parameters 81, 02, and O3 are subject 

to asymptotic collapse. 

No new approaches are needed to assimilate multiple data 

sources for the process x, call them data sets yl and y2. We 

could think of the same model with two likelihoods: 

x P(xIe3) process 

At first glance, this might set off an alarm. We are trained 

to assume independent samples, an assumption that allows 

us to write the likelihood for a data set as the product of 

likelihoods for each datum. Here data sets yl and y2 cannot 

possibly be independent - they derive from the same x 

(Fig. Id). How can we simply multiply them together? 

Again, conditioning is the answer. The two data sets are 

conditionaLb ina$bendent, each with a data model and condi- 

tioned on quantities that are also modelled. In this example, 

the frrst data model involves parameters el and 02. The 

second involves parameter 04. Parameters might describe 

observation error. If one 'data' type is model output (e.g. 

Wikle et al. 2001; Fuentes & Raftery 2003), parameters 

might involve model error and bias. The process that 

generates yl and y2 then is taken up at the process stage 

(Fig. Id). Again, we are building a network, focusing on 

local connections among elements. 

In summary, the hierarchical structure allows for sto- 

chasticity at multiple levels. By working with low-dimen- 

sional pieces of the problem, we are always 'conditioning'. 

Rather than ask 'How does the whole process work?', we 

ask 'How does this component work, conditioned on those 

elements that directly affect it?' Complex relationships in 

space, time, and among individuals or groups emerge when 

we marginalize across the components, a mindless operation 

Q2005 Blackwell Publishing Ltd/CNRS 
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suited for computers (but requiring some algorithmic 

sophistication). 

Analysis is accomplished by a sampling-based approach, a 

key innovation being application of Gibbs sampling, a 

Markov chain Monte Car10 (MCMC) technique. The joint 

posterior is proportional to the product of many dstribu- 

tions. We cannot integrate such distributions directly. But we 

can factor a high-dimensional posterior to obtain a collection 

of low dunensional (typically univariate) condtional dsm-  

butions and sample alternately. For a deterministic analogy, 

suppose you receive directions to take street A, then B, then 

C. You need not memorize the full map, because each 

decision is conditionally independent of past ones. Your 

decision at C does not require that you remember A. You 

simply condition on your current location (B). 

Gibbs sampling is a stochastic version of this process. 

Conditioned on all else, you can sample from a conditional 

(simple) &smbution, obtained by factoring the joint 

posterior. Now conditioned on this value, sample the next. 

In this way, the algorithm marginalizes over the full model. 

CIS, predictive intervals, and even decision analyses (asso- 

ciating some utility or cost to particular outcomes) are 

readily assembled or derived from MCMC results. The 

advantage comes from the fact that complex problems are 

handled like simple ones. Two examples in the next section 

summarize applications for the most difficult (and most 

common) class of ecological problems, spatiotemporal ones. 

Prediction follows directly. Suppose we did like to predict 

j' at some new location or in the future. The predictive 

distribution comes from integrating over the posterior 

distribution for things that have been estimated, indicated 

here by 8, 

The first component of the integrand will usually be 

available from the likelihood. The second component is the 

joint posterior distribution taken over all 8. This integral is 

typically not available, but it can be ready assembled from 

MCMC output. We thus have a du-ect link from data to 

inference to prediction. 

Application to a 'simple' demographic process 

Efforts to understand and predict forest diversity focus on 

early life history stages, particularly tree recruitment (Rees 

e t  al. 2001). The most fundamental aspect of recruitment 

involves seed production. Ecologsts assume that fecundity 

follows an allometric relationship with tree diameter (e.g. 

Harper 1977), implemented as a regression on log variables. 

But fecundity schedules are more complex than this, and we 

cannot control variables in a way that would meet 

assumptions of classical models. For example, a simple 

allometric relationshp does not describe the nonlinearities 

associated with maturation and senescence. We do not 

expect that all trees of the same size produce the same 

number of seeds. This variation cannot be linked to 

measurable variables, suggesting random effects; the process 

model is stochastic. To accommodate autocorrelation, we 

view each tree as a time series (as opposed to treating each 

year as an independent observation). If we simply model 

average seed production, we cannot infer masting. Although 

this is already a hard problem, we could still make some 

headway with classical models (e.g. Lindsey 1999). What 

causes us to abandon a traditional approach is the most 

daunting aspect of the problem: the process is hidden. We 

cannot count the seeds on trees in a closed stand, not even 

approximately. 

We lack the data we want (seeds produced by a tree), but 

we have information we can use. There are two sources of 

'data', both indirect (i.e. neither involves counting seeds on 

trees). First are seeds that settle in seed traps. Classical 

methods are used to estimate fecundity from this type of 

data p b b e n s  e t  al. 1994; Clark e t  aL 1999). These models 

embed within a sampling distribution a deterministic model 

of seed production and dispersal to seed traps. With HB we 

can accommodate a second data type, observations of 

whether or not a tree has any seed, providing evidence of its 

'maturation status'. 

A fully spatiotemporal analysis of &us problem requires 

estimates of an individual effect for each tree and fecundity 

for each tree in each year. If we have a decade of 

observations relating to thousands of trees, we might need 

to estimate thousands of unobservables (Clark e t  al. 2004). 

Why so many estimates? Because anything unobserved must 

be estimated. The classical options do not allow for the 

complexity of the problem, and they cannot exploit the 

multiple data types. HB allows us to model seed production 

as a latent process and to admit information that comes 

from several sources (Fig. 2). Although the full model is 

complex, the principal elements are tree size, reproductive 

status, and dispersal. Most of the structure accommodates 

the unknowns. 

What do we gain from a full accounting of stochasticity? 

First, we do not require a rigid design, abstracted from the 

natural setting, to avoid violating model assumptions. 

Rather, the model is constructed to accommodate the 

uncertainty, and it is conditioned on what was actually 

observed. Second, it provides detailed insight into fecundity 

schedules. Previous approaches only identified a single 

fecundity parameter and, thus, an unrealistic fecundity 

schedule. Order of magnitude bias results when the 

dominant sources of stochasticity (interannual and individ- 

ual effects) are omitted (Fig. 3) (Clark e t  al. 2004). With HB 

we obtain a f d  accounting of size effects, variability 

among individuals and years (variance and autocorrelation), 

02005 Blackwell Publishing Ltd/CNRS 
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Figure 3 Estimates of oak fecundity using a classical maximum 

likelihood (four sites from Clark et al. 1999) and hierarchical Bayes 

(HB) compared with independent estimates from the same region, 

where crowns of conspecific individuals did not overlap (GP, 

Greenberg and Parrasol 2002). Hierarchical Bayes estimates agree 

with independent evidence (Clark et  al. 2004), whereas ML estimates 

from the traditional model are an order of magnitude too high. 

(Reproduced with permission of the Ecological Society of America). 

dispersal, and sex ratio, together with estimates of obser- 

vation errors. 

Estimates of seed production by all trees in all years 

showed that masting involved subsets of populations - not 

all individuals participate in quasiperiodic, synchronous seed 

Figure 2 The hierarchical Bayes model used 

to estimate tree fecundity schedules. There 

are three data sets (upper level). The 

'response variable' (conditional fecundity) is 

actually a latent variable and is never seen. 

Like all other unobservables in the model, 

this latent variable must be estimated - it 
possesses both uncertainty and variability. 

Inference involves a joint distribution of all 

parameters and latent variables, including 

recognition errors of tree status (lower right) 

and sarnplulg variability (upper left) (Clark 

e t  al. 2004). 

production. Year-by-tree fecundity estimates are 'latent 

variables' and possess both variability and uncertainty 

(Fig. 4). For a given tree, the year-to-year variability is large, 

and correlations among trees indicate 'levels' of masting. 

Comprehensive treatment of stochasticity provides reliable 

estimates of uncertainty - if confidence envelopes for 

asymptotic parameters are unacceptably wide, additional 

insight requires more seed traps. However, confidence 

envelopes for fecundity estimates (upper left in Fig. 4) 

cannot be substantially reduced with more data. 

The dominant stochasticity represented by interannual 

and individual effects influence how we view colonization 

capacity. Species coexistence is hypothesized to depend on 

tradeoffs among species in terms of their abilities to 

colonize vs. compete, their abilities to exploit abundant 

resources vs. survive when resources are scarce, or both 

(reviewed by Rees et al. 2001). When inference is based on 

models that treat process (interannual and individual) 

variability as though it was 'error' we miss the fluctuations 

that can affect the outcome of competition. 

Application to population spread 

A second example of migration exploits the same frame- 

work used for fecundtty. The eastern house finch population 

spread west following release on Long Island, New York in 

1940. The North American Breeding Bird Survey engages 

volunteers who attempt to identify birds by sight or sound. 

Sequential maps reveal westward expansion (Fig. 5). That 

spread is often modelled as a reaction-diffusion process, 

whereby individuals move some average mean squared 

distance D during a generation, and they reproduce at per 

capita rate r. 

Wikle's (2003a) approach allowed for complexity and 

unknowns. First, the assumption that D and r are 
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individual estimates with 95% C1 {log saki )  

Figure 4 Sources of stochasticity in the 

fecundity schedule of fin'odendron tuIip@ra. 

At left are year-by-year fecundity estimates 

for all trees plotted against diameters. The 
p 

low values are difficult to see on the linear - 
scale at lower left, but are represented at inter-annuat 

right by the population mean response 

(black with 95% CI for parameter uncer- 

tainty), random effects of individuals (green, 

showing contributions of each tree and the 

95% CI), and interannual variability (red 

95% CI). At upper left are shown the 

variability (dominated by interannual variab- 

ility) and uncertainty (dashed lines are 95% 

CI) for several individuals selected at ran- 

dom plotted on a log scale (Clark et al. 2004). 

(Reproduced with permission of the Ecolo- 0 2 0 2 0 r 1 0 ~ 8 0 1 0 0 1 2 0  0 I K ) a O 8 0 8 0 1 M ) l M  

gical Society of America). Diamtfw (an) 

Observed House Finch 1966 BBS Observed House Finch 1977 BBS 

Observed House Finch 1988 BBS Observed House Finch 1999 BBS 

Figure 5 Breeding bird survey data for the house finch. Circle radius is proportional to BBS counts. (Reproduced with permission of the 

Ecological Society of America). 
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r------------------------------------------------------------------------------------- 

: Data: Bird counts 

Obsewotien error j 

: Latent variables: Q@iotmpd,-il?y j 

! Process I Reactidiffusion model I 
of spread 

Process m r  j 
I__________________- - - - - - - - - - - - - - - - - - - -  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A  

Diffusion, growth I Parameters: 

for diffusion, growth Esfketio~~error 

Figure 6 HB structure of the diffusion model to infer spread of 

the house finch. 

everywhere the same is unrealistic. We do not expect birds 

to survive, reproduce, and disperse in New Jersey as they 

might in, say, Illinois. A parameter model added at a lower 

stage (Fig. 6) accounts for this variability. Asymptotics apply 

to the 'hyperparameters', in the sense that CIS will decline 

with sample size, while the local parameter estimates can 

vary. 
Second, the process itself is not exactly reaction- 

diffusion. Diffusion may provide a rough caricature of 

population spread, but birds are not gas molecules. 

Population movement involves many factors that are not 

included in the diffusion model and could not be identified 

from BBS data. 'Ihs 'process error' (model rnisspecification) 

is an additional stage (Fig. 6). Stochasticity steps in to 

accommodate the unknowable factors that distinguish actual 

population spread from strict reaction diffusion. 

Finally, we do not observe population spread, but rather 

a crude approximation in the form of BBS data. If we 

ignore this 'observation error', then we are, in effect, 

modelling a diffusion process on observations (e.g. Fig. 5),  

rather than on the bird populations. The distinction is 

critical, because the future population should not depend 

on whether or not there is an observer in this county, an 

observer can distinguish one species from another, and so 

forth. 

What do we gain from the broad treatment of complex- 

ity? First, it looks hard, but its easier than would be any 

traditional attempt to accomplish the same thing. The 

estimate of density at one location depends on observations 

everywhere else at all other times (forward and backward). 

But with HB, we need only specify the model for a location 

(a) Posterior Mean:" 

(b) Posterior S D ~  

Figure 7 Posterior mean and standard deviation for westward 

'diffusion' of the house finch (Wikle 2003a). Diffusion increases as 

populations expand into the Midwest, and variability increases. 

(Reproduced with permission of the Ecological Society of 

America). 

and its neighbours; construct the model in parts and let the 

computer marginalrze. 

Second, the parameter estimates and uncertainties are 

more realistic, because the model represents how most 

ecologists believe that the process operates. The popula- 

tion 'parameters' we wish to estimate are actually latent 

variables - r and D vary from place to place, just as we 

expect for a population. U&e standard errors for 

parameters subject to asymptotics, these standard devia- 

tions describe variability in population growth and diffu- 

sion. For example, Wikle found that diffusion not only 

increases as the population spreads west (Fig. 7a), it also 

becomes more variable (Fig. 7b). Estimates of mean and 

standard deviation are relatively unbiased by the large 

stochasticity associated with observations and model 

misspecification. By contrast, a classical approach would 

provide point estimates for D and rand standard errors that 

provide no insight on variability. 

02005 Blackwell Publishing Lod/CNRS 
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Model size and information in data 

In the early 1990s the number of unknowns estimated with 

HB gave pause to classically trained statisticians. Classical 

inference is limited by a relationship between model 

dimension and information in data. In the classical 

framework, model dimension and information bear simple 

relationships to number of parameters and sample size, 

respectively. The notion of estimating more parameters than 

there are data points violates ingrained conventions that are 

indeed sacred in the traditional setting. 

With HB, simple conventions do not hold. We can place 

bounds on model dimension, but a precise definition of 

model size is only possible in the context of specific 

assumptions that can be debated (e.g. Spiegelhalter et al. 

2002). Likewise, the information in data is only loosely 

connected to sample size, depending on where data types 

enter the model network, the nature of conditional 

relationships among variables (arrows in Figs 1 and 2), 

and so forth. For a complex model, it should be apparent 

that a small set of strategic observations can have impact 

that overwhelms a large set of relatively non-informative 

ones. For example, consider a simple model of exponential 

population growth with observations taken every 10 years. 

Our model of exponential growth is one of the assumptions 

that can be evaluated (e.g. through goodness of fit, model 

selection, and so on), along with the estimates of parameters 

and of population densities, which are typically sampled 

with error. If the model fits well, we have information on 

population size not only for sample years, but also for years 

in which we did not sample. Otherwise, how could we claim 

any confidence in the model? The uncertainty in those 

estimates will depend on how well the model 'fits' the data 

and on the time since or until the next sample. We might use 

the model to draw inference on population sizes at many 

more dates than those for which we have observations 

(Clark & Bjornstad 2004). 

With complex networks, it becomes impossible to 

precisely define model dimension or to anticipate how large 

n should be to achieve a confidence envelope of a particular 

width. In the fecundity example, we had two drfferent data 

types with different sample sizes from which we estimated 

seed production from far more tree-years than there were 

observations for either data set. In the house frnch example, 

the amount of information in data depends on, among other 

things, spatiotemporal correlations. Samples obtained 

within the correlation length scales contain substantial 

redundancy. 'Effective n' is much lower than the number of 

observations. 

Although model size and information cannot be simply 

defined, we can say how many unknowns we are estimating - 
each is assigned an explicit place in the network and has a 

prior and a posterior distribution. 

THE CHALLENGES I N  COMPLEX MODELS 

A N D  DATA 

For simple problems, Bayes is more drfficult than traditional 

methods, because it requires integration, and there are fewer 

software options. As problems become more complex, the 

situation is reversed. The prior-likelihood structure can be 

broadly extended, without changmg the basic approach. 

MCMC methods for computation allow us to 'model 

locally', leaving integration to the computer. Conceptually, 

models for 'difficult' space-time problems are not too 

different from simple ones. As complexity increases the 

challenges become computational. MCMC algorithms must 

'converge' to a proper posterior density. In principal we 

might construct models with a large number of levels, 

hoping for some degree of learning that comes from a 

'borrowing of strength' across groups. In practice, it may be 

drfficult to specify 'non-informative' priors for models with 

deep hierarchies and even to identify when there are 

problems (e.g. Berger etal. 2001). Although there are 

number of indrces to help gauge convergence (e.g. Gelman 

& Rubin 1992), for complex models one may never be 

completely sure. 

The fact that practitioners of HB devote substantial effort 

to computational challenges has fostered the impression 

among some ecologists that it must represent one of the 

'cons' on the Bayes side of the ledger to be weighed when 

choosing between Bayes vs. a traditional approach. The 

complexity of problems addressed by HB requires sophis- 

tication. For sure, we bump up against computational issues 

with HB, but its because we are dealing with far more 

complex problems than we would attempt with a classical 

approach. 

THE BROADER ROLE OF HB I N  THE PREDICTION 

PROCESS 

Development of new tools makes timely a reappraisal of the 

promise and limitations of ecological forecasting. Arguably 

both are underestimated. Ecological problems are high- 

dimensional. With the advent of computers, ecological 

models expanded to embrace many deterministic relation- 

ships. Some disillusion came with growing appreciation of 

the overfitting problem and inevitable ad hockery needed to 

'parameterize' the many unmeasurables. Overfitted models 

have enough dimensions to fit scatter, but lack predictive 

capacity. 

Simple models were a logical reaction to frustration with 

intractable, poorly parameterized simulation models. If 

complex models fail, measure what we can hope that the 

unmeasurables will have limited impact. The numbers of 

birds recorded by a volunteer one day a year is not the actual 

number of birds, but perhaps its close enough. The number 

02005 Blackwell Publishing Ltd/CNRS 
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of seeds on the ground bears a complex relationship to 

fecundtty, but we might overlook that. Although simple 

models can be more 'predictive' than complex ones (because 

they are not overfitted), several decades of focus on such 

models have not fostered confidence in a predictive science. 

When pressed for guidance, ecologists and managers tend to 

bypass models fitted to data and move directly to qualitative 

approaches. The recent emergence of scenarios is a healthy 

reaction to the need for thoughtful treatment of uncertainty 

and lunited information (Clark et  al. 2001; Scheffer e t  al. 

2001). It complements, but does not substitute for, 

quantitative assessments that could be informed by rapidly 

expanding data sets. 

The promise of HB includes the potential to treat high 

dimensional problems with full exploitation of information 

and accommodation of the unknowns. By contrast with 

early ecological models, much of the dimensionality comes 

from stochastic components. The distinction is important. 

Inability to measure an effect need not be an excuse for 

ignoring it. The fecundity example exploited two different 

data sets, linked them together with three processes, and 

fully exploited the spatial and temporal information they 

contained. As with the diffusion example, most ecologists 

could agree on the structure of the unknowns, and that can 

be enough. Unlike a complex deterministic model, we can 

move ahead despite being unable to measure all influences. 

Unlike a simple deterministic model that ignores these 

contributions, an appropriate structure allows inference for 

the simple process. Stochasticity stands in for the unknowns 

and unrneasurables. 

Although HB seems 'hard', apparent difficulty comes 

from the complex relationships it can address. Ecologists 

have long been consumers of a few basic alternatives 

broadly available in software packages. Limited options in 

standardized software insulate the user from technical detail. 

With the flexibility of HB comes the need for environmental 

scientists to be more actively engaged. Ecologists may gain 

facility with distributional theory and computation or 

collaborate more closely with statisticians (Wikle 2003b). 

There are some software tools (e.g. Winbugs, http:// 

www.mrc-bsu.cam.ac.uk/bugs/winbugs), and these wdl 

continue to improve. The challenges of learning basics 

of HB are weighed against benefits of its generality. In 

contrast to separate texts and courses for each model 

class, recent references on HB (Gelrnan et  al. 1995; Carlin & 

Louis 2000; Congdon 2001) find basic models, mixed 

models, and spatiotemporal models in many of the same 

chapters. The mind-boggling proliferation of test-statistics 

we have come to accept with traditional approaches is 

avoided. 

Hierarchical Bayes is gaining wide acceptance for its 

potential to accommodate high-dimensional problems and 

obscure evidence. The growing examples include genom- 

ics (Hartemink et  al. 2002), c h c a l  trials (Spiegelhalter 

et al. 2003), atmospheric sciences (Berliner e t  al. 1999), 

fisheries (Meyer & Millar 1999), population dynamics (Ver 

Hoef 1996; Calder et  al. 2003; Clark 2003; Clark et  al. 

2003, 2004; Clark & Bjornstad 2004), biodiversity 

(Gelfand et  al. 2004), the internet (Mitchell 1997), and 

finance (Jacquier et  al. 1994). Strucmal equation models, 

of recent interest to ecologists (e.g. Shpley 2000), can be 

treated more flexibly within a Bayesian kamework 

(distributional assumptions can be relaxed) than is 

possibly with classical approaches. This expansion of 

Bayes is moving ahead without convergence of views on 

philosophy (e.g. frequency vs. subjective notions of 

probability). The prior-likelihood structure opens possibil- 

ities for extension to a broad range of challenges that face 

many disciplines. 

Finally, expectations should be realistic. Informative 

predictions are not to be expected for all applications. For 

example, expanding application of Bayesian models in 

finance does not mean that investors successfdy anticipate 

stock market fluctuations. Realistic goals wdl emphasize 

what is predtctable, and they will rely on models that link 

predictions to data in appropriate ways. The comprehensive 

accounting of variability and uncertainty is central. The 

distinction will provide guidance as to what is 'predictable', 

what is inherently unpredictable, and where additional data 

can provide the most benefit (Sarewitz & Pielke 2000; Clark 

et  al. 2001). 
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