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COMMENT
Why epistasis is important for tackling complex
human disease genetics
Trudy FC Mackay1* and Jason H Moore2
Editorial summary

Epistasis has been dismissed by some as having little
role in the genetic architecture of complex human
disease. The authors argue that this view is the result
of a misconception and explain why exploring epistasis
is likely to be crucial to understanding and predicting
complex disease.
likely. Most evidence for epistatic interactions comes
What is epistasis?
The goal of human genetics is to specify the genotype-
phenotype map; that is, to understand how naturally
occurring genetic variants jointly act to modulate disease
risk. In a typical genome scan (for example, a genome-
wide association study), the effect of each variant on the
disease trait of interest is interrogated one at a time. The
effects of all variants are then summed to deduce the
total amount of genetic variation explained by DNA
polymorphisms that affect the trait. This additive model
of inheritance assumes that the effects of individual vari-
ants are independent of the effects of other contributing
loci (the genetic background). Epistasis occurs if the ef-
fect of one variant affecting a complex trait depends on
the genotype of a second variant affecting the trait. For
example, consider two loci (A, B), each with two alleles
(A1, A2, B1, B2). Epistasis would occur, for example, if the
A2A2B2B2 genotype had a high disease risk, but the
eight other possible two-locus genotypes had no effect
on risk. This is only one of many possible forms of
epistatic interactions between two loci.

Is there evidence for epistasis for quantitative
traits?
Many human diseases and disease-related phenotypes
(for example, blood pressure) are quantitative traits. That
is, their variation is due to many interacting genetic loci,
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and the effects of alleles at these loci are highly sensitive
to the environmental circumstances to which the indivi-
duals are exposed. Quantitative variation in phenotypes
and disease risk must result in part from the perturbation
of highly dynamic, interconnected and non-linear net-
works (for example, developmental, neural, transcrip-
tional, metabolic and biochemical networks) by multiple
genetic variants [1]; thus, gene-gene interactions are

from studies in model organisms. In yeast, nematodes
and flies, systematic screens for genetic interactions af-
fecting fitness and quantitative traits have revealed the
ubiquity of epistasis [2]. Arguably, though, these inter-
actions could be specific for the large phenotypic effects
of mutations and knockdown by RNA interference, not
the variants with more subtle effects that segregate in
natural populations. However, studies mapping quantita-
tive trait loci (QTLs) in model organisms have often
found QTL ×QTL interactions, even between QTLs that
have no significant effects when these are averaged over
all genetic backgrounds. The ability to transfer genomic
fragments (entire chromosomes or smaller intervals)
between two inbred strains has further revealed perva-
sive epistasis [3]. Finally, the effects of induced mutations
are highly variable in different genetic backgrounds, a
phenomenon that can be used to map genes interacting
with the focal mutation [2]. If epistatic interactions are
so common in ‘simple’ model organisms, it seems un-
reasonable to assume that they do not occur in humans.
Why has epistasis been largely ignored in human
genetics?
Historically, the genetic analysis of quantitative traits has
been purely statistical. The magnitude of variation in a
complex trait phenotype can be partitioned into three
different types of component: additive components,
non-additive components (dominance and epistatic) and
environmental variance components [4]. Most quantita-
tive genetic variation is additive, and this has been used
to dismiss the relevance of epistasis [5]. However,
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additive genetic variance can be generated not only by
variants with purely additive effects (within and between
loci), but also by dominant and recessive variants, and
by epistatically interacting variants. This distinction has
been articulated as being the difference between bio-
logical epistasis (referring to gene action) and statistical
epistasis (referring to variance components) [6]. An
important factor in understanding this distinction, as
explained in more detail below, is that epistatic variance
depends on allele frequencies, whereas epistatic gene
action does not.

Why should we consider epistatic interactions in
human genetics?
When we are interested in dissecting the genotype-
phenotype map for complex traits and common disease,
knowledge about epistatic gene action is important. To
understand why, consider the case of epistasis illustrated
above. If alleles A2 and B2 are rare, there will be very
few diseased individuals in the population and the indi-
vidual effects of locus A and locus B on disease risk will
be very small. In this case, most of the genetic variance
will be additive, and the additive effects of these loci will
have a negligible impact on the ability to predict the risk
of the disease. If there were many other loci for which a
similar situation applied, this could generate the appea-
rance of a highly polygenic genetic architecture for the
disease, with many segregating alleles with very small ef-
fects. This is indeed what has been observed for most
complex human diseases and quantitative traits. This
phenomenon has been called ‘missing heritability’, be-
cause the mapped variants have small effects and to-
gether only account for a small fraction of the total
genetic variance known to affect the traits. In this sce-
nario, additivity is an emergent property of underlying
epistatic interaction networks. Epistasis could thus par-
tially explain the missing heritability. However, knowing
the genotypic status of both loci is critical if one hap-
pens to be A2A2B2B2, and predictive ability when both
loci are accounted for would be excellent. In genomic
medicine, one does not wish to know the population
average effect of a variant at a locus, but rather the effect
of one’s particular genotype.
Epistatic gene action will also yield different genetic

architectures between populations in which the fre-
quency of the causal alleles vary. For example, consider
the same example of epistasis discussed above, but in a
population where the frequencies of the A2 and B2 al-
leles are high. Such a population would have a high
prevalence of disease, and the average effects of both the
A and B loci would be appreciable. This would manifest
as an unreplicated association in the population in which
the A2 and B2 alleles are rare, yet gene action is identical
in the two populations. Thus, the typical requirement
that genotype-phenotype associations in humans be rep-
licated across populations will not be met in the pre-
sence of epistasis when allele frequencies vary among
populations [6].

What are the challenges for identifying epistatic
interactions in human genetics?
The challenges for detecting epistasis in human popula-
tions are threefold. The first challenge is statistical.
Commonly used parametric statistical methods such as
logistic regression have reduced power to detect inter-
actions and often do not converge on accurate para-
meter estimates. This means that a parametric modeling
approach for epistasis requires much larger sample sizes
than for tests of the effects of single loci. Methods based
on frequentist statistical inference are also less than ideal
in the context of epistasis. Frequentist methods include
the use of P values, which are widely applied to assess
the statistical significance of genetic associations. These
approaches must balance the increase in type I errors
(false positives) that arise due to the astronomical num-
ber of tests that must be performed with the increase in
type II errors (false negatives), which is associated with
the decrease in power that accompanies a stringent sig-
nificant threshold. Imagine that we genotype 106 SNPs
in a population. Even examining only pairwise epistatic
interactions would yield approximately 1012 statistical
tests. An approach known as Bonferroni correction is
commonly used to account for multiple testing in
genome-wide association studies. However, applying
such a correction means that only interactions with ex-
tremely large effects could be detected. Another chal-
lenge in the analysis of epistasis is computational, and
lies in the number of central processing unit cycles that
are required to enumerate all possible combinatorial
models. In general, it is not possible to test all possible
interactions among more than three SNPs at a time in a
genome-wide scan. A final challenge is interpretation.
High-order interactions with non-additive effects can be
difficult to comprehend statistically and perhaps even
harder to tie back to biology. Designing combinatorial
experiments to validate epistasis models might be more
difficult than the analytical challenges.

Looking forward
The most important short-term goal is to develop,
evaluate and employ statistical and computational
methods that embrace, rather than ignore, the comple-
xity of the genotype to phenotype map. Parametric sta-
tistical approaches have their place in a comprehensive
modeling toolbox but their limitations should be recognized.
Novel methods such as multifactor dimensionality reduction
[7] and machine learning methods such as random forests
[8] are capable of modeling non-additive interactions.
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Combining these novel methods with stochastic
search algorithms to explore the combinatorial search
space using both high-performance computing and
expert knowledge to limit the search space will be re-
quired to explore genetic associations in an era of
plentiful genome-wide data. Other emerging technolo-
gies show great promise for modeling genetic inter-
action networks. First, artificial intelligence is poised
to have a big impact on the genetic analysis of com-
plex traits by generating interesting and unexpected
models of genotype to phenotype relationships [9].
Second, visualization can play a critical role in help-
ing the modeler explore, understand and interpret the
complexity of the data and the analytical results.
Epistasis is one of several non-mutually exclusive ex-

planations for small effects, missing heritability and
lack of replication of top trait-associated variants in
different populations in human genome-wide asso-
ciation studies. Determining epistatic gene action in the
context of human disease will improve our understanding
of the biological systems that underpin variation in disease
risk as well as increase the accuracy of individual risk
prediction.
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