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Abstract. Some have suggested that there is no fact to the matter as to whether or not a particular 

physical system realizes a particular computational description. This suggestion has been taken to 

imply that computational states are not "real", and cannot, for example, provide a foundation for the 

cognitive sciences. In particular, Putnam has argued that every ordinary open physical system realizes 

every abstract finite automaton, implying that the fact that a particular computational characterization 

applies to a physical system does not tell one anything about the nature of that system. Putnam's 

argument is scrutinized, and found inadequate because, among other things, it employs a notion of 

causation that is too weak. I argue that if one's view of computation involves embeddedness (inputs 

and outputs) and full causality, one can avoid the universal realizability results. Therefore, the fact 

that a particular system realizes a particular automaton is not a vacuous one, and is often explanatory. 

Furthermore, I claim that computation would not necessarily be an explanatorily vacuous notion even 

if it were universally realizable. 

Key words. Computation, philosophy of computation, embeddedness, foundations of cognitive 

science, formality, multiple realization. 

1. Introduction 

A specific worry about our current understanding of computation arises out of the 

observation that our formal notions of computation, such as those expressed in 

the formalisms of Turing Machines and recursive function theory, seem so 

abstract as to deem computational any physically realizable system. The worry 

focuses on the lack of utility of a concept of computation that is as universally 

applicable as physical realization. If any physical system can be characterized as 

computational, how can it be interesting that a particular system is computation- 

al? How can the fact that that system is computational be explanatory? In 

particular, how can the notion of computation be used to explain cognition, to 

distinguish thinking beings from mere inert matter? It seems we need a more 

restricted notion of computation. 

Both Putnam (Putnam 1988, pp. 95-96; 121-125) and Searle (Searle 1990; 

1992, ch. 9) have presented arguments for the claim that computational states are 

universally realizable, in the sense that we could interpret any physical system as 

instantiating any computational characterization. They both argue that this has 

dire consequences for the computational view of the brain and mind that is a 

working hypothesis in cognitive science. For example, Searle puts it this way: just 

as one can argue (via the Chinese Room argument) that semantics is not intrinsic 

to syntax, so also can one argue that syntax itself is not even intrinsic to physics 
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(Searle 1992, p. 210). But whereas Searle admits (Searle 1992, p. 209) that the 

threat of universal realizability could be avoided if our notion of computation is 

modified to include causal and counterfactual notions (implying that these are 

lacking at present), Putnam thinks that the universality, and hence vacuity, of the 

notion of computation remains, even if one requires computational state transi- 

tions to be causal. 

In the following, I analyze Putnam's argument and find it inadequate, because, 

inter alia, it employs a notion of causation that is too weak. Therefore, the fact 

that a particular system realizes a particular automaton is not a vacuous one, and 

is often explanatory. But also I claim that computation would not necessarily be 

an explanatorily vacuous notion even if it were universally realizable. Thus, 

claims such as "the brain is a computer executing program P," are not meaning- 

less or incoherent, as Putnam would have us believe. 

Before turning to Putnam, further consideration of Searle's position is required. 

Despite what I said two paragraphs before, I do not mean to suggest that Searle 

thinks all is rosy about the ontological status of computational states. He says 

(Searle 1992, p. 209) that perhaps one can't interpret any physical system to be 

any computer, but that doesn't matter, since the real problem with computation is 

that it involves a notion of interpretation in the first place. This makes 

computation observer-relative, and therefore unsuitable as a foundation for 

cognitive science. I think there are two ways in which Searle thinks that even a 

causal notion of computation is observer-relative, but I think neither should worry 

anyone who wishes to found an understanding of the mind on computation: 

(1) First, there is an objection to (even a causal notion of) computation that 

arose in personal discussions that I have had with Searle (but of course, he is not 

commi t t ed  to the views I ascribe to him here). I believe Searle would consent to 

the following: if one adopts a causal notion of computation, then every system 

will not  realize every computation, but every system will realize multiple (perhaps 

infinitely many) computations simultaneously. 

I agree with that, for pretty much the same reasons Chalmers does (see 

Chalmers, this issue). So far so good. The disagreement between Searle and me 

comes next: he thinks that this realization of a multitude of computational 

descriptions is still a problem for a computational foundation for cognitive 

science. Why? Presumably because he thinks cognitive science requires that there 

be a unique computational description for a system that is to be explained. And to 

single out a particular computational characterization in such a way is to make 

cognitive science observer-relative: one could have been just as justified in 

choosing a dif ferent computational characterization for the same system. 

But cognitive science doesn't require that there be a unique computational 

description for a system. Consider a cognitive science that uses computation in the 

following reductive sense: mental states are computational states. On this view, 

there are a host of laws of the form: anything in computational state C 

(individuated by appealing to a computational description) is thereby in mental 
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state M. (I suspect that identity is too strong to be the right relation between 

computational and mental states, but if Searle's objection fails for even this 

extreme form of computationalism, it will a fortiori for weaker positions.) 

Presumably, Searle's thought is this: since there are multiple computational 

characterizations of a system, it will follow that the antecedents of more than one 

of these laws will be satisfied, and therefore there will be some indeterminacy as 

to which of the several mental states mentioned in the consequents of the 

activated laws is the real mental state of the system. This indeterminacy can only 

be resolved by arbitrarily choosing to employ one computational description over 

the others. Thus, mental states would be unacceptably observer-relative. 

Some might not think that this result would be objectionable; but I share 

Searle's desire to avoid such observer-relativism of the mental. Fortunately, such 

indeterminacy doesn't follow from the fact that any system realizes a multitude of 

computational descriptions. It does not follow for at least two reasons: 

® Clearly, not every computational state will appear in the left hand side of one 

of these laws; as Chalmers (this issue) points out, every physical system can be 

correctly characterized as the one state finite automaton, but nothing should have 

any mental states in virtue of realizing that computational description. In fact, it 

might be that out of all the computational descriptions that a given system 

realizes, only one will appear in the antecedent of a computational/psychological 

bridging taw; or, it might be that all the computational descriptions appear on the 

left hand side of the same law. In such cases, there would be no multiple 

assignment of mental states, no indeterminacy, and thus no observer-relativity. 

® Even if more than one of the computational descriptions appears on the left 

hand side of a bridge law, and even if they appear in different laws, the multiple 

mental states so assigned might not be incompatible, either because the multiple 

mental states are hierarchically related (e.g. I 'm happy, and I 'm happy that today 

is Friday; no indeterminism there) or because the mental states just simply can be 

possessed at the same time (e.g. I 'm happy that today is Friday, and I believe that 

it's raining). 

(2) The second reason why one might think that computation is observer- 

relative, the one Searle gives in his book, is this: 

We can't, on the one hand, say that anything is a digital computer if we can assign a syntax to it, and 
then suppose that there is a factual question intrinsic to its physical operation whether or not a natural 
system such as the brain is a digital computer. (Searle 1992, pp. 209-210.) 

This brings us to issues of realism and instrumentalism in science that are too 

large to be addressed in this digression, but I have a quick reply. That an object is 

interpreted by someone as being C is a deeply observer-relative fact; that an 

object is interpretable by someone as being C need not be observer-relative, if 

enough constraints are put on the conditions of interpretation. Whether or not a 

particular phenomenon is interpretable by us in a certain way does not just 

depend on us; it also depends on the phenomenon. Many, many things can be 
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interpreted by us as being, say, a particular 25-sta-te Turing Machine. But vastly 

many  more  will not be so interpretable.  That  suggests that there is something that 

those interpretable things have in common,  something objective, even though 

that objective commonal i ty  happens to have a convenient expression in terms of 

our abilities to interpret.  

Fur thermore ,  on the broad notion of "observer-rela t ive"  that Searle 's  discus- 

sion requires, don ' t  our other scientific physical propert ies (e.g., biological ones) 

involve, at root,  some notion of interpretation? If they are observer-relative,  then 

what ' s  so wrong with being observer-relative? 

2. Putnam's Argument for the Universal Realizability of Finite Automata 

Putnam has provided a meticulous and concrete expression of the claim that 

computat ion is so abstract as to be vacuous. His " theo rem" ,  if its complex 

derivation is sound, establishes that "every  ordinary open system is a realization 

of every abstract finite au tomaton ."  In order  to establish his conclusion, Putnam 

appeals to two physical principles: 

The Principle of Continuity. The electromagnetic and gravitational fields are continuous, except 
possibly at a finite or denumerably infinite set of points. (Since we assume that the only sources of 
fields are particles and that there are singularities only at point particles, this has the status of a 
physical law.) 
The Principle of NoncyclicaI Behavior. The system S is in different maximal states at different times. 
This principle will hold true of all systems that can "see" (are not shielded from electromagnetic and 
gravitational signals from) a clock. Since there are natural clocks from which no ordinary open system 
is shielded, all such systems satisfy this principle. (N.B.: It is not assumed that this principle has the 
status of a physical law; it is simply assumed that it is in fact true of all ordinary macroscopic open 
systems.) (Putnam 1988, p. 121.) 

The  Principle of Continuity claims that the electrical and gravitational fields are 

continuous; the Principle of Noncyclical Behavior states that every system is in 

different states at different times. The first principle I will not dispute, other than 

to point out that as Putnam admits (Putnam 1988, p. 121), and as one anonymous 

reviewer points out, the Principle of  Continuity appears  to assume classical, as 

opposed  to quantum, physics. The impact of this assumption on the success of 

Pu tnam's  argument  I leave to those who can speak on such matters  with 

authority. 

The  second principle, however,  is more  problematic,  as is the way that Pu tnam 

at tempts  to employ it. Briefly, the only way Putnam can guarantee the truth of  

the second principle is for him to individuate states by their absolute position in 

time; but this prevents him from using the principle in the way he intends: to 

demarca te  states that are causally related in such a way as to realize a particular 

finite au tomaton (cf. Section 5, below). 

Putnam's  argument  proceeds as follows. He  sees it as sufficient to show how 

any physical system can realize some arbitrary finite automaton,  such as one that  

goes through " the  following sequence of states in the interval (in terms of 
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'machine t ime')  that we wish to simulate in real time: A B A B A B A "  (Putnam 

1988, p. 122). The goal is to come up with a definition, in terms of the physical 

properties of an arbitrary system S, of the states A and B such that the system 

goes through the sequence of states A B A B A B A  in a particular time interval. Let  

t 1, t 2 , . . . ,  t 7 be the times corresponding to the beginning of each of these 

automata states, with t s being the t ime of the end of the last state. Let  si be the 

region of physical state space that S occupies between t~ and t~+ I. The definitions 

for A and B in this particular case (and therefore,  in principle, in general) are 

easy to state: A = s  I OR s 3 OR s 5 OR s 7 (i.e., the system is in computational 

state A if its physical state lies in any of the parts of state space denoted by Sl, s3, 

s 5 , and s7); B = s 2 OR s 4 OR s 6. This will entail that S is in states A and B at the 

right times to result in the sequence A B A B A B A  for the temporal  interval in 

question. 

We can see immediately an example of Putnam's need to appeal to his physical 

principles. Without the Principle of Noncyclical Behavior,  one cannot assume that 

the s i will be disjoint, and if that is so, then some of the conditions sufficient for A 

might turn out to be sufficient for B. For example, if s 2 were not disjoint from s3, 

then there would be at least one point in state space that is in bo th  s 2 and s3, 

implying that when the system was in that physical state, it would also be in both 

computational  states A and B. This would yield an ambiguous interpretation 

function from the physical states of S to the computational states of S, whereas 

automata states are exclusive. I 

So the stakes for the s i being disjoint are high. If they are not, Putnam can't  

ensure that he will always be able to construct a proper,  non-ambiguous 

interpretat ion function from physical to computational states. That 's  where the 

Principle of Noncyclical Behavior comes in: the disjointness of the s~ follows 

directly from the purportedly noncyclical behavior of S. If S never makes 

transitions to states in which it has been previously, then there is no way that the 

temporally disjoint s i (which are just time-slices of S) could fail to be disjoint in 

state space. Thus the stakes are moved from the disjointness claim to the second 

principle which supports it. But, as I will argue below (in Section 5), Putnam 

gives us no good reason to believe that systems can never be in the same state 

twice. 

3. Is Computation Essentially Causal? 

Ignoring, for now, the problems with the disjointness of the si, the only thing then 

left for Putnam to show is that the sequence of state transitions is causal; that the 

fact that the system is in state A (and receives the input that it does at that time; 

this is discussed in Section 6 below) causes  the system to go into state B (and emit 

the outputs that it does). Putnam has to show that his arbitrary computational 

interpretations of a state are causal; otherwise (as Searle admits) one could 
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prevent universality by only considering the causal characterizations to be the 

ones that are truly computational. 

Some might deny that causal connectedness is an essential property of 

computational states. Turing Machines themselves, after all, are completely 

formal; they are abstractions, and are therefore not the kinds of things that can 

have internal causal structure. However: even if the formal abstractions them- 

selves are not causal, it is a mistake to think that there can be no causal 

requirements which a physical system must meet in order to be a realization of a 

formal abstraction. The very fact that they are called Turing Machines suggests 

that the transitions between the realizing states must be mechanizable, or at least 

causal. 

Furthermore,  consider an animated display of a Turing Machine on a computer 

screen. Since, ex hypothesi, there is a one-to-one correspondence between the 

states of the display screen and the states of some Turing Machine, Searle and 

Putnam would apparently clai/n that the screen realizes the Turing Machine, if 

anything does. But it seems clear that we would say that the  screen depicts a 

Turing Machine, but is not itself one. One reason why we would deny it 

computational status is because the state of the screen that corresponds, in the 

putative interpretation function, to a computational state A does not produce, as 

a causal effect, the screen state that corresponds to the successor computational 

state B, even though the Turing Machine depicted does make a transition from 

state A to state B. Computational states must be able to cause other computation- 

al states to come about. 2 

But those arguments only establish that we do, in fact, take causation to be 

essential to computation. But why should we, other than to avoid the universal 

realizability results? One reason seems to be this: computational characterizations 

are not purely descriptive; they are also explanatory and predictive. In virtue of 

characterizing something computationally, we not only describe its past, but 

predict its future and explain both. The fact that our notion of computation puts 

some constraints on the intrinsic, causal properties of the physical systems which 

realize that computation allows us to use a computational characterization in 

order to predict the behavior of that system. If there were no connection between 

our computational notions and causation, then we would have no reason to expect 

a physical system to continue to be interpretable (with a fixed interpretation 

function) as realizing a particular computation. Of course, one could, in an ad hoc 

manner,  continually modify the interpretation function from physical states to 

computational states, so as to guarantee that the system will continue to realize a 

particular computation. This is, in fact, what Putnam suggests we do. But this 

method,  unlike a truly causal understanding of computation, would not allow us 

to predict which intrinsic physical states a system will go through in the future. We 

can logically guarantee that any physical system will enter the computational state 

A in the future only by giving up all claims as to the intrinsic nature of the 

realization of A, and thus giving up all predictions of the behavior of the system 

based on it being in A. 
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4. The Causal Efficacy of Computational States 

As said before,  Pu tnam accepts that he must establish a causal connection 

be tween his constructed computat ional  states. He  argues that S being in A and 

having the boundary  conditions that it does when it is in A causes S to go into 

state B. His argument  uses the following lemma: 

L E M M A .  If  we form a system S '  with the same spatial boundaries as S by 

stipulating that the conditions inside the boundary are to be the conditions that 

obta ined inside S at t ime t while the conditions on the boundary are to be the 

ones that  obtained on the boundary of S at t ime t', where t is not equal to t '  [note 

that  this will be possible only if the spatial boundary assigned to the system S i s  

the same at t and t'], then the resulting system will violate the Principle of 

Continuity. (Putnam 1988, p. 121.) 

The  argument  for causal connectedness then proceeds by claiming that given the 

state of the boundary  of S at t ime t, then, by the l emma and the Principle of  

Continuity,  the inside of S must  change f rom the state it was in just before t to a 

state distinct f rom any other state it occupies in the t ime interval under  

consideration. Thus,  the transitions between states are causal. 

I think that  Putnam's  argument  for the causal connectedness of his constructed 

computat ional  states is unconvincing for several reasons: 

(1) It  relies on the Principle of Continuity; 

(2) It  relies upon the lemma,  which, as I will argue in Section 5, lacks 

justification, for the same reasons as does the Principle of Noncyclical Behavior  

and therefore  his argument  for the disjointness of the si; 

(3) I t  manages  to establish causal links between the states of arbitrary physical 

systems only by assuming a very weak notion of causation. 

Since I 've  already expressed some doubts concerning Putnam's  continuity 

assumptions (1), and the l emma (2) is discussed in Section 5, below, we can move  

on to Putnam's  notion of causation (3). 

The  question is: under  what construal of causation will the "connect- the-dots"-  

style computat ional  descriptions that Putnam constructs entail, in general,  causal 

relations between computat ional  states? Putnam tells us: it is the notion of 

causation " that  commonly obtains in mathematical  physics" (Putnam 1988, p. 

96). By this, Putnam means a notion of causation that is quite weak: 

In certain respects the notion of causal connection used in mathematical physics is less reasonable than 
the common sense notion... If, for example, under the given boundary conditions, a system has two 
possible trajectories- one in which Smith drops a stone on a glass and his face twitches at the same 
moment, and one in which he does not drop the stone and his face does not twitch-then 
"Mathematically Omniscient Jones" can predict, from just the boundary conditions and the law of the 
system, that if Smith (the glass breaker) twitches at time to, then the glass breaks at time tl; and this 
relation is not distinguished, in the formalism that physicists use to represent dynamic processes, from 
the relation between Smith's dropping the stone at t o and the glass breaking at tl (Putnam 1988, p. 
97). 
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This is a weak notion of causation in that the conditions, under this notion, that 

have to be met in order  for two events to be causally related, are weaker than the 

conditions for our common sense notion. For example, our common sense 

understanding of causation would not deem Smith's twitching and the glass 

breaking as causally related, while Putnam's understanding would. 

In order  to support this notion of causation, Putnam attempts to discredit what 

he considers to be the main alternative: a notion of causation based on possible 

worlds and counter-factual conditionals: 

. . .  one can sum this up as follows: when we consider what would have been the case if Smith had not  

twitched, we keep such things fixed as that he  released the stone. This means  t h a t . . ,  we consider 

si tuations in which the boundary  conditions themselves (or the initial conditions,  or both) are quite 

o ther  than  they actually are (Pu tnam 1988, p. 97). 3 

Putnam's objection is that any account of causation in terms of counter-factual 

conditionals is dependent  on a prior notion of what range of possible worlds, for 

each A and B, are to be used for the determination of whether A caused B. And 

the idea of a similarity metric on possible worlds is in at least as bad shape as the 

notion of computation which it is supposed to explicate. Putnam also claims that 

the notion of "possible world" itself is in dire need of explication. But if this is so, 

it undermines his own favoured theory of causation as well, since that theory 

appeals to the "possible trajectories" of a system. The difference between 

Putnam's  notion and the counter-factual notion of causation is not that only the 

latter uses a notion of possibilities; it is that only the latter uses a similarity metric 

to determine which possibilities are to be considered. Putnam's notion, supposed- 

ly, considers all possibilities equally. 

This is not the proper  place for a detailed enquiry into the advantages and 

disadvantages of a possible worlds approach to causation, but a more general 

point can be made: at most Putnam has only showed that one's account of 

computation will be as universally realizable as one's account of causation. I f  one 

sees causation everywhere, then one will see computation everywhere. If, however,  

one prefers to work with a notion of causation that is more restricted, that 

conforms more to our common sense notion of causation (even though a full 

account of such a notion may be a long time in the coming), then one will be able 

to make sense of the idea that some physical systems instantiate a particular 

computational system, and some do not. I think there are good reasons for 

favoring, in science, a distinction between two contiguous events that are related 

causally (the dropping of the stone and the glass breaking), and two contiguous 

events whose continuity is merely a matter of coincidence (the twitching and the 

glass breaking). This is precisely what causation is meant to do; a notion which 

doesn' t  do this (such as Putnam's) isn't really a notion of causation at all. 4 

5. Complexity Requirements for Computational Interpretation 

Searle seems to be aware of the fact that the physics of a system do constrain the 

possible computational ascriptions to that system when he mentions that a system 
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must be "sufficiently complex" in order to be understood as instantiating a 

particular computation (Searle 1992, pp. 208-09). Putnam also realizes this; for 

example, he would admit that a system cannot be assigned computational state A 

at t 1 and B at t 2 if its physical state at t 1 is indistinguishable, in terms of its 

intrinsic properties, from its physical state at t 2. It's just that Putnam believes that 

every ordinary open physical system is, in fact, arbitrarily complex (i.e., can be 

individuated into the number of distinct states necessary to instantiate any 

automaton). 5 

The last reason, then, for rejecting Putnam's argument for the causal related- 

ness of his constructed computational states, and for rejecting his Principle of 

Noncyclical Behavior, centers on his claims concerning the arbitrary complexity of 

physical states. Specifically, the problem is the lemma mentioned before: if a 

system were to have the boundary of S from one time and the interior of S from a 

different time, it would violate the Principle of Continuity. The problems arise in 

his unconvincing proof: 

Proof (of the lemma): Every ordinary open system is exposed to signals from 

many clocks C (say, from the solar system or from things which contain atoms 

undergoing radioactive decay, or from the system itself if it contains such 

radioactive material - in which latter case the system S itself coincides with the 

clock C. In fact, according to physics, there are signals from C from which it is 

not possible to shield S (for example, gravitational signals). These signals from C 

may be thought of, without loss of generality, as forming an "image" of C on the 

surface of S. For the same reason, there are also "images" of C inside the 

boundary of S. The "image" of C at, say, t' = 12 may be thought of as showing a 

"hand at the 12 position"; while the "image" of C at, say, t = 11 shows a "hand at 

the 11 position." Thus, for these values of t and t', the system S' would have a 

"12 image" on its boundary and an "11 image" at an arbitrary small distance 

inside its boundary; but this is to say that the fields which constitute the "images" 

would have a discontinuity along an entire continuous area, and hence at 

nondenumerably many points (Putnam 1988, pp. 121-22). 

Why is this not convincing? Because Putnam assumes, without justification, that 

the "images" on the boundary and interior of S are characteristic of the current 

time of the clock that generates the images. And he assumes that they are 

characteristic in a strong sense: the images of the signals that bombard S are 

dissimilar to such anextent  that a system with a boundary image of t and an 

interior image of any t' distinct from, but arbitrarily close to, t would violate the 

Principle of Continuity. 

Putnam obviously does not intend to use a temporally relational individuation 

of physical states. If he did, then he wouldn't have had to bring in the empirically 

questionable Principle of Noncyclical Behavior in order to argue that systems are 

in different states at different times; he could have just stipulated this. He must, 

therefore, be using a relatively intrinsic individuation of physical states. In order 
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for the argument for the lemma to make any sense, then, it must be that one of 

the following is what Putnam imagines to be the case: 

• All systems have "counters" that take as input the gravitational signals, 

radiation, etc. they receive and increment their count accordingly. This counting 

ability must be arbitrarily robust: there can be no limitation on how high a system 

is able to count if Putnam is to be able to make his claims. 

• All clock signals explicitly (i.e., in terms of their intrinsic properties) encode 

their absolute position in time. Thus, systems that are bombarded by them are 

never in the same state twice, since they have a new input at each instant. 

It seems that Putnam must take one of these views in order to claim that the 

"images" of a particular clock time are characteristic of that time. If they are not 

characteristic, then it might be that the images corresponding to two different 

times would be the same, and therefore, his lemma would be shown to be false. 

That is, no discontinuity would occur if the images of those two times were 

simultaneously present in the boundary and interior. And if that were the case, 

then Putnam hasn't shown that the system must, even given the boundary 

conditions, make the state transitions that it does. As a consequence, Putnam 

could not guarantee that the relations between his constructed computational 

states are causal, even on his weak notion o f  causation. 

So he has to appeal to something like the two ideas just mentioned. But both of 

these options have problems. As far as the first one goes, one has to ask what 

physical law prevents a system from being a flip-flop? It seems very likely that 

there are systems that receive a steady stream of qualitatively identical input from 

some clock, but merely make a transition from one of two states to the other 

upon receipt of these signals. How could such a system be interpreted to be 

realizing any automaton with more than two states, without using some ambigu- 

ous interpretation function? We saw before that such a move would be of no use, 

since computational realists could restrict their notion of computation so as to 

exclude systems with ambiguous or relational interpretation functions. Some 

physical systems just don't have the complexity to be interpreted as having such 

counters. 

The second option is suggested as the one that Putnam has in mind when he 

speaks of "the fields which constitute the images". That is, Putnam takes those 

parts of the gravitational and electromagnetic fields within the boundaries of a 

physical system to be parts of that system. It is only by making this assumption 

that the discontinuity of the images could result in a violation of the Principle of 

Continuity, since the Principle only concerns the continuity of the gravitational 

and electromagnetic fields. 6 

But if this is what Putnam is assuming, then it is clear why he thinks any 

physical system is complex enough to realize any formal automaton. It is because 

he is assuming that all physical systems are continuous (via the continuity of the 

fields and the inclusion of the fields into the physical system). This again raises an 

issue from Section 2: is it wise for Putnam to rest his philosophical points on a 
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particular physics which ignores the discrete (quantum) nature of physical 

systems? 

However, even if we grant continuity, and the existence of clocks which 

explicitly encode their time (perhaps the background radiation is an electro- 

magnetic example; I can't imagine what Putnam has in mind for a gravitational 

equivalent), and the possibility of systems whose internal states (including the 

fields) reflect this temporal encoding, that does not mean that all or even any 

actual physical systems do, in fact, contain such images. The effects of two 

different clocks can cancel one another out (consider a physical system midway 

between two clocks that emit complimentary signals); signals can be disturbed, 

distorted, blocked; they can decay; qualitatively distinct signals might have 

identical effects on a system; etc. Surely Putnam doesn't want his argument to 

depend on issues as empirically contingent and contentious as these? 

Since it seems that Putnam can't, without further justification, appeal to the 

lemma, he has given us no good reason to believe that his constructed computa- 

tional states are even weakly causally related; and since Putnam can't appeal to 

the Principle of Noncyclical Behavior, he can't establish the disjointness of the s t 

(cf. Section 2). 

There is another way (albeit one that requires much more elaboration than can 

be given here) that complexity considerations might tell against Putnam's 

argument. This is based on the insight that, roughly speaking, one's theory of a 

phenomenon should at least be less complex than the phenomenon itself. If it 

isn't, then the theory is in some sense confabulating, or at least not cutting nature 

at its joints. Suppose I present you with a steel ball, and claim that it is 

implementing a particular expert system, say Mycin. You ask me to substantiate 

this outrageous claim. I proceed to do so, by finding strange, relational, 

disjunctive, and complex characterizations of the steel ball states to identify with 

each of Mycin's computational states. This characterization would be so complex, 

in fact, that a text representation of it might take up, say, one thousand times the 

computer disk space that the Mycin program itself takes up! Anyway, I go on to 

claim that with this interpretation of the steel ball states, I can tell you how Mycin 

would respond to any given query. Even if I could, it would only be because of 

the complexity of the interpretation function, not the steel ball. The steel ball 

wouldn't be implementing Mycin, I would be. The intuition that this type of story 

is supposed to motivate is that it is natural to put some restrictions on the relative 

complexity of our interpretations in order to rule out such cases. Such restrictions 

would, no doubt, rule out Putnam's interpretations as well. 7 

Finally, one anonymous reviewer points out that computational descriptions do 

not only specify causal transitions that must take place; they also implicitly 

prohibit many transitions. For example, if an automaton is supposed to move 

causally from state A to state B, then it is supposed to do this without moving into 

state C in the process. Putnam tries to avoid the difficulties that this observation 

raises by defining the s; to be the region containing all of the stat~s of S between t~ 
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and t~+ 1. This would rule out the possibility of the S moving from A to B via C, 

but only if the s~ could be shown to be disjoint. But we have already seen that he 

cannot show this. 

To summarize some of the main points so far, Putnam's argument for the 

universal realizability of finite automata is uncompelling because: 

• The disjunctive nature of its individuation of computational states limits 

Putnam to post hoc descriptive states, yet computational characterizations are also 

predictive; 

• Its notion of causation is too liberal, in that it would allow as causally related 

many events that, in everyday life and sciences other than mathematical physics, 

we would not take to be causally related; 

• It relies on the Principle of Noncyclical Behavior and the lemma, which both, 

in turn, rely on an unconvincing and largely empirical account based on "clocks". 

Thus, it fails to establish that the transitions are even weakly causal, and fails to 

establish the disjointness of the realizing states; 

• The failure to establish the disjointness of the realizing states yields ambiguous 

interpretation functions, and prevents Putnam from accounting for the fact that 

computational characterizations prohibit certain state transitions. 

6. Computation and the World: Inputs and Outputs 

But wait; there's more. Computers don't, in general, just sit around making state 

transitions. They receive signals from keyboards, mice, and video cameras, and 

control displays, printers, and robot arms. They do things; they interact with 

things. Even formal automata include a notion of input and output. Another 

problem, then, for Putnam's proof is that, strictly speaking, he only establishes it 

for the case of automata without any inputs or outputs (Putnam admits as much 

on p. 124). To try to rectify this, Putnam would have to count the state of the 

boundary of S at a particular time to be the input to, and output of, the 

automaton. Let [A : I i :Oj:B ] indicate a finite automaton that when in state A, 

receives input I i which causes it both to output Oj, and to move into state B. 

Putnam must define the instantiation of Ii as the disjunction of all the boundaries 

of S that correspond to states which receive I~ as input, in the interval being 

interpreted. For example, consider the finite automaton: [A : 11 : O 1 : B] 

[B "I2:02:C ] [ C : I I : 0  ~ :A]. If physical state s~ is interpreted as state A,  s 3 is 

interpreted as C, then I s could be defined as: boundary (sl) OR boundary (s3). 

Only then can Putnam argue in a way similar to before, that the computational 

state of the system and the input received in that state jointly cause the system to 

move into the next state, and emit an output. 

One problem with this approach is that it isn't faithful to the notion of input 

and output that is involved in computation. For computational purposes, inputs 

and outputs are characterized in terms of their intrinsic properties. If we define 

inputs and outputs in a post hoc manner, as whatever boundary state a physical 
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system has at a particular time, then adding inputs and outputs gives Putnam no 

(further) difficulties. 8 

But if the definition of an output is fixed in advance as, say, the display of a 

character on a video display, then Putnam will not be able to show that a given 

system, for example my office wall, instantiates any formal automaton with that 

kind of output. That is because the state transitions of the wall will not causally 

determine the output, even, presumably, on Putnam's weak notion of causation. 

Varying the states of the wall (considering the various possible trajectories of the 

physical system with respect to its input) will not result in a corresponding 

variation in video display states. Therefore, the output is not caused by the state 

transitions in question. Similar considerations apply in the case of inputs. So only 

post hoc notions of input and output will allow Putnam to maintain his universal 

realizability thesis, yet post hoc notions are unacceptable for predictive and 

explanatory purposes. If what counts as a physical realization of an output is not 

fixed in advance, then we can guarantee that any system will emit a given output 

in the future, but only at the price of having no idea of how that Output will be 

manifested. We will only have a descriptive, not a predictive computational 

understanding of the system (cf. the end of Section 3). 

In fact, Putnam admits that for any given automaton with inputs and outputs, 

one will be able to restrict the set of systems that instantiate it (Putnam 1988, p. 

124). In some sense, then, he admits defeat: not every physical system can 

instantiate every finite automaton. But he doesn't really consider this concession 

to be a concession of defeat. That's because he believes that one will still have 

universal realizability of computation within the class of physical systems that get 

the input and output right: 

Imagine, however, that an object S which takes strings of " l"s  as inputs and prints such strings as 

outputs behaves from 12:00 to 12:07 exactly as if it had a certain description D. That is, S receives a 

certain string, say "111111" at 12:00 and prints a certain string, say "11" at 12:07, and there "exists" 

(mathematically speaking) a machine with description D which does this (by being in the appropriate 

state at each of the specified intervals, say 12:00 to 12:01, 12:01 to 1 2 : 0 2 , . , . ,  and printing or 

erasing that it is supposed to print or erase when it is in a given state and scanning a given symbol). In 

this case, S too can be interpreted as being in these same logical states A, B, C , . . .  at the very same 

times and following the very same transition rules; that is to say, we can find physical states A, B, 

C, ; . .  which S possesses at the appropriate times and which stand in the appropriate causal relations 

to one another and to the inputs and outputs. The method of proof is exactly the same as in the 

theorem just proved (the unconstrained case). Thus we obtain that the assumption that something & a 

"realization" of a given automaton description (possesses a specified "functional organ&orion") is 

equivalent to the statement that it behaves as if it has that description (Putnam 1988, p. 124, his 

emphasis). 

Putnam means "behaves" here purely externally: any physical system that, for a 

given time period, has the same inputs and outputs as a particular finite 

automaton, instanfiates that automaton. Thus, Putnam is claiming that there is no 

computational difference between the two following systems: 

o A program that calculates trajectories for spacecraft on the basis of certain 

input parameters (position, mass and velocity of the craft and nearby bodies) that 
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is run, on three successive occasions, on the inputs a, b, c respectively and yields 

outputs x, y, z respectively; 

• A lookup table which only has three entries: a---~x, b---~y, c----~z. 

Such an equivalence would be bad enough for our current understanding of 

computation, but Putnam has even more specific prey in mind. In particular, the 

reason why he is attempting to undermine computation in general is because he is 

opposed to its use as a foundation for an understanding of the mental in 

particular. And if Putnam can show that all behaviorally equivalent systems 

instantiate the same program, then he will have shown that functionalism implies 

behaviorism, a conclusion that many who wish to use computation as a foundation 

for cognition would be loathe to accept. 

Of course, the conclusion need not be accepted, since it depends on the central 

argument of universal realizability, which, as  we have seen, doesn't work. 

Nevertheless, one might think that the computational equivalence of behaviorally 

identical systems might have held i f  Putnam's original argument were sound. But 

I don't think even this is correct. Perhaps if one restricts oneself to characterizing 

a particular temporal interval of a system, then one could get the equivalence of 

behavior and computation if Putnam's main argument were successful. But this is 

to make the mistake (again) of seeing computational characterizations as purely 

descriptive, and not explanatory or predictive (cf. the end of Section 3). Not all 

systems that have the same inputs and outputs for a short interval will continue to 

have the same inputs and outputs in the future. Thus, a particular computational 

characterization will apply, for predictive purposes, only to some small subset of 

those physical systems. 

7. The Worst Case: Universal, but Useful 

Input/output issues aside, one might think: OK, so Putnam doesn't show that 

every system realizes every finite automaton. There are, in principle, limits to 

what can count as an acceptable interpretation. But the fact is that, given the 

natural complexity of physical stuff out there, there is still a lot of room for 

indeterminacy. Even if every system doesn't instantiate every automaton, it might 

be that every ordinary macroscopic system (like a brain) instantiates an infinite 

number of automata. 9 

As stated in the introduction, such indeterminacy doesn't count against 

computation. There is a reason why Putnam set his goal to be such a lofty one: it 

is the only one which can really count against the ontological status of computa- 

tion. It is only by guaranteeing that every system instantiates every computation 

that one can be sure that no matter what computational account one gives of the 

brain, it will apply just as well to stones, roads, and walls. If it is admitted that 

some systems do not instantiate every program, then one will not be able to 

conclude that everything implements any particular computational characteriza- 

tion of mind that cognitive science puts forward. That is, the modified claim 



W H Y  E V E R Y T H I N G  D O E S N ' T  R E A L I S E  E V E R Y  C O M P U T A T I O N  417  

allows computational characterizations to be non-vacuous, which in turn upholds 

the coherence of the computational approach to understanding the mind. Which is 

just what Putnam wishes to reject. 

Thus, for computational states to be ontologically sound, one does not have to 

show that there is only one, unique computational characterization that applies to 

a given physical system. In fact, computational practice hinges on just the 

opposite: that a particular physical system can be understood to be instantiating 

simultaneously, say, a word-processing program, and a universal Turing Machine. 

That is, some degree of indeterminacy of computational description is acceptable, 

or even desirable. 

But what if computation were universally realizable? What if, barring the just 

presented arguments to the contrary, any ordinary open physical system could be 

interpreted as, say, running any program? It is worthwhile to look at just what 

would follow from what Putnam is trying to establish) ° 

Even if everything is every kind of computer, the brute facts are: (1) we don't 

actually seek to understand everything in terms of computational properties; and 

(2) computational explanations, although limited, are actually satisfying in a large 

number of cases. This just shows that even if computationality is "merely 

attributed", it can nevertheless be explanatory. 11 

The fact is, i t / s  very useful to understand many physical systems (IBM's, Sun 

workstations, Macintoshes, etc.) in terms of computational properties; and there 

are many more systems for which such an understanding is not useful. If 

computational properties are universally realizable, this just shows that for some 

systems, we can always competently assign computational properties in such a 

way that such assignments will allow us to develop an explanatory and predictive 

understanding of those systems. If ontology is completely independent of these 

explanatory concerns, then perhaps claims of the form "physical system x 

instantiates automaton P"  are meaningless in some absolute sense. But if 

explanatory (or even mere utility) considerations have any say in whether an 

attribution is warranted or not, then it is clear that sometimes we will be 

warranted in deeming a system a (particular kind of) computer, sometimes not. 

The question "is this physical system a digital computer running program P?" will 

be meaningful, and resolved, at least to some degree, empirically. 

8. Formal Computation: Meaningful, but Inadequate 

To be fair, characterizing computation in terms of actual inputs and outputs, and 

in such a way that the actual causal properties of the underlying physical system 

matter, ventures far beyond the explicit nature of current computational theory, 

as expressed in, for example, Turing Machines and recursive function theoryJ 2 

In fact, some may ask: why defend these formal models of computation, when 

there are many reasons to believe that more embedded, embodied and semantic 

accounts are required to understand real world computational systems? I agree 
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that a theory of computation founded solely upon formal notions such as Turing 

Machines and finite state automata would be an impoverished one. Nevertheless, 

I think that it would be premature to assume that the success of a mature theory 

of computation is independent of the status of these purely formal theories. 

Accordingly, both Putnam and Searle have done cognitive science a service, by 

drawing attention to the fact that its uses of the notion of computation may only 

make sense when accompanied by some implicit assumptions. These assumptions 

should be made explicit, so!that they may be developed and refined. Both Searle 

and Putnam are in one sense right: a completely formal, non-causal notion of 

computation is inappropriate for cognitive science. Fortunately, our current 

understanding, at least implicitly, is more concrete: it is not empty and incoherent 

(as they claim). Nevertheless, those of us who wish to understand computation, 

especially those who wish to understand how it relates to cognition, have a 

substantial and exciting task ahead: that of discovering and articulating these 

non-formal elements of computation, whether they are, like causation and 

embeddedness, implicit in our current understanding, or as yet unknown. 
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Notes 

1 Presumably, even those wishing to establish the universal realizability of computation would agree 

that ambiguous (one-to-many) interpretation functions could not provide an adequate notion of 

computation. Otherwise, their claim is trivially established: any system realizes any finite automaton 

because every physical state can be mapped to every computational state, even under the same 

interpretation. At  any rate, those wishing to define computation as non-vacuous merely have to 

stipulate that computational properties supervene (at least) on physical ones (i.e., if you change the 

computational state, you must change the physical state somehow) in order to reject this extreme form 

of hniversality. 

2 One anonymous reviewer agreed that the screen states are not causally related, but suggested that 

nei ther  are the bits in screen memory,  bits in RAM,  or voltages. That is, yes, the screen states are 

mere  depictions of Turing Machine states, but it is depictions all the way down. I disagree. There is 
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some complicated set of CPU, memory, wires, voltages, etc. which causally realize the various Turing 

Machine states. Otherwise, given, in advance, a particular scheme of interpreting physical states as 

computational states, it would be a miracle, a fluke, that we could reliably get this stuff to simulate a 

particular Turing Machine. 

3 It is odd that Putnam emphasizes that the possible worlds notion of causation considers "situations 

in which the boundary conditions are quite other than they actually are." For the mathematical physics 

notion, too, must vary at least some of the boundary conditions. Otherwise, the only systems that 

would have different "possible trajectories" would be non-deterministic ones, yet Putnam has stated 

that he is focusing on the classical (hence, presumably, deterministic) case. 

4 However, those who wish to naturalize intentionality with coraputation should take heed of a 

difficulty that Brian Smith has suggested to me in personal discussions. If our account of computation 

does depend on a notion of similarity of possible worlds, and if the proper account of similarity of 

possible worlds is itself an intentional one, then it appears that an account of all intentionality in 

computational terms would have to be circular. Perhaps computation can only help naturalize some 

subset of intentional phenomena? 

s Therefore, strictly speaking, Putnam is not claiming that computation is universally realizable, since 

there may be some systems that are shielded from every clock. But that alone is not enough to give the 

computationalist any solace, for reasons similar to those discussed in Section 6, below. For example, 

anyone who wishes to claim that mental states are computational states would have to admit that not 

only does a stone have mental states, but it has all possible mental states. 

My thanks to a participant (Ilkka Kiesepp~i, I believe) at the G.H. von Wright Research Seminar 

reading of this paper, who pointed this out to me. 

7 In thinking about the issues raised in the above passage, I benefited from a discussion with Matthew 

Elton. 

8 But even then one will be in the unsatisfying position of being unable to differentiate inputs from 

outputs, since they are both defined to be the same boundary state. 

9 Notice that the Cryptographer's Constraint, though useful in other contexts (viz. syntax to 

semantics, rather than physics to syntax considerations), doesn't help here. The Cryptographer's 

Constraint (which has been mentioned in related contexts by McCarthy, Dennett, and Harnad) is the 

observation that as, say, the length of a string of characters increases, the chances that there is more 

than one meaningful interpretation for that message decreases drastically. The reason why we cannot 

apply this constraint here (even assuming that we find some syntactic norm to replace the one of 

"meaningful") is that Putnam is not allowing us (via his continuity assumption) to take as fixed in 

advance the primitives ("characters") over which the interpretation is being conducted. Consider: if a 

cryptographer doesn't even known what counts as the characters of a coded message (the prima facie 

characters? Their orthographical components? The tertiary structure of the molecules of ink?), then 

the Cryptographer's Constraint does not apply. 

10 To be fair, it should be pointed out, again, that Putnam's main goal in his text was to undermine 

any computational understanding of mind, and not necessarily anything more. Nevertheless, I sense 

that Putnam's general scepticism concerning the "reality" of computation is shared by an alarming 

number of people, many of whom apply it to a broader range of issues. Therefore, the further 

discussion here is relevant. 

1i In fact, there is a strong current in modern philosophy of science that claims that many, if not all or 

our explanatory sciences, even (or especially) those as fundamental quantum physics, are based as 

much on human interests as they are on some ontologically independent reality. 

Iz However: (1) some theorists are trying to correct this, as Searle points out (Searle 1992, p. 209; 

see, e.g., Smith 1991); (2) although embedded, causal computation might be at odds with our current 

theoretical understanding of computation, it doesn't seem to be that alien to our everyday notion of 

computation as manifested in computational practice. 

References 

Hilary Putnam (1988), Representation and Reality, MIT Press. 

John Searle (1990), 'Is the brain a digital computer?', Proceedings and Addresses of the American 



420 R O N A L D  L. C H R I S L E Y  

Philosophical Association 64(3), November 1990. This paper was a Presidential Address delivered 

at the Annual Pacific Division Meeting of the APA in Los Angeles on March 30th, 1990, and was 

also delivered at the 5th Annual Computers and Philosophy Conference at Stanford University on 

August 8th, 1990. A revised version of this paper appeared as Chapter 9 of The Rediscovery of the 
Mind. 

John Searle (1992), The Rediscovery of the Mind, MIT Press. 

Brian Cantwell Smith (1991), 'The owl and the electric encyclopedia', in D. Kirsh, ed., Foundation of 
Artificial Intelligence, MIT Press. 


