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Abstract. I examine the question of why so few classes of quantum algorithms have been discovered.
I give two possible explanations for this, and some thoughts about what lines of research might lead
to the discovery of more quantum algorithms.

My discovery of the quantum factoring algorithm in 1994 caused great excitement
among theoretical computer scientists. Quantum computers provided a completely
new paradigm for the theory of computation, and this was the first time it had
been shown that quantum computation could efficiently solve a problem that had
already been established as important in this field. Many people expected a succes-
sion of other interesting algorithms to follow. The reality has been disappointing,
especially compared with the progress of the rest of the field of quantum infor-
mation processing. Experimental physicists have been proposing and exploring
possible physical implementations of quantum computers at a pace far beyond
what anybody but the most optimistic researchers originally expected. Quantum
cryptography is coming of age, with several theoretical proofs of its security re-
cently discovered, and with commercial quantum cryptography systems expected
in the next year or so. The fields of quantum information theory and quantum com-
plexity have been expanding dramatically, with a number of new interesting and
important theoretical results. Meanwhile, the development of algorithms has lagged
behind, with barely any significant new algorithms having been discovered in the last
five years.

So far, all the quantum algorithms known to offer substantial speed-up over
classical algorithms for the same problems fall into one of three classes. The first
class uses the Fourier transform to find periodicity. This class contains the factoring
and discrete logarithm algorithms [Shor 1997], Simon’s algorithm [Simon 1997]
(the first member of this class to be discovered), and Hallgren’s algorithms for
Pell’s equation and certain other number theory problems [Hallgren 2002]. There
is, in fact a different way of looking at the factoring algorithm that, although it
yields basically the same algorithm, puts it into a setting that emphasizes spectral
methods rather than periodicity [Kitaev 1996], but this approach has not yet yielded
any new algorithms. The second class contains Grover’s search algorithm, which
can perform an exhaustive search ofN items in

√
N time [Grover 1997], and a

number of extensions of this algorithm (see Grover and Sengupta [2002]). These
extensions all have the general flavor of giving a square root improvement in the
speed of optimization or search problems. The third class consists of algorithms for
simulating or solving problems in quantum physics. This class contains Feynman’s
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original idea [Feynman 1982] of using quantum computers to speed up simulations
of quantum physics. While not many theoretical papers have yet been written on
this class of algorithms, it is clear that if quantum computers are ever developed,
this class will be extremely useful in practice. Feynman came up with his idea of
using quantum computers to simulate quantum physics in 1982, Simon’s algorithm
and the factoring algorithm were developed in 1993 and 1994, and Grover came
up with his original search algorithm in 1995. Since then, there have been further
theoretical developments within each of these classes of algorithms, but no new
classes of quantum algorithms have been discovered.

As the discoverer of the quantum factoring algorithm, one of the questions I am
often asked is why there are so few quantum algorithms known that offer speed-up
over classical algorithms. The answer I usually give is that I don’t know, but that I can
think of two possible reasons that this might be the case. The first possible reason is
that quantum computers operate in a manner so different from classical computers
that our techniques for designing algorithms and our intuitions for understanding the
process of computation no longer work. The second reason is that there really might
be relatively few problems for which quantum computers can offer a substantial
speed-up over classical computers, and we may have already discovered many or
all of the important techniques for constructing quantum algorithms. This article
contains an expansion of these thoughts.

Both of these explanations address the question of why we haven’t seen more
speed-ups from quantum algorithms, and I believe both of these explanations
are likely to be true to a greater or lesser extent. It is certainly true that quan-
tum computers are very difficult to reason about using classical intuition. Physi-
cists have spent decades developing their intuitions about quantum phenomena,
and many of the techniques they use came decades after the original develop-
ment of quantum mechanics. Computer scientists, on the other hand, have been
thinking about quantum mechanics for barely a decade. Any quantum algorithm
offering a speed-up over classical computation must use interference; this phe-
nomenon is unknown in classical computer science, and most theoretical com-
puter scientists are not used to reasoning about it. Thus, it seems quite likely
that several new and significant quantum algorithmic techniques have yet to
be discovered.

On the other hand, much of the research into new quantum computer algorithms
has been spent looking for superpolynomial speed-ups. While these do not occur
in Grover’s algorithm and its extensions, they can occur in the classes of quan-
tum algorithms that use periodicity finding and that simulate quantum physics.
Superpolynomial speed-ups cannot arise from problems that have polynomial-time
classical algorithms, so researchers have been concentrating on problems that are
not in the classical computational class P. The first class of problems not in P
that come to mind are the NP-complete ones. A quantum algorithm solving NP-
complete problems in polynomial time would be a momentous discovery, but I
believe that the most likely scenario is that this is not possible. It has been proved
that there is an oracle, relative to which NP-complete problems cannot be solved
in polynomial time [Bennett et al. 1997], and while there are fewer reasons sup-
porting the belief that quantum computers cannot solve NP-complete problems
than there are supporting the nearly universal belief that classical computers can-
not solve them, many researchers are still pessimistic that quantum computers can
solve NP-complete problems.
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If we assume that NP-complete problems are not solvable efficiently on a quantum
computer, then in order to achieve a superpolynomial speed-up, we must look within
the class of problems which are neither NP-hard nor in P. There are only a relatively
small number of well-studied problems that are suspected to be in this class. No
general theory is known for these problems, and relatively few of them are known to
be reducible to each other, so they all must be considered individually. It may be that
many of these problems do not indeed have polynomial-time algorithms on quantum
computers. People have to date concentrated their efforts on those problems that
appear to have structure related to periodicity, thus providing a possible means of
attack. These include the problems of graph isomorphism and that of approximating
short vectors in a lattice. Neither of these problems has yet yielded to a quan-
tum attack.

Part of the expectations for the discovery of many quantum speed-ups may be
due to analogies with the history of classical computation. After the identification of
NP-completeness [Cook 1971, Karp 1972, Levin 1973], there followed a plethora of
papers classifying problems either as polynomial time (giving efficient algorithms)
or as NP-hard. This may have raised our expectations too high, as the success of this
classification effort has now left relatively few well-studied problems that are not
known to be in one of these two classes. By searching for superpolynomial speed-
ups, we may also be attempting too difficult a task. By contrast with researchers
in quantum computing, researchers in classical algorithms spend their time not
only trying to put more problems into the class P, but also trying to discover faster
algorithms for problems that are already known to be in P. By trying to discover new
ways of solving problems already known to be in P, researchers have often been
able to find new and fruitful techniques, which then can be used to help solve other
problems, sometimes including ways of efficiently solving problems not known to
be in P.

One research area that might be worth exploring is to try to find faster quan-
tum algorithms for problems already known to be classically solvable in poly-
nomial time. This approach is limited to providing polynomial factor speed-ups.
While this is certainly less exciting than finding superpolynomial speed-ups, and
is also less likely to yield practical results—since quantum computers are likely
to be slower than classical computers—it could nevertheless yield new techniques
for designing quantum algorithms. At this point, my belief is that any new tech-
niques have the potential to be of great value in further exploration of quantum
algorithms, and, if this avenue can help discover such new techniques, it should
be pursued.
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