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Abstract

It is common in regression discontinuity analysis to control for high order (third, fourth,
or higher) polynomials of the forcing variable. We argue that estimators for causal
effects based on such methods can be misleading, and we recommend researchers do
not use them, and instead use estimators based on local linear or quadratic polynomials
or other smooth functions.

Keywords: identification, policy analysis, polynomial regression, regression discon-
tinuity, uncertainty

1. Introduction

1.1. Controlling for the forcing variable in regression discontinuity analysis

Causal inference is central to science, and identification strategies in observational studies
are central to causal inference in aspects of social and natural sciences when experimen-
tation is not possible. Regression discontinuity designs (RDD) are a longstanding (going
back to Thistlewaite and Campbell, 1960), and recently popular, way to get credible causal
estimates when applicable. But implementations of regression discontinuity inference vary
considerably in the literature, with many researchers controlling for high-degree polynomials
of the underlying continuous forcing variable. In this note we make the case that high-order
polynomial regressions have poor properties and argue that they should not be used in these
settings.

There are three, somewhat related, reasons why we think that high-order polynomial
regressions are a poor choice in regression discontinuity analysis:

1. An estimate based on a polynomial regression, with or without trimming, can be
interpreted as the difference between a weighted average of the outcomes for the treated
and a weighted average for the controls. Given the choice of estimator, the weights
depend only on the threshold and the values of the forcing variable, not on the values
for the outcomes. One can, and should in applications, inspect these weights. We find
that doing so in some applications suggests that the weights implied by higher-order
polynomial regressions are not attractive compared to those for local linear regressions.
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2. Results based on high order polynomial regressions are sensitive to the order of the
polynomial. Moreover, we do not have good methods for choosing that order in a way
that is optimal for the objective of a good estimator for the causal effect of interest.
Often researchers choose the order by optimizing some global goodness of fit measure,
but that is not closely related to the research objective of causal inference.

3. Inference based on high-order polynomials is often poor. Specifically, confidence inter-
vals based on such regressions, taking them as accurate approximations to the regres-
sion function, are often misleading. Even if there is no discontinuity in the regression
function, high-order polynomial regressions often lead to confidence intervals that fail
to include zero with probability substantially higher than the nominal Type 1 error
rate.

Based on these arguments we recommend that researchers not use such methods, and instead
control for local linear or quadratic polynomials or other smooth functions.

1.2. Theoretical framework

Regression discontinuity analysis has analysis enjoyed a renaissance in social science, espe-
cially in economics; Imbens and Lemieux (2008), Van Der Klaauw (2013), Lee and Lemieux
(2010) and DiNardo and Lee (2010) provide recent reviews.

Regression discontinuity analyses is used to estimate the causal effect of a binary treat-
ment on some outcome. Let (Yi(0), Yi(1)) denoted the pair of potential outcomes for unit i,
and let Wi ∈ {0, 1} denote the treatment. The realized outcome is Y obs

i = Yi(Wi). Although
the same issues arise in fuzzy regression discontinuity designs, for ease of exposition we focus
on the sharp case where the treatment is a deterministic function of a pretreatment forcing
variable Xi:

Wi = 1Xi≥0.

Define
τ(x) = E[Yi(1)− Yi(0)|Xi = x].

Regression discontinuity methods focus on estimating the average effect of the treatment at
the threshold (equal to zero here):

τ = τ(0).

Under some conditions, mainly smoothness of the conditional expectations of the potential
outcomes as a function of the forcing variable, this average effect can be estimated as the
discontinuity in the conditional expectation of Y obs

i as a function of the forcing variable, at
the threshold:

τ = lim
x↓0

E[Yi|Xi = x]− lim
x↑0

E[Yi|Xi = x].

The question is how to estimate the two limits of the regression function at the threshold:

µ+ = lim
x↓0

E[Yi|Xi = x], and µ− = lim
x↑0

E[Yi|Xi = x].

We focus in this note on two approaches researchers have commonly taken to estimating µ+

and µ−. Typically researchers are not confident that the two conditional means µ+(x) =
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E[Y obs
i |Xi = x, x > 0] and µ−(x) = E[Y obs

i |Xi = x, x < 0] can be well approximated by a
global linear function. One approach researchers have taken is to use a global high-order
polynomial approach. In this approach, researchers choose some integer K, and estimate
the regression function,

Y obs
i =

K∑
k=0

Xk
i β+j + ε+i,

separately on the units with values for Xi ≥ 0 and units with values for Xi < 0. The
discontinuity in the value of the regression function at zero is then estimated as,

τ̂ = µ̂+ − µ̂− = β̂+0 − β̂−0 − .

In practice, researchers often use cubic or higher order polynomials, often using statistical
information criteria or cross-validation to determine choose the degree K of the polynomial.

The second commonly-used approach is local linear or sometimes local quadratic approx-
imation. In that case researchers discard the units with Xi more than some bandwidth h
away from the threshold and estimate a linear or quadratic function on the remaining units;
see Hahn, Todd, and Van Der Klaauw (2001) and Porter (2003). Imbens and Kalyanara-
man (2012) suggest a data driven way for choosing the bandwidth in connection with a
local linear specification. Calonico, Cattaneo, and Titiunik (2014) suggest using a quadratic
specification.

The main point of the current paper is that we think the approach based on high order
global polynomial approximations should not be used, and that instead inference based on
local low order polynomials is to be preferred. In the next three sections we discuss three
arguments in support of this position and illustrate these in the context of some applications.

2. Issue 1: Noisy weights

Our first argument against using global high-order polynomial methods focuses on the inter-
pretation of linear estimators for the causal estimand as weighting averages. More precisely,
these estimators can be written as the difference between the weighted averages of the out-
comes for the treated and controls, with the weights a function of the forcing variable. We
show that for global polynomial methods these weights can have unattractive properties.

2.1. The weighted average representation of polynomial regressions

The starting point is that polynomial regressions, whether global or local, lead to estimators
for µ+ and µ− that can be written as weighted averages. Focusing on µ̂+, the estimator for
µ+, we can write µ̂+ as a weighted average of outcomes for units with Xi ≥ 0:

µ̂+ =
1

N+

∑
i:Xi≥0

ωi, Y
obs
i ,

where the weights ωi have been normalized to have a mean of 1 over all units with a value
of the forcing variable exceeding zero. The weights are an estimator-specific function of the
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full set of values X1, . . . , XN for the forcing variable that does not depend on the outcome
values Y obs

1 , . . . , Y obs
N . Hence we can write the weights as

ωi = ω(X1, . . . , XN).

The various estimators differ in the way the weights depend on value of the forcing variable.
Moreover, we can inspect, for a given estimator, the functional form for the weights. Suppose
we estimate a K-th order polynomial approximation using all units with Xi less than the
bandwidth h (where h can be ∞ so that this includes global polynomial regressions). Then
the weight for unit i in the estimation of µ+, µ̂+ =

∑
i:Xi≥0 ωiY

obs
i /N+, is

ωi = 10≤Xi<h · e′K1

 ∑
j:0≤Xi<h


1 Xj . . . XK

j

Xj X2
j . . . XK+1

j
...

. . .
...

XK
j XK+1

j . . . X2K
j



−1

1
Xi
...

XK
i

 ,

where eK1 is the K-component column vector with all elements other than the first equal to
0, and the first element equal to 1.

There are two important features of these weights. First, the values of the weights have
nothing to do with the actual shape of the regression function, whether it is constant, linear,
or anything else. Second, one can inspect these weights based on the values of the forcing
variable in the sample, and compare them for different estimators. In particular we can
compare, before seeing the outcome data, the weights for different values of the bandwidth
h and the order of the polynomial K.

2.2. Example: Matsudaira data

To illustrate, we inspect the weights for various estimators for an analysis by Matsudaira
(2008) of the effect of a remedial summer program on subsequent academic achievement.
Students were required to participate in the summer program if they score below a threshold
on either a mathematics or a reading test, although not all students did so, making this a
fuzzy regression discontinuity design. We focus here on the discontinuity in the outcome
variable, which can be interpreted as an intention-to-treat estimate. There are 68,798 stu-
dents in the sample. The forcing variable is the minimum of the mathematics and reading
test scores normalized so that the threshold equals 0. The outcome we look at here is the
subsequent mathematics score. There are 22,892 students with the minimum of the test
scores below the threshold, and 45,906 with a test score above.

In this section we discuss estimation of µ+ only. Estimation of µ− raises the same issues.
We look at weights for various estimators, without using the outcome data. First we consider
global polynomials up to sixth degree. Next we consider local linear methods. The bandwidth
for the local linear regression is 27.6, calculated using the Imbens and Kalyanaraman (2012)
bandwidth selector. This leaves 22,892 individuals whose value for the forcing variable is
positive and less than 27.6, out of the 45,906 with positive values for the forcing variable.
We estimate the local linear regression using a triangular kernel.

Figure 1 and Table 2.2 present some of the results relevant for the discussion on the
weights. Figure 1a gives the weights for the six global polynomial regressions. Figure 1b
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Figure 1.b Weight Functions for Local Linear Estimator with Rectancular and Triangular Kernel, Matsudaira Data
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Figure 1a. weights for higher order polynomials
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Figure 1c. Histogram of Forcing Variable Greater than Threshold, Matsudaira Data

Figure 1: Weights, as a function of the forcing variable X, for persons in
the Matsudaira dataset with positive values of X (a) weights for fitted
polynomial regressions from first to sixth-order: the weights oscillate
uncomfortably and are highly variable; (b) weights for local linear esti-
mators are much better behaved; (c) histogram of the positive values of
X. Higher-order regressions can give huge weights to points that are far
from the discontinuity, thus creating highly noisy estimates of the causal
estimand of interest.

gives the weights for the local linear regression with rectangular and triangular kernels, and
the bandwidth equal to 27.6. Figure 1c presents a histogram of the distribution of the forcing
variable for individuals with a value for the forcing variable greater than 0. In Table 1 2.2
we present the weight, under each of the six polynomial regression specifications, for the
individuals with the largest value for the forcing variable, Xi = 168. Because this extreme
value is outside the bandwidth, the weight for the local linear regression for individuals with
such a value for Xi would be 0. The weights for all the points included in the regression
have been normalized so that their average value is 1.

Figure 1a shows that the weight for the individuals with the largest values for the forcing
variable are high in absolute value and highly sensitive to the order of the polynomial. It is
difficult to imagine that, based on these figures, one would be comfortable with any of these
six specifications. Figure 1b shows the weights for the local linear regression, which appear
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Order of Normalized weight for the persons with
global polynomial the largest value of the forcing variable

1 −4.5
2 17.1
3 −16.3
4 8.3
5 −3.7
6 1.3

Table 1: For different orders of the global polynomial: Normalized weight
for the persons with the largest value of the forcing variable in the Mat-
sudaira data. The weights are highly variable and all are much larger in
absolute value than the average weight of 1. Considering that this point
is far away from the discontinuity, this suggests that these polynomial re-
gressions are assigning much too high a weight to points in the data that
are essentially irrelevant to the research question. It would be more de-
sirable for the weight of such an extreme point to be close to zero.

more attractive: most of the weight goes to the individuals with values for Xi close to the
threshold, and individuals with Xi > 27.6 have weights of 0.

Table 1 also shows the unattractiveness of the high order polynomial regressions. Whereas
one would like to give little or zero weight to the individuals with extreme values for Xi, the
global polynomial regressions attach large weights, sometimes positive, sometimes negative,
to these individuals, and generally larger than the average weight of 1, whereas the local
linear estimator attaches zero weight to these individuals.

2.3. General recommendation

Most, if not all, estimators for average treatment effects used in practice can be written
as the difference between two weighted averages, one for the treated units and one for the
control units. This includes estimators in regression discontinuity settings. In those cases
it is useful to inspect the weights in the weighted average expression for the estimators to
assess whether some units receive excessive weight in the estimators.

3. Issue 2: Estimates that are highly sensitive to the degree of the
polynomial

The second argument against the high order global polynomial regressions is their sensitivity
to the order of the polynomial. We illustrate that here using two applications of regression
discontinuity designs.
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Order of
polynomial estimate (se)

global 1 −0.167 (0.008)
global 2 0.079 (0.010)
global 3 0.112 (0.011)
global 4 0.077 (0.013)
global 5 0.069 (0.016)
global 6 0.104 (0.018)
local 1 0.080 (0.012)
local 2 0.063 (0.017)

Table 2: From the Matsudaira data: Estimates of effect of summer school
requirement using different regression discontinuity estimates.

3.1. Example: Matsudaira data (continued)

We return to the Matsudaira data. Here we use the outcome data and directly estimate
the effect of the treatment on the outcome for units close to the threshold. To simplify the
exposition, we look at the effect of being required to attend summer school, rather than
actual attendance, analyzing the data as a sharp rather than a fuzzy regression discontinuity
design. We consider global polynomials up to order six and local polynomials up to order
two. The bandwidth is 27.6 for the local polynomial estimators, based on the Imbens-
Kalyanaraman bandwidth selector, leaving 37,580 in the sample. Local regression is with a
triangular kernel.

Table 2 displays the point estimates and standard errors. The variation in the global
polynomial estimates over the six specifications is much bigger than the standard error for
any of these six estimates. That the standard errors do not capture the full amount of
uncertainty. The estimates based on third, fourth, fifth, and sixth order global polynomials
range from 0.069 to 0.112, whereas the range for the local linear and quadratic estimates is
0.063 to 0.080, substantially narrower.

3.2. Example: Jacob-Lefgren data

Table 3 reports the corresponding estimates for a second dataset. Here the interest is again
in the causal effect of a summer school program. The data were previously analyzed by
Jacob and Lefgren (2004). There are observations on 70,831 students. The forcing variable
is the minimum of a mathematics and reading test. Out of the 70,831 students, 29,900 score
below the threshold on at least one of the tests, and so are required to participate in the
summer program. The Imbens-Kalyanaraman bandwidth here is 0.57. As a result the local
polynomial estimators are based on 31,747 individuals out of the full sample of 70,831, with
16,011 required and 15,736 not required to participate in summer school.

Again the estimates based on the global polynomials have a wider range than the local
linear and quadratic estimates. In addition the range for the global polynomial estimates is
again large compared to the standard errors.
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Order of
polynomial estimate (se)

global 1 0.024 (0.008)
global 2 0.176 (0.012)
global 3 0.209 (0.015)
global 4 0.174 (0.018)
global 5 0.164 (0.021)
global 6 0.197 (0.025)
local 1 0.196 (0.018)
local 2 0.176 (0.027)

Table 3: From the Jacob-Lefgren data: Estimates of the effect of summer
school requirement using different regression discontinuity estimates.

Linear regression 6th order polynomial
Predictor estimate (se) estimate (se)
intercept 5.0 (0.1) 3.6 (0.3)

X 7.1 (0.1) 27.6 (2.7)
X2 −54 (11)
X3 59 (18)
X4 −32 (13)
X5 8 (5)
X6 0.9 (0.6)

Table 4: From the Lalonde data: Parameter estimates for linear and sixth-
order polynomial regression of earnings in 1978 on the average of earnings
in 1974 and 1975.

4. Issue 3: Inferences that do not achieve nominal coverage

The third point we wish to make is that conventional inference for treatment effects in
regression discontinuity settings can be misleading, in the sense that that confidence intervals
are too narrow. We make that point by constructing confidence intervals for discontinuities
in a setting where we expect none to be present.

We look at a dataset containing information on yearly earnings in 1974, 1975, and 1978
for 15,992 individuals for whom there is information from the Current Population Survey.
These data were previously used for different purposes in work by Lalonde (1986) and Dehejia
and Wahba (1999). We look at the conditional expectation of earnings in 1978 (the outcome
Yi) given the average of earnings in 1974 and 1975 (with the predictor Xi divided by 10 for
convenience so that the coefficients of the higher powers are on a reasonable scale). Figure
2 gives a simple, histogram-based estimate of the conditional expectation. Unsurprisingly,
the conditional expectation looks fairly smooth and increasing. Overlaid with the histogram
estimator are a linear approximation and a sixth order polynomial approximation. The linear
approximation is fairly accurate, and so is the sixth order polynomial approximation. We
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Figure 2: From the Lalonde data: Earnings in 1978 vs. average earnings in
1974–1975. We will use these data to fit a regression discontinuity estimate
in a case where there is no actual discontinuity.

present the parameter estimates for those two regression functions in Table 4.
Now suppose we pretend the median of the average of earnings in 1974 and 1975 (equal

to 14.65) was the threshold, and we estimate the discontinuity in the conditional expectation
of earnings in 1978. We should expect to find an estimate close to zero. The estimates and
standard errors for polynomials of different degree appear in Table 5.

All estimates are in fact reasonably close to zero, with the nominal 95% confidence interval
in all cases including zero, though this does not hold for the nominal 90% confidence interval.

The question arises whether this is typical. To assess this we do the following exercise.
5,000 times we randomly pick a single point from the empirical distribution of Xi that will
serve as a pseudo threshold. We exclude values for the threshold less than 1 and greater than
25, to ensure a sufficient number of observations on both sides of the threshold.1 We pretend
this randomly drawn value of Xi is the threshold in a regression discontinuity design analysis.
In each of the 5,000 replications we then estimate the average effect of the pseudo treatment,
its standard error, and check whether the implied 95% confidence interval excludes zero.
There is no reason to expect a discontinuity in this conditional expectation at this threshold,
and so we would like to see that only 5% of the times we randomly pick a threshold the
corresponding confidence interval should not include zero.

We compare the eight different estimates of the pseudo treatment effect we used in the
previous section. The first six are global polynomial regressions of order ranging from 1 to

1Out of the sample of 15,992 individuals there are 2044 individuals with values for X less than 1 and
2747 individuals with values for X greater than 25.
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Order of
polynomial estimate (se)

global 1 −0.02 (0.25)
global 2 0.71 (0.25)
global 3 −0.98 (0.53)
global 4 0.24 (0.66)
global 5 −1.22 (0.80)
global 6 −0.13 (0.93)
local 1 0.02 (0.37)
local 2 −0.39 (0.55)

Table 5: Estimates of effect of a pseudo treatment: Single replication on
Lalonde Data with pseudo threshold equal to 14.65.

Order of Rejection Median
polynomial rate standard error

global 1 0.49 0.29
global 2 0.34 0.45
global 3 0.21 0.61
global 4 0.14 0.77
global 5 0.11 0.93
global 6 0.11 1.09
local 1 0.07 0.46
local 2 0.07 0.67

Table 6: Rejection rates for nominal 5% test in a simulation experiment
in which the true discontinuity effect is zero. The over-rejection of the
global polynomial regressions suggest that they are not accurate enough
to allow the researcher to ignore the bias in the estimates of the treat-
ment effects.

6. If, say, the regression functions on both sides of the threshold are truly linear, than the
estimator based on linearity should be approximately unbiased for the average treatment
effect (which is zero here), and the corresponding 95% confidence interval should include
zero 95% of the time. If, on the other hand, the regression function is not truly linear, the
confidence intervals based on linearity are likely to include the true value of zero less than 95%
of the time. The last two estimators are based on local linear and local quadratic regressions,
where we drop observations with values of X more than h away from the threshold (where
the distance h is chosen using the Imbens-Kalyanaram bandwidth procedure).2

We present the results for the rejection rates and median standard errors in Table 6. The
estimates based on the global polynomial regressions perform poorly, making our point that
inference for estimates based on global polynomial regressions is not reliable. For low order

2In 50,000 replications the median bandwidth was 5.7.
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polynomials we reject the null of no effect for a large fraction of the replications. For high
order global polynomials we still over-reject, and in addition the standard errors tend to be
large compared to those for the local polynomial estimators. The over-rejection suggests
that the global polynomial approximations are not accurate enough to allow the researcher
to ignore the bias in the estimates of the treatment effects. The local linear and quadratic
regressions work substantially better in that the rejection rates are close to nominal levels,
and the standard errors are substantially smaller than those based on the high order global
polynomial approximations.

5. Discussion

Regression discontinuity designs have become very popular in social sciences in the last
twenty years. One implementation relies on using high-order polynomial approximations
to the conditional expectation of the outcome given the forcing variable. In this paper we
recommend against using this method. We present three arguments for this position: the
implicit weights for high order polynomial approximations are not attractive, the results
are sensitive to the order of the polynomial approximation, and conventional inference has
poor properties in these settings. These issues are complementary, in that the noisiness of
the implicit weights explains how the global polynomial regressions can have poor coverage
and wide confidence intervals at the same time. In addition we recommend that researchers
routine present the implicit weights arising from regression estimates of causal estimands.
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