
Why is ATPG easy?

Mukul R. Prasad Philip Chong Kurt Keutzer
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley, CA 94720
mukul,pchong,keutzer @eecs.berkeley.edu

Empirical observation shows that practically encountered instances
of ATPG are efficiently solvable. However, it has been known for
more than two decades that ATPG is an NP-complete problem. This
work is one of the first attempts to reconcile these seemingly dis-
parate results. We introduce the concept of circuit cut-width and
characterize the complexity of ATPG in terms of this property. We
provide theoretical and empirical results to argue that an interest-
ingly large class of practical circuits have cut-width characteristics
which ensure a provably efficient solution of ATPG on them.

Automatic test pattern generation (ATPG) techniques find
widespread use in a number of CAD applications. In addition to
the important task of generating test patterns for testing digital hard-
ware, for which they were originally proposed, they have found ap-
plication in verification techniques [3, 17] and logic optimization
[6, 9]. It has been known for more than two decades that the ATPG
problem is NP-complete [15]. This means that there cannot exist
an algorithm which solves an arbitrary instance of this problem in
polynomial time, unless . However, as early as 1979,
Williams and Parker [25] claimed that for practically encountered
instances of the problem the complexity of ATPG is only .
In fact, the widespread use of ATPG-based techniques can largely
be attributed to the relative ease with which large instances of the
problem are solved in practice.

We corroborated the claim that ATPG is easily solvable in prac-
tice by performing the following experiment. ATPG was carried
out on the combinational circuits from the MCNC91 [26] and
ISCAS85 [5] benchmark suites, using TEGUS [24], a SAT-based
ATPG tool. The time to solve each SAT instance was recorded as a
function of the size of the instance and plotted in Figure 1. Of the
11,000 SAT instances generated, some with over 15,000 variables,
over 90% were solved in less than 1/100th of second; the remain-
ing exhibited roughly a cubic growth in execution time. Thus, the
theoretical worst case complexity of ATPG, i.e. the fact that it is
NP-complete, would seem to be a poor indicator of the practical
ease of the problem. This work is one of the first attempts to offer
a theoretical explanation for the practical ease of ATPG.

The practical ease of ATPG suggests that there is some under-
lying property common to real-life ATPG instances which makes

This work was supported in part by California MICRO and NSERC Canada

them tractable. These instances are usually derived from practi-
cal VLSI circuits. Therefore, we develop a characterization of the
complexity of solving ATPG in terms of a topological circuit prop-
erty, namely cut-width. We also demonstrate, through theoretical
arguments and experiments on practical circuits, that a large class
of interesting circuits have small cut-widths, provably permitting
efficient solution of ATPG on them.

We use a popular formulation based on SAT (also a well known
NP-complete problem) as our working model of the ATPG algo-
rithm. This formulation was originally proposed by Larrabee [18]
and later developed by Stephan et al. [24]. The reason for this
choice is twofold. First, SAT is a well researched problem (see [12]
for an excellent survey), and offers a clean and general framework
for analyzing a wide range of search techniques and heuristics. Sec-
ond, SAT is a solution platform for a variety of other CAD applica-
tions. Therefore, understanding the functioning of SAT on ATPG
might offer insight into several other related SAT applications.

The remainder of the paper is organized as follows. We begin
with some definitions and notation in Section 2. In Section 3 we
discuss some seemingly promising approaches for analyzing the
complexity of ATPG instances. Unfortunately, these approaches
provide only an incomplete or inconclusive answer to the practical
easiness of ATPG. Section 4 presents our model of the backtracking
based algorithm for solving SAT, the cut-width property of circuits,
and an analysis of the complexity of ATPG in terms of cut-width.
In Section 5 we present both theoretical arguments and empirical
results to show that a cut-width based argument does in fact predict
a polynomial runtime of ATPG on a large class of practical circuits.
In Section 6 we present interesting parallels and points of contrast
between our results and published work addressing bounds on the
size of binary decision diagrams (BDDs). We conclude with direc-
tions for future research in Section 7.

Given a combinational Boolean network [4], a single stuck-at
fault is one which causes a net in to be
permanently stuck at logic value (where). The
faulted circuit, denoted by , is then with the fault oper-
ative fault-net asserted to value . The ATPG problem

, is defined with respect to the single stuck-
at fault on circuit and has the answer YES if and only if there
exists an assignment of Boolean values to the primary inputs of
(and) such that fault net has complementary logic values in

and and at least one of the primary outputs of (and)
have complementary logic values. If such a Boolean assignment
exists it is said to be a test for the fault . Otherwise the fault is
said to be untestable.

A conjunctive normal form (CNF) Boolean formula on
Boolean variables is a set of clauses

. Each clause is a set of literals . A lit-

Figure 1: Results of TEGUS on ATPG-SAT instances

eral is an instance of a variable or its complement. is interpreted
as the conjunction (logical AND) of the clauses , each
of which is interpreted as the disjunction (logical OR) of its con-
stituent literals. For example, the formula
is represented as , where and

. The Boolean satisfiability problem , defined on
the CNF Boolean formula has an answer YES iff there exists
an assignment of Boolean values to the variables
under which evaluates to . A similar satisfiability problem,
CIRCUIT-SAT can be posed on a Boolean circuit . The prob-
lem has an answer YES iff there exists an
assignment of Boolean values to the primary inputs of which
sets at least one of the primary outputs of to logic value . This
assignment is called a satisfying assignment of .

SAT and CIRCUIT-SAT are well known instances of NP-
complete problems [11]. A CIRCUIT-SAT problem on can be
posed as a SAT problem on an appropriate Boolean formula .

has one variable for each signal net in and a set of clauses
for each gate (of the form shown in Figure 2). Additionally, there
is a clause asserting that at least one output needs to be . In
the following treatment we will make no distinction between the
CIRCUIT-SAT problem on a circuit and the Boolean satisfiabil-
ity problem on its corresponding Boolean formula . The set
of variables of will be denoted by .

The ATPG problem can be naturally cast as a satisfiability prob-
lem by formulating it as a CIRCUIT-SAT problem on a suitable
circuit derived from the original circuit and the fault . De-
fine as the subcircuit of corresponding to the transitive-

fanout of in and as the subcircuit of containing
all gates, inputs and outputs in the transitive fanin of the tran-
sitive fanout of the fault-point . Then is the circuit
corresponding to the pairwise XOR of the outputs of and

. derives its inputs from appropriate signal points in

(see Figure 3). The set of all satisfying assignments for the

Figure 2: SAT formulas for some simple gates

X

Fault Boundary

Fault

Figure 3: Circuit used for ATPG-SAT

CIRCUIT-SAT instance gives precisely the set of all input
vectors that test the fault (see [18] for details). Thus the ATPG
problem can be formulated as an instance
of Boolean satisfiability, namely .
Henceforth, we will refer to this special instance of the satisfiabil-
ity problem as ATPG-SAT. Specifically,

.
Throughout this discussion, we assume the circuits we deal with

have gates with fanin and fanout bounded by and , respec-
tively. We also assume the circuits are mapped to simple AND and
OR gates, allowing inversions. The former restriction is enforced
for practicality; design and technology constraints prohibit unlim-
ited fanin and fanout. The latter restriction is enforced to facilitate
the construction of the corresponding SAT formulas; it is difficult
in practice to derive SAT formulas for arbitrary gates. TEGUS [24]
enforces this latter condition for exactly this reason.

One approach to exploring the easiness of ATPG is to try to de-
termine what classes of ATPG problems can be efficiently solved.
Alternatively, one could consider the SAT formulation of ATPG and
attempt to show that ATPG-SAT instances are easy to solve. Here
we discuss three such approaches based on applications of existing
results and techniques. We show that none of them is capable of
offering a conclusive or sufficiently general explanation for the eas-
iness of ATPG. The reason for this is that these approaches cannot
exploit the fact that practical circuits are considerably more regular
than arbitrary Boolean circuits. In our analysis (Section 4) we ad-
dress this shortcoming by characterizing the complexity of ATPG-
SAT in terms of topological circuit properties.

Some classes of SAT problems are known to be solvable in polyno-
mial time; efficient algorithms are known for solving SAT formulas
of a particular form. Horn-SAT is one such widely known class.
Boros et al. [2] identify an even more general class of SAT formu-
las known as q-Horn; the set of q-Horn problems include Horn-SAT
problems as well as several other polynomial time classes, such as
2-SAT, Hidden-Horn-SAT and Extended-Horn-SAT.

If we could show that an interestingly large class of ATPG-SAT
instances fall into one of the known polynomial time solvable SAT
classes it would imply that the corresponding class of ATPG prob-
lems are efficiently solvable. However, we can demonstrate sim-
ple circuits with corresponding ATPG-SAT formulas that are not
q-Horn [7]. Thus it is unlikely that any ATPG-SAT instances of
practical significance lie in one of the polynomial SAT classes.

(a) CIRCUIT-SAT example

Faulted Sub-circuit

(b) ATPG circuit example

Figure 4: Example Circuits

Fujiwara [10] introduced the notion of k-bounded circuits and
showed that ATPG can be efficiently performed on this class of cir-
cuits. This class of circuits was shown to contain some circuits of
practical interest such as ripple-carry adders, decoders, and one-
and two-dimensional cellular arrays.

Briefly, a circuit is -bounded if its nodes can be partitioned into
disjoint blocks such that each block has at most inputs, and the
blocks form a DAG with no reconvergent paths. Simply put this
means that all the reconvergence of the circuit is of a local nature,
i.e. confined within -input blocks. Practical circuits with deep re-
convergent paths are abundant. Hence, -boundedness seems to be
too restrictive a property to be applied to general VLSI circuits.

Another approach to assessing the complexity of ATPG-SAT is to
perform an average running time analysis on the the population of
ATPG-SAT instances. Purdom and Brown [21] take this approach
in modeling backtracking algorithms for arbitrary SAT problems.
In their study, SAT formulas are parameterized based on the rela-
tionships between the number of variables, the number of clauses
and the length of the clauses in the SAT instance. Based on this pa-
rameterization, classes of SAT formulas are shown to be solvable in
polynomial time on average. Under reasonable assumptions, it can
be shown that the SAT formulas generated from ATPG instances
fall into a class known to be easily solvable on average [7].

Note, however, that while our ATPG-SAT formulas are in an
easy class, there are SAT formulas in this class which have no
corresponding ATPG formulation. Thus, while problems in the
overall class are easily solvable on average, the smaller subset of
ATPG problems need not be solvable in polynomial time on aver-
age. Therefore this analysis suggests ATPG-SAT is easy, but we
cannot bring any hard conclusions to bear.

A number of approaches for solving Boolean satisfiability have
been proposed in the literature [12]. Among these, backtracking
based approaches are the most popular. Hence, for our analysis of

ATPG-SAT we chose to model the SAT algorithm by a “caching
based” variant of simple backtracking [12]. This algorithm is de-
scribed in Section 4.1. We introduce the notion of cut-width of a cir-
cuit and characterize the worst case complexity of solving ATPG-
SAT instances in terms of the cut-width of circuits from which the
instances were derived.

To illustrate the salient results, we will use the circuit shown in
Figure 4(a) as our working example. As per the discussion in Sec-
tion 2 the CIRCUIT-SAT instance corresponding to this circuit is:

(4.1)

The ATPG problem we consider is a stuck-at-1 fault on the net
. The ATPG-SAT instance generated by this fault corresponds to

the circuit shown in Figure 4(b).

Most popular backtracking based algorithms, especially those pro-
posed in the CAD literature [23, 24], provide some feature to re-
duce conflicts during backtracking. This may be in the form of
a pre-processed set of global implications [24] or in the form of
generating and storing conflict-induced clauses by “learning” from
conflicts [23]. Our caching based version of simple backtracking is
a simplified way of modeling this feature.

The essential idea of caching based backtracking is to perform
simple backtracking with a fixed variable order, except that when-
ever the algorithm backtracks from an unsatisfiable sub-formula,
the sub-formula is cached. Correspondingly, before a sub-formula
is taken up for a satisfiability check, it is looked up in the cache.
If found, it can be diagnosed immediately as being unsatisfiable
and the algorithm can backtrack from it without trying any further
variable assignments. The pseudo-code for the algorithm appears
below. In Algorithm 1, is the CNF Boolean formula for the satis-
fiability check, is a function that orders the variables of , and
is a hash table for storing the set of unsatisfiable sub-formulas of

encountered during the backtracking search.

Algorithm 1 Satisfiability through Caching-Based Backtracking
procedure Sat()

if Cache Sat() = “UNSAT” and Cache Sat() = “UNSAT”
then

return “UNSAT”
else

return “SAT”
end if

procedure Cache Sat()
: Variable currently chosen for assignment,

:Value assigned to
Assign()

if Null Clause() then
return “UNSAT”

else has no NULL clauses
if Table Lookup() then

return “UNSAT”
end if

if Cache SAT() = “SAT” then
return “SAT”

end if
if Cache SAT() = “SAT” then

return “SAT”
end if

Both Subtrees UNSAT
Insert Table()
return “UNSAT”

end if

Figure 5 shows an example run of this algorithm on Formula 4.1.
The variable ordering

b

c

f

a

h

d

e

g

i

g

i

e

g

i

g

i i

h

d

f

a

h

d

h

d

e

g

i

v=1

v

v

SAT

Ordering A: b<c<f<a<h<d<e<g<i

Null Clause

Cache Hit

v=0

Figure 5: Caching-based backtracking for Formula 4.1

is used for the backtracking search. Note there are several places
where the caching strategy works to prune the search. For example,
consider the partial assignment ;
this leaves the sub-formula .
This same sub-formula is obtained under the assignment

, and so we can prune this branch of the
search without further computation.

The running time of Algorithm 1 on a given formula , is denoted
by and can be analyzed as follows. A sub-formula of is
obtained by setting a subset of the variables of to certain values.
Define a consistent sub-formula of as a sub-formula having no
empty clauses1 (i.e. a clause where all the literals have been set to

under the partial assignment).
We assume that the sub-formulas are cached as sets of clauses.

Thus, from our point of view two sub-formulas are identical if and
only if they have the same set of clauses.2 is upper bounded
by the product of the size of the backtracking tree and the worst
case time for a single cache access (insertion, lookup or deletion).
Since each cache access can be at worst linear in the size of the
backtracking tree, the specific cache access time cannot alter the
asymptotic nature of the running time (i.e. cause the difference be-
tween a polynomial and exponential run time). Hence, for the pur-
pose of this analysis we assume that the caching is perfect; cache
lookups and insertions can be done in constant time. Under this
scenario, is upper-bounded by the size of the backtracking
tree, which in turn is bounded by the number of distinct consistent
sub-formulas (DCSFs) of that can be generated under a particular
static ordering of the formula variables. Thus, under the ordering ,

where is the number of DCSFs
of , under the ordering , is the set of variables of and
denotes the set of those subsets of which are valid prefixes of
the ordering . If the formula corresponds to a CIRCUIT-SAT
instance, generated from a circuit , we further characterize
in terms of a topological property of . This characterization is
developed in the following section.

Consider a CIRCUIT-SAT formula corresponding to circuit
. For the initial part of the analysis assume that has a single

output. The results are extended to multi-output circuits, in Section
4.3. The network can be seen as an undirected hypergraph with
the signals as the hyperedges, and the gates, inputs and outputs as

1A formula with empty clauses is trivially unsatisfiable.
2Sub-formulas with a different set of clauses may still be functionally equivalent.

However, we do not recognize this equivalence in this treatment.

c Ordering A
Cutwidth=3

Cut Z

b

Ordering B
Cutwidth=5

b c h a f d e g i

igedhaf

Figure 6: Example cut-widths for the circuit of Figure 4(a)

i1

Cutwidth=4Ordering A’

hf tb c f a h d e g i f

Figure 7: Example cut-width, ATPG circuit of Figure 4(b)

the nodes. For the purpose of this exposition a Boolean network
and its underlying hypergraph are not distinguished. Cut-width of a
hypergraph is defined as follows.

Definition 4.1 Given a hypergraph and a one-to-one
function , ordering the vertices of . .
The cut-width of , under the ordering , is denoted as
and is given by the expression

such that

and

(Note: Each hyperedge of is denoted by the set of vertices
spanned by it.) The minimum cut-width of over all possible or-
derings is denoted by . Henceforth, cut-width of a cir-
cuit without mention of a particular variable ordering will refer to
the minimum cut-width . Figure 6 illustrates the notion
of cut-width on the example circuit from Figure 4(a), using two dif-
ferent variable orderings, A and B. Ordering A, which was used
for the backtracking tree example of Figure 5, also happens to be a
minimum cut-width () ordering for this circuit.

The number of nodes at a certain level in the backtracking tree
for can be bounded in terms of the size of an appropriate cut
of the circuit . A partition of the variables defines
a unique cut in . An assignment of truth values to the variables

in the formula yields a sub-formula of .

Lemma 4.1 Given a Boolean network , its corresponding
CIRCUIT-SAT formula and a cut of , the num-
ber of DCSFs that can be obtained by the set of all possible truth
assignments to the variables is denoted by and can be
bounded as:

(4.2)

where denotes the size of the cut, i.e. the number of
distinct nets crossing the cut.

The usefulness of this result (see [7] for the proof) stems from the
fact that the formula set size is exponential not in the size of the vari-
able set but in the size of the cut, which is potentially much smaller.
For example consider the cut on the circuit of Figure 4(a),
with ; this corresponds to the level in the back-
tracking tree corresponding to the Cut Z label in Figure 6. A naive
bound suggests that there are possible sub-formulas generated
after the assignment of the variables in (there are distinct as-
signments to the variables). However, the assigned variables have

only one means of affecting the sub-formulas on the unassigned
variables; this is through the single cut net between and . Thus
regardless of the assignment to the variables of , Lemma 4.1 in-
dicates that there can be at most distinct sub-formulas for any
assignment to the variables. Based on this result and the above
definition of cut-width we derive the following bound for the run-
ning time of Algorithm 1 on .

Theorem 4.1 Given a Boolean network and ordering on ,
Algorithm 1 can solve the CIRCUIT-SAT instance in time

, where .

From the above result (see [7] for the proof) it is evident that
if a circuit has a cut-width which is logarithmic in the size of the
circuit, CIRCUIT-SAT can be performed on it in polynomial time.
We discuss further implications of this result in Section 5 where we
provide theoretical as well as empirical results analyzing cut-width
properties for practical classes of circuits.

As explained in Section 2, under the SAT formulation of the
ATPG problem, testing for a certain fault on a circuit amounts
to performing CIRCUIT-SAT on a certain circuit, namely .
The following result (see [7] for proof) shows that, for any fault
in circuit , the cut-width of is linearly related to the cut-width
of . This means that we can reason about the asymptotic
behavior of Algorithm 1, on ATPG-SAT instances generated from
circuit , by analyzing the cut-width properties of circuit (or sub-
circuits thereof) rather than having to deal with the circuit ,
which could be significantly more involved.

Lemma 4.2 Given a Boolean network , for any ordering of
the variables and any fault on , an ordering of the
variables of such that

(4.3)

Figure 7 illustrates this result on our example ATPG circuit from
Figure 4(b). As shown in Figure 6 the circuit of Figure 4(a) has a
cut-width of under ordering (Figure 5). The ordering can be
derived from this to yield a cut-width of for the ATPG circuit of
Figure 4(b).

The discussion so far has been restricted to single-output cir-
cuits. Consider a multi-output circuit , with primary outputs

. For the purpose of a CIRCUIT-SAT test, can be
seen as a set of single-output circuits , one each
for the transitive fanin cone of each primary output. CIRCUIT-
SAT on can be performed by performing CIRCUIT-SAT on
each of the single-output circuits , one at a time.
Then,

.
In this scenario, the results of Sections 4.1 and 4.2 can be ap-

plied to multi-output circuits as follows. Given a multi-output cir-
cuit and a set of node
orderings for the single-output circuits , the notion
of cut-width as given by Definition 4.1 can be extended as:

(4.4)

The minimum cut-width generalizes on similar lines,
except now the minimum is over all possible sets of orderings .
Hence the running time of , (based on Algo-
rithm 1) can be bounded as:

where (4.5)

Similarly, Lemma 4.2 can be restated as:

Lemma 4.3 Given a multi-output Boolean network , for any
set of orderings of the variables

and any fault on , an ordering of the
variables of such that

(4.6)

In the following we define a class of circuits known as log-bounded-
width circuits and show that by employing Algorithm 1 ATPG
can be efficiently performed on these circuits. We also prove that

-bounded circuits (see Section 3.2) lie within the class of log-
bounded-width circuits (see [7] for proofs).

Definition 5.1 A given multi-output circuit is log-bounded-
width if for each single stuck-at fault on , there exists a set
of orderings of the variables , such that

(5.1)

Lemma 5.1 Given a log-bounded-width circuit and any single
stuck-at fault on , test generation for can be accomplished in
time polynomial in the size of the circuit .

Lemma 5.2 Given a -ary tree , there exists an ordering , of
the variables such that .

Theorem 5.1 Any -bounded circuit, for a given constant is log-
bounded-width.

As shown above, tree circuits are of log-bounded-width. Intu-
itively, reconvergence tends to increase circuit cut-width. But, as
long as the circuits are sufficiently “tree-like” the log-bounded-
width property could be expected to apply. The locality of re-
convergence required by -boundedness is just one instance of
this. In principle log-bounded-width simply requires a minimal-
ity of reconvergence and is therefore a more general property than

-boundedness.

From the discussion on circuit cut-width it is apparent that cut-
width is intrinsically linked to the circuit topology. However, prac-
tical designs are not usually specified with topology in mind, and so
we cannot a priori identify log-bounded-width circuits. Thus, we
have performed an empirical study of cut-width for a set of circuits.
We consider the circuits from the MCNC91 and ISCAS85 multi-
level combinational benchmark suites and estimate their cut-widths.
By showing that the cut-widths for these circuits grow slowly with
the circuit size, we provide evidence that these circuits do in fact
have log-bounded-width and hence are easily testable.

The key element of our experimental setup is our measurement of
the cut-width of a single-output circuit . By definition, the mini-
mum cut-width is the value of the max-cut obtained under a min-cut
linear arrangement (MLA) [11] of . Since the MLA problem is
known to be NP-complete, we use a well-known algorithm [13]
to approximate the MLA, and hence estimate the cut-width for a
given circuit. This algorithm generates a placement based on recur-
sive mincut bipartitioning, until the partitions are sufficiently small

(a) MCNC91 logic benchmarks (11315 datapoints)

(b) ISCAS85 benchmarks (7389 datapoints)

Figure 8: Cut-width Results For Benchmark Circuits

and then performs an exact MLA for each of these partitions. We
used the HMETIS package [16] from the University of Minnesota
to perform the bipartitioning.

Note the ease of the overall ATPG problem for a circuit is related
to the difficulty of each individual ATPG-SAT instance for that cir-
cuit. Thus, we generated one data-point for each potential fault
in circuit . This data-point measures the approximate cut-width
of the circuit versus the size of this circuit. The size of the
circuit is an approximate measure of the size (number of vari-
ables) in the SAT instance and the cut-width
of this circuit is indicative of the complexity of solving this instance
(as per Equation 4.5 and Lemma 4.3).

Note that we do not necessarily advocate using MLA as a method
for solving ATPG. Though this method leads to a feasible imple-
mentation of Algorithm 1, we only use the MLA here to demon-
strate that we expect the benchmark circuits to be easily testable
due to their small cut-widths.

The structures of the MCNC91 and ISCAS85 benchmark circuits
vary widely; some circuits have nodes with over a dozen inputs
each, other circuits implement complex logic at each node, while
others are decomposed into 2-input AND gates and inverters. Ac-
tual implementations of circuits would not exhibit this wide varia-
tion of complexity; fanin and node complexity is necessarily limited

due to speed and size requirements on the gates. Moreover, for the
purposes of performing ATPG it is often desirable to map circuits
to simple AND and OR gates (with inverters), as this makes the cor-
responding SAT formulas much easier to derive. Thus, we mapped
the benchmark circuits to three (or fewer) input AND/OR gates, al-
lowing inversions. The tech_decomp procedure from the logic
optimization package SIS [22] was used to perform this mapping.

As described above, for every potential fault in each circuit, we
determined the difficulty of solving the related ATPG-SAT instance
by finding an estimate for the cut-width of the subcircuit .
Figure 8(a) shows the results for the circuits identified as “logic”
circuits from the MCNC91 benchmark suite. We excluded circuit
t481, which we considered degenerate, having over 3800 nodes af-
ter gate mapping yet with only a single output. Figure 8(b) cor-
responds to the ISCAS85 combinational benchmark circuits. We
omitted the circuits C3540 and C6288 in this analysis, due to limita-
tions in our min-cut linear arrangement procedure. Our method ran
successfully for all the remaining benchmarks (48 from MCNC91
and 9 from ISCAS85).

Note that the growth of cut-width versus circuit size is small; on
the graphs we plot log curves fitted to the data points to illustrate
this. These curves proved to give the best least-squares fit to the data
[20], among linear (), logarithmic ()
and power () curves. These plots suggest that the cut-width
is roughly a logarithmic function of circuit size for these circuits,
and so we can expect these benchmarks to be easily testable. This
agrees with the empirical results from TEGUS (Figure 1).

To strengthen the evidence obtained from the above experiment, we
repeated the technique on artificially generated circuits [14], param-
eterized to topologically resemble circuits from the MCNC91 and
ISCAS85 suites. This allowed us to examine the growth of cut-
width for extremely large circuits. The complete results from this
experiment are presented in [7]; in summary, the same logarithmic
increase in cutwidth versus circuit size was seen for the generated
circuits as was observed for the actual benchmark circuits.

The concept of circuit-width has been used by researchers [1, 19]
to obtain upper bounds on the size of BDDs representing the cir-
cuit function. Binary decision diagrams (BDDs) and CNF Boolean
formulas are both representations of Boolean functions. Solving
CIRCUIT-SAT on a Boolean circuit could be done by doing a
“0” check on the BDD for . Alternatively, one can construct a
CNF Boolean formula and solve satisfiability on the formula
using a backtracking algorithm. In essence, a BDD and a back-
tracking tree represent the same entity, i.e. the Boolean space of the
function. However, our results have no direct relationship to the
BDD bounds.

Berman [1] gave a bound on the BDD size, for any topologi-
cal ordering of the circuit elements. This result was extended by
McMillan [19] for arbitrary orderings. McMillan’s result can be
summarized as follows. Given a single-output circuit , with
inputs, if the elements of can be linearly ordered such that over
all cross-sections of the linear arrangement, (forward width)
bounds the number of wires running in the forward direction and

(reverse width) bounds the number of wires in the reverse di-
rection, then the size of the BDD representing the output of can
be upper bounded by . This result differs from the result
presented in this paper on two counts.

Our definition of circuit cut-width is independent of the di-
rection of signal-flow (our characterization of width is on an
undirected hypergraph) and thus substantially different from

and in an operational sense.

The above result is exponential in the forward width and
double-exponential in the reverse width, while our result has
only a single exponential. We exploit this property in defining
the class of log-bounded-width circuits.

The key to these differences lies in the fact that BDDs represent
the intrinsic nature of a Boolean function, independent of the spe-
cific hardware implementation, while CIRCUIT-SAT formulas (as
per the construction of Section 2) are in one to one correspondence
with the circuit topology. The proof techniques used in the two
results reflect this difference. Therefore, the two results, although
similar in spirit, characterize different entities altogether.

We have presented one of the first attempts at reconciling the theo-
retical, worst case complexity of ATPG with the relative ease with
which practical instances of it are solved. For the purpose of analy-
sis we have employed a SAT based formulation of ATPG [18], with
a caching based variant of simple backtracking (see Section 4) used
to model the SAT solver.

Under this model of the algorithm the complexity of ATPG on a
given circuit has been characterized in terms of a topological prop-
erty of the circuit, namely the circuit cut-width. Theoretical argu-
ments and experimental results confirm that this property can be
used to predict polynomial runtimes of ATPG, for a wide range of
practical VLSI circuits.

Specifically, this analysis has been used to define a class of cir-
cuits called log-bounded-width circuits which we have shown to
be efficiently testable. Additionally, this class of circuits has been
shown to subsume the class of -bounded circuits. Our experiments
on a wide range of benchmark and generated circuits show that they
exhibit the log-bounded-width property. On an intuitive level the
log-bounded-width property essentially captures the “treeness” of
the circuit. As long as a circuit has limited reconvergence (not nec-
essarily local reconvergence), the log-bounded-width property can
be expected to apply.

More generally, algorithm analysis in CAD has seen two dis-
tinct eras. The first is the era in which little distinction was made
between the fundamental complexity of a problem that was be-
ing solved and the best known running time of a particular piece
of software to solve it. As algorithmic maturity improved and as
computational complexity concepts such as NP-hardness and NP-
completeness became more widely known a second era of algo-
rithmic analysis began. In this era developers of algorithms felt
obligated to perform some formal analysis of their algorithms and
show worst case computational complexity results. But soon it was
discovered that some algorithms attacking some NP-hard problems,
such as ATPG, were quite efficient, while those with provable poly-
nomial bounds had unacceptably high runtimes. As a result, worst-
case complexity analysis alone has been seen to be inadequate to
enable algorithm designers to anticipate and understand the run-
ning time of their algorithms in practice. To remedy this situation
we need to gain greater insight into the particular properties of the
objects, such as sequential circuit netlists, to which our algorithms
are applied, if we are to accurately understand the true computa-
tional complexity of the CAD problems that we must solve. Like
[8], this work aims to be one step in that direction.

Thanks to George Karypis and the rest of the HMETIS team, and
Mike Hutton and the circ/gen team, for providing key software
components. We are grateful to Christos Papadimitriou, Olivier
Coudert and Yuji Kukimoto for useful feedback and discussion.

[1] C. L. Berman. Circuit Width, Register Allocation and Ordered Binary Decision
Diagrams. IEEE Trans. CAD, 10(8):1059–1066, Aug 1991.

[2] E. Boros, Y. Crama, and P. L. Hammer. Polynomial-time Inference of All Valid
Implications for Horn and Related Formulae. Ann. Math Art. Intell., 1:21–32,
1990.

[3] D. Brand. Verification of Large Synthesized Designs. In IEEE ICCAD, pages
534–537, 1993.

[4] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. MIS: A
Multiple-Level Logic Optimization System. IEEE Trans. on CAD/ICAS, CAD-
6(6):1062–1082, Nov 1987.

[5] F. Brglez and H. Fujiwara. A Neural Netlist of 10 Combinational Benchmark
Circuits and a Target Translator in Fortran. In Intl. Symp. on Circuits and Sys-
tems, Jun 1985.

[6] K.-T. Cheng and L. A. Entrena. Multi-level Logic Optimization by Redundancy
Addition and Removal. In European Conference on Design Automation, pages
373–377, Jun 1993.

[7] P. Chong, M. R. Prasad, and K. Keutzer. Why is ATPG Easy ? Technical Report
UCB/ERL M99/9, ERL, University of California, Berkeley, Feb 1999.

[8] O. Coudert. Exact Covering of Real-Life Graphs is Easy. In Proceedings of the
DAC, pages 121–126, Jun 1997.

[9] S. Devadas, H.-K. T. Ma, and A. Sangiovanni-Vincentelli. Logic Verification,
Testing and Their Relationship to Logic Synthesis. In Testing and Diagnosis of
VLSI and ULSI, pages 181–246. Kluwer Academic Publishers, 1988.

[10] H. Fujiwara. Computational Complexity of Controllability/Observability Prob-
lems for Combinaitonal Circuits. In Intl. Symp. on Fault-Tolerant Computing,
pages 64–69, Jun 1988.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[12] J. Gu, P. W. Purdom, J. Franco, and B. W. Wah. Algorithms for the Satisfia-
bility (SAT) Problem: A Survey. DIMACS Series in Discrete Mathematics and
Computer Science, 35:19–151, 1997.

[13] D. S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems.
PWS Publishing Company, 1997.

[14] M. Hutton, J. Grossman, J. Rose, and D. Corneil. Characterization and Param-
terized Random Generation of Digital Circuits. In 33rd Design Automation Con-
ference, pages 94–99, 1996.

[15] O. H. Ibarra and S. K. Sahni. Polynomially Complete Fault Detection Problems.
IEEE Trans. Computers, C-24(3):242–249, Mar 1975.

[16] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel Hypergraph Par-
titioning: Application in VLSI Domain. In 34th Design Automation Conference,
pages 526–529, 1997.

[17] A. Kuehlmann, A. Srinivasan, and D. P. LaPotin. Verity - A Formal Verification
Program for Custom CMOS Circuits. IBM Journal of Research and Develop-
ment, 39:149–165, 1995.

[18] T. Larrabee. Efficient Generation of Test Patterns Using Boolean Difference. In
Intl. Test Conference, pages 795–801, 1989.

[19] K. L. McMillan. Symbolic model checking: An approach to the state explosion
problem. PhD thesis, School of Computer Science, Carnegie Mellon University,
1992.

[20] S. L. Meyer. Data Analysis For Scientists and Engineers. Wiley and Sons, 1975.

[21] P. W. Purdom and C. A. Brown. Polynomial-Average-Time Satisfiability Prob-
lems. Information Sciences, 41:23–42, 1987.

[22] E. M. Sentovich et al. SIS: A System for Sequential Circuit Synthesis. Technical
Report UCB/ERL M92/41, ERL, College of Engineering, University of Califor-
nia, Berkeley, May 1998.

[23] J. P. M. Silva and K. A. Sakallah. GRASP - A New Search Algorithm for Satis-
fiability. In ICCAD, pages 220–227, 1996.

[24] P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Combinational
Test Generation Using Satisfiability. IEEE Trans. on CAD/ICAS, 15(9):1167–
1176, Sep 1996.

[25] T. W. Williams and K. Parker. Testing Logic Networks and Designing for Testa-
bility. Computer, pages 9–21, Oct 1979.

[26] S. Yang. Logic Synthesis and Optimization Benchmarks User Guide, Version
3.0. Technical report, Microelectronics Center of North Carolina, 1991.

