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Abstract

The goals and targets included in the 2030 Agenda compiled by the United Nations want to stimulate action in areas of 
critical importance for humanity and the Earth. These goals and targets regard everyone on Earth from both the health 
and economic and social perspectives. Reaching these goals means to deal with Complex Systems. Therefore, Complexity 
Science is undoubtedly valuable. However, it needs to extend its scope and focus on some specific objectives. This article 
proposes a development of Complexity Science that will bring benefits for achieving the United Nations’ aims. It presents 
a list of the features shared by all the Complex Systems involved in the 2030 Agenda. It shows the reasons why there are 
certain limitations in the prediction of Complex Systems’ behaviors. It highlights that such limitations raise ethical issues 
whenever new technologies interfere with the dynamics of Complex Systems, such as human beings and the environment. 
Finally, new methodological approaches and promising research lines to face Complexity Challenges included in the 2030 
Agenda are put forward.

Keywords Complex Systems · Networks · Out-of-equilibrium thermodynamics · Emergence · Computational Complexity · 
Natural Computing

1 Introduction

The Heads of State and Government and High Representa-
tives, meeting at the United Nations Headquarters in New 
York in September 2015, have made a historic decision on 
a comprehensive, far-reaching and people-centered set of 
global Sustainable Development Goals and targets (UN Gen-
eral and Assembly 2015). The Goals and targets, included 
in the 2030 Agenda, want to stimulate action in areas of 
critical importance for humanity and the Earth. These goals 
and targets regard the twenty-first century challenges that are 
global because they involve everyone on Earth under both 
the health and economic and social points of view (Harari 
2018; Martin 2007; Lufkin 2017; Royal Geog. Society 
2020).

The current pandemic (COVID-19) caused by a novel 
coronavirus (SARS-COV-2) is a concrete example of what 

is a global challenge (Frazer 2020). Similar examples are 
the epidemics of AIDS, tuberculosis, malaria, and neglected 
tropical diseases, hepatitis, waterborne and other commu-
nicable diseases. All these cases are included in the third 
goal of 2030 Agenda, which regards good human health and 
well-being.

Other examples of the twenty-first century challenges, 
included in the 2030 Agenda, concern about the Economy. 
The overarching goal of the United Nation is to originate a 
truly Sustainable Macro-Economy by transforming all the 
productive activities from linear to circular. This target is 
reachable if goods that are at the end of their service life are 
turned into resources for others, minimizing waste (Stahel 
2016). Natural resources must not be exhausted through a 
responsible production and consumption, which is the con-
tent of the 12th goal of the 2030 Agenda. The access to 
affordable, reliable, sustainable, and modern energy should 
be ensured to every nation by promoting the exploitation of 
renewable energies, according to the 7th goal of the 2030 
Agenda.

Manufacturing processes and all the other human activi-
ties should not perturb the fragile stability of natural eco-
systems, as declared in the 2nd (regarding agricultural 
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productivity), the 9th (regarding industrial production), the 
11th (regarding the cities and human settlements), and the 
14th (regarding fishing and the marine ecosystems) goals 
of the 2030 Agenda. The biodiversity of marine (14th goal) 
and terrestrial (the 15th goal) ecosystems should be carefully 
preserved. The climate change requires urgent interventions 
as stated in the 13th goal of the 2030 Agenda.

Economic and political choices should eradicate poverty 
from the Earth (according to the first goal) and avoid crises, 
such as the financial bubbles. The annihilation of poverty’s 
pockets in the world would promote social stability both 
globally and locally. The probability of wars, social unrest, 
and uncontrolled migrations would be reduced significantly.

Other relevant challenges regard justice in our societies. 
All the fundamental citizens’ rights should be defended (the 
10th goal), whatever is their class, age, gender (included in 
the 5th goal), and health state. Examples of these rights are 
inclusive and equitable quality education (included in the 4th 
goal); availability of water and sanitation for all (declared 
as the 6th goal); full and productive employment and decent 
work for all adults, avoiding slavery and forms of child labor 
(included in the 8th goal); access to justice for all as men-
tioned in the 16th goal. The World Wide Web has revolu-
tionized the diffusion of news and opinions, transforming 
the entire world into a global agora. Our democracies and 
free wills are at risk now more than ever due to the possible 
spreading of fake news. Aware of the fact that we are all 
strictly interconnected in this world, the accomplishment 
of the goals and targets of the 2030 Agenda requires the 
involvement of every nation and every citizen (as declared 
in the 17th goal).

In a nutshell, all the challenges that humanity is facing 
regard:

1. every human being and his psycho-physical well-being 
that depends primarily on his brain and immune system;

2. the human societies;
3. the world economy;
4. the ecosystems and the environment;
5. the climate of the Earth.

This is a list of Complex Systems. They are apparently 
so diverse and they are traditionally investigated by well-
distinct disciplines. The Complexity Science has the ambi-
tious aims of

• pinpointing the features shared by all those Complex Sys-
tems;

• delving more deeply their knowledge;
• spreading their interdisciplinary insight among all the 

members of our societies, and in particular the young 
generations, researchers, teachers, and the public and 
private managers.

The purpose of this paper is to advocate that Complex-
ity Science can play a relevant role in accomplishing the 
17 goals fixed by the members of the United Nation in the 
2030 Agenda. This paper is structured as follows: Sect. 2 
presents the features shared by the Complex Systems listed 
above; Sect. 3 explains the reasons why it is difficult to pre-
dict the behavior of those systems; Sect. 4 shows that our 
limitations in scientific predictability make many cutting-
edge technologies highly disputable and raise ethical issues. 
Finally, Sect. 5 proposes strategies to investigate the Com-
plex Systems more in depth for helping humanity to reach 
the goals of the 2030 Agenda. Section 6 reports conclusions 
and perspectives.

2  The features of Complex Systems

What are Complex Systems? There is no commonly 
accepted definition of what a Complex System is, and thus, 
there are many different perspectives and opinions on the 
subject (Newman 2011; Mitchell 2009; Badii and Politi 
1997; Johnson 2009; Gell-Mann 1995; Caldarelli 2020; 
Charbonneau 2017; Amaral and Ottino 2004; Corning 1998; 
Crutchfield and Machta 2011; Ladyman et al. 2013; Gen-
tili 2018a; Ladyman and Wiesner 2020). We might claim 
that every discipline has its definition of Complexity. How-
ever, the Complexity Science has defined its areas of inter-
est (Newman 2011). In physics and chemistry, examples of 
Complex Systems are superconductors, hydrodynamical 
fluids, chemical oscillators, and Turing patterns. In biology, 
every form of life is complex, even if it is unicellular. Multi-
cellular organizations such as the nervous and the immune 
systems are complex, as well. Of course, communities of 
living beings are also complex. These communities can be 
composed of members of the same species, and they can 
give rise to spontaneous phenomena of self-organization, 
such as bacterial colonies, flocking, schooling, and migra-
tions. The co-existence of different species in the same envi-
ronment generates complex ecosystems. The most complex 
living beings are undoubtedly humans. Humans are the most 
populous large mammal on Earth, reaching 7.8 billion indi-
viduals. Human activities are so pervasive that they seem to 
perturb the Earth’s complex climate, and the current geologi-
cal epoch has been named Anthropocene. Humans give rise 
to complex social structures, networks, and urban areas. The 
interactions between manufacturers, traders, and consumers 
originate the complex world economy.

All these examples of Complex Systems appear very 
different, and distinct scientific disciplines traditionally 
investigate them. One purpose of the Complexity Science 
is to point out their common features. In this work, we pro-
pose four attributes that, we believe, are shared by all the 
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mentioned Complex Systems, in particular by those involved 
in the goals of the 2030 Agenda and listed in the Introduc-
tion of this article.

2.1  Networks

All Complex Systems can be represented and described as 
networks. The representation of the Complex Systems as 
networks is also suggested by the etymology of the word 
“Complex”. The adjective “Complex” derives from the Latin 
verb “cum-plectere” which means “to intertwine together”. 
It is different from the etymology of the word “complicated”, 
even though “complex” and “complicated” are considered 
synonyms in the colloquial language. The adjective “com-
plicated” derives from the Latin verb “cum-plicare”, whose 
meaning is “to fold together”. What is “complicated” is 
“folded” and can be “unfolded”. On the other hand, what is 
“complex” is “interwoven” and it cannot be “unfolded”: it 
must be “untangled” (Gentili 2018a, b).

Networks are constituted by nodes and edges or links 
(Newman 2010). The nodes are the elements of the network, 
whereas the edges are the relationships among the nodes. 
The network representation can be applied to all Complex 
Systems. Superconductors, hydrodynamical fluids, chemical 
oscillators, and Turing patterns appear as continuous at the 
macroscopic level, but they can be described as networks at 
two different spatial scales. At the atomic scale (when the 
spatial dimensions are in between Å and tens of Å), every 
constitutive molecule plays as a node of a network whose 
links are the intermolecular forces. At the microscopic level 
(when the spatial scale is in between tens and hundreds of 
nm), these continuous systems are representable as a grid 
of mesoscopic dynamical systems interplaying recipro-
cally. Even all those Complex Systems that are the focuses 
of the 2030 Agenda goals can be described as networks (see 
Table 1). In a society, there are a huge number of possible 
networks, wherein the nodes are the individuals or groups 
of them, and the links are their mutual relationships, such 
as friendship, communication, family (Freeman 2004; Was-
serman and Faust 1994). In the world economy, there is a 
large family of different networks, which stems from the 
fact that there are different building blocks for defining the 
nodes in an economic network (Smith and White 1992; 

Hughes and Nagurney 1992). For instance, if the nodes are 
the countries, the economic edges can be their trading rela-
tions (Emmert-Streib et al. 2018). In the nervous system, 
the nodes might be the single neurons and the links are the 
synaptic connections (Telesford et al. 2011). In the immune 
system, the basic nodes are the immune cells and the links 
are the signaling molecules, such as the cell-surface recep-
tors and secreted molecules (Rieckmann et al. 2017; Shi 
et al. 2020). In biological ecosystems, the species are the 
nodes and their trophic and symbiotic interactions are the 
edges (Dunne et al. 2002; Krause et al. 2003). The climate 
can be represented as a network if the nodes are identified 
as the sites in a spatial grid of the underlying global climate 
dataset and the edges are related to the degree of statisti-
cal similarity (that may be related to dependence) between 
the corresponding pairs of time series taken from climate 
records (Tsonis and Roebber 2004; Donges et al. 2009).

Beyond the number of nodes and edges, two other proper-
ties are valuable to describe a network quantitatively. One is 
the distance between nodes, which is measured by counting 
the number of links we need to pass through to go from one 
node to another. The most interesting path is that having the 
shortest distance ( sp ), i.e., the path with the smallest num-
ber of links between the selected nodes. The average of the 
shortest paths between all pairs of nodes, named as “mean 
path length” ( sp ), gives an idea of the overall navigability of 
a network. The other property that is useful to characterize 
a network is its clustering. The clustering coefficient C of a 
node represents the fraction of pairs of neighbors that are 
connected to one another. The average clustering coefficient, 
C , of a network quantifies the tendency of the nodes of that 
network to form clusters.

After an analysis of the properties of several real net-
works, six principal architectures have been proposed so far 
(see Table 2). One architecture is that of “regular networks” 
(or “lattices”). As the same name suggests, in a regular net-
work, every node has the same degree. The degree distri-
bution P(d) is a delta-Kronecker function. The mean path 
length for a D-dimensional lattice with N nodes is long and 
equal to sp ∼ N

1∕D (Amaral and Ottino 2004). The clustering 
is high. The randomization of a fraction of the links in the 
“lattice” determines a significant reduction of sp . Therefore, 
the “regular network” transforms in a “small-world network” 

Table 1  Examples of Complex 
Systems described as networks 
with nodes and links

Complex Systems Nodes Links

Human societies Individuals Mutual relationships
World economy Countries Trading relations
Nervous system Neurons Synaptic connections
Immune system Immune cells Signaling molecules
Biological ecosystems Species Symbiotic and trophic relations

World climate Sites of a spatial grid Correlations of the time series
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Table 2  Types of networks architectures and their properties



121Rendiconti Lincei. Scienze Fisiche e Naturali (2021) 32:117–134 

1 3

(Watts and Strogatz 1998). The substitution of short-range 
edges with long-range ones creates shortcuts between nodes 
that would otherwise be much farther apart. In a “small-
world network”, C maintains high and P(d) is still a discrete 
function. The complete randomization of the links of a “lat-
tice” generates a “random network”. In a “random network”, 
P(d) is a Poisson function peaked at the average value of 
the degree d , and decaying exponentially for d ≫ d (Erdös 
and Rényi 1960). Furthermore, sp , which is proportional 
to the logarithm of the number of nodes ( sp ∼ log(N) ), is 
shorter than that of a “small-world network”; the cluster-
ing coefficient is low and independent of the nodes’ degrees 
(Barabási and Oltvai 2004). C decreases as N−1 , i.e., the 
number of nodes in the network. Another possible architec-
ture model is the “scale-free network”. Its degree distribu-
tion approximates a power-law of the type P(d) ∼ d

−� , with 
� being a positive constant, usually included between 2 and 3 
(Barabási and Oltvai 2004). This degree distribution implies 
that most nodes have low degree, and just a few have high 
degrees. The nodes that are highly interconnected are called 
hubs. The power-law distribution appears as a straight line 
on a log–log plot (see Table 2). The “scale-free networks” 
have a sp ∼ log( log(N)) that is significantly shorter than 
those characterizing “random and small-word networks”. 
Finally, C(d) is high and independent of d . If a network 
shows distinct groups of nodes, it is a “modular network” 
(see the graphical example of Table 2). Nodes within each 
module are highly interconnected, whereas nodes bridging 
distinct modules have low degree. The degree distribution of 
a “modular network” is discrete: most of the nodes have high 
degrees and just a few sparse interconnectivity. The average 
clustering coefficient is high. When clusters of nodes are 
combined in an iterative manner, a “hierarchical network” 
is generated (see the example of Table 2). In a “hierarchi-
cal network”, both P(d) and C(d) are power-law functions 
(Ravasz and Barabási 2003): nodes that appear in the center 
of the network have the largest degree and the smallest clus-
tering coefficient, while the nodes at the periphery have low 
degrees and large clustering coefficients.

Real complex networks are difficult to be studied (Stro-
gatz 2001; Barabási 2014; Caldarelli and Catanzaro 2012; 
Caldarelli and Vespignani 2007). They might be intricate 
and challenging to be untangled. The connections might 
have different strengths and effects; nodes are often diverse. 
Moreover, real networks are dynamic: both the links and 
the nodes’ internal states can change non-linearly in time. 
The changes in the nodes’ features influence the types and 
strengths of the links and vice versa. Despite all these dif-
ficulties, the investigation of the properties of the Complex 
Systems, in fields ranging from cell biology to business and 
climate, has so far revealed that many of them show two 
attributes of the “small-world networks”: a short mean path 
length and a high clustering coefficient (Albert and Barabási 

2002). “Small-world networks” guarantee an enhanced sig-
nal-propagation speed, computational power, synchroniz-
ability, and fast spread of epidemics and fads (Watts and 
Strogatz 1998). The degree distributions of the complex 
networks are often power-law P(d) ∼ d

−� . This evidence 
demonstrates that many Complex Systems are “scale-free 
networks”. Their diffusion is due to the fact that real net-
works tend to grow continuously, adding always new nodes. 
The new nodes connect most likely to the nodes that already 
have many links, according to a process known as prefer-
ential attachment (Barabási and Albert 1999). The overall 
topology of the “scale-free networks” is robust against ran-
dom failures that involve most likely nodes with low con-
nectivity, whereas it is vulnerable to attacks that regard hubs. 
The removal of a key hub splinters the original network into 
smaller clusters of nodes (Albert et al. 2000). Finally, it has 
been discovered that real networks that are scale-free and 
devoid of topological constraints, such as limitations in the 
links’ length, have hierarchical topology. Distinct modules 
are connected hierarchically, transforming their clustering 
coefficient in a power-law function of the degree: C(d) ∼ d

−1 
(Ravasz and Barabási 2003).

2.2  Out-of-equilibrium

Complex Systems are out-of-equilibrium in the thermody-
namic sense. Most of them are open systems because they 
exchange both matter and energy with the surrounding 
environment. There is probably one example of a Complex 
System that is isolated, and it is our universe, which is pos-
tulated to exchange neither energy nor matter. The universe 
is maintained far-from-equilibrium by its large internal 
gradients.

If a Complex System is constituted only by inanimate 
matter, its behavior is driven by force fields. On the other 
hand, if a Complex System also involves living beings, its 
behavior depends on not only the force fields but also the 
information. As far as we know, life, as we conceive it, is 
present only on Earth, and despite the mesmerizing variety 
of life forms, it is possible to pinpoint some features shared 
by all living beings. They are summarized below and embed-
ded into three sets regarding (1) the variable information, 
(2) life cycle, and (3) adaptation–acclimation–evolution, 
respectively.

(1) Information variable: The first peculiarity of living 
beings is that of exploiting matter and energy to encode, col-
lect, store, process, and send information (Roederer 2005; 
Walker et al. 2017). All living beings are “Information Gather-
ing and Utilizing Systems (IGUSs)” due to their ability to pro-
cess the messages about the environment, to make decisions on 
their actions (Gell-Mann 1994; Zurek 1990; Wheeler 1990). 
Information is used by living beings to reach their purposes. 
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The basic aims common to every living being are those of 
surviving and reproducing. This quality is called teleonomy 
(Monod 1971).

(2) Life cycle: Every living being is an open system, char-
acterized by a boundary that delimits it from the rest of the 
environment. It has a birth, a life during which it grows and 
ages. It is able to self-maintain and self-reproduce, according 
to the autopoiesis theory (Maturana and Valera 1980). It has 
the power of protecting itself from some intruders and harm-
ful elements. However, finally, it dies when all fundamental 
internal activities cease.

(3) Adaptation–acclimation–evolution: At the cellular level, 
the information required to live is preserved into the DNA. 
However, the DNA is not a blueprint of a living being because 
the sequence of genes does not have a one-to-one correspond-
ence with all its constitutive elements. Instead, a genome is 
an algorithm (Davies 2012) for building a living being, and 
a large amount of information for its development comes 
from the environment. During its lifetime, every living being 
is capable of adapting by adjusting its metabolic processes, 
acclimating by expressing new genes, evolving by changing its 
genome under an ever-changing environment (Rojdestvenski 
et al. 2003).

According to the theory of out-of-equilibrium thermody-
namics, living beings are dissipative structures that maintain 
order within them by dissipating energy and releasing entropy 
in the surrounding environment (Prigogine and Lefever 1973). 
The evolutionary criteria for the out-of-equilibrium systems 
are under scrutiny. What maintains a system out-of-equilib-
rium is the presence of one or more forces ( F

i
 ), which generate 

fluxes ( J
i
 ). The sum of the products of the conjugated forces 

and flows defines the entropy production ( P∗ ) of any out-of-
equilibrium system:

For instance, when the force is a thermal gradient 
(

F
i
= ∇⃗

(

1

T

))

 , the flow is the heat conduction 
(

Ji =
dQ

dt

)

 and 

the entropy production is

When the forces are constant, the system evolves up to reach 
a stationary state or a self-organized critical and dissipative 
state, where P∗ extremizes (Kondepudi and Prigogine 2015). 
For systems that work in the linear regime, i.e., when the rela-
tionships between flows and forces are linear ( J

i
=

∑

k
L

i,k
F

k
 

being L
i,k

 the proportionality constant between the flow J
i
 and 

the force F
k
 ), P∗ reaches a minimum at the stationary state:
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=
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.

(2)P∗
=

diS

dt
=

(

dQ

dt

)

∇⃗

(

1

T

)

.

(3)dP
∗
≤ 0.

On the other hand, for systems that are very far from equi-
librium, i.e., in the nonlinear regime (when the flows are 
nonlinear functions of the forces), it seems that a general 
evolutive criterion is instead the maximization of P∗ (Mar-
tyushev and Seleznev 2006):

The Maximum Entropy Production Principle is relatively 
new, and its range of applicability is not fully understood 
(Martyushev 2013). Probably, it might help to bridge the 
gap between the evolution of inanimate and animate systems 
(Goldenfeld and Woese 2011). It is worthwhile pursuing 
the thermodynamic description of Complex Systems for 
different reasons. First, thermodynamics is indispensable 
when the phenomena under investigation determine matter 
and energy transformations. Complex Systems and living 
beings exist in a world of energy and material fluxes. Life is 
a far-from-equilibrium system that maintains its local level 
of organization at the expense of the larger global entropy 
budget (Schrödinger 1944). Second, thermodynamics is 
the only scientific theory that contemplates irreversibility 
through the variable entropy (Kondepudi and Prigogine 
2015). Third, it is interdisciplinary, being applied in phys-
ics, chemistry, biology, ecology, economy, and sociology. 
Finally, thermodynamics is expected to extend its scope by 
including the variable information under the quantitative 
and qualitative point of view. Such supposed development 
will allow a deeper understanding of living matter (Gentili 
2018a, b; Dittrich 2015).

2.3  Emergent properties

Any Complex System is a network that exhibits one or more 
emergent properties. Emergence comes from the Latin “ex 
mergere”, which means to turn up, to appear as a result. 
Emergent properties come to light from the ensemble of 
the nodes and their relationships. The integration of the 
nodes’ features and their links gives rise to properties that 
belong to the whole network. The whole network is “more 
than the sum of its parts”, as properly alleged by Aristotle 
in his Metaphysics (Annas 1976). “The whole is not only 
greater than but very different from the sum of the parts”, 
as declared by Anderson, who participated in the founding 
workshops of the Santa Fe Institute, in his seminal paper 
(Anderson 1972) written at the dawn of the Complexity Sci-
ence’s development. In the history of philosophy and sci-
ence, different taxonomies of emergent properties have been 
proposed (Bar-Yam 2004; Clayton and Davies 2006; Corn-
ing 2002). A more recent classification is based on the idea 
that Complex Systems can be represented as networks, and 
every type of network originates its peculiar emergent prop-
erties (Gentili 2018a, b). For instance, the inanimate matter 

(4)dP
∗
≥ 0.
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that is at the thermodynamic equilibrium and at a specific 
temperature and pressure, can give rise to crystalline solid 
phases when its nodes, i.e., its molecules, are tightly bound 
and form a regular network (see Fig. 1a). If the molecular 
network is less regular because its nodes are linked through 
looser forces and do not have fixed spatial positions, it gives 
rise to a liquid phase (Fig. 1b). In the case of an even less 
tight network, due to weak intermolecular forces, the gas 
phase emerges (Fig. 1c). When the inanimate matter is far 
from the thermodynamic equilibrium, phenomena of tempo-
ral and spatial self-organization, but also chaotic dynamics 
can emerge. Examples are the oscillatory chemical reac-
tions, chemical waves, Turing patterns, periodic precipita-
tions, and convection of fluids that can be either ordered or 
turbulent (Gentili 2018a, b). In terms of networks’ topology, 
we might state that the symmetry breakings that occur when 
these phenomena of self-organization and chaos pop up are 
induced by transitions of the molecular networks from regu-
lar to modular ones. For instance, convection starts when 
large vertical thermal gradients promote the organization of 
molecules in micrometric clusters that move either upward 
or downward, according to Rayleigh’s model (see Fig. 1d). 
The molecular clusters or modules at higher temperatures 
and smaller densities move upward, whereas the molecular 
clusters or modules at lower temperatures and larger densi-
ties move downward. The micrometric molecular modules 
that interplay when they are physically in contact, sponta-
neously self-organize in a collective motion that gives rise 
to a macroscopic pattern of roll-shaped cells, having a long 
tubular geometry. Adjacent cylindrical rolls rotate with the 
same velocities, but in opposite directions: one clockwise 
and the other anti-clockwise. The fluid flow is laminar. 
When the thermal gradient becomes very large, a turbulent 
flow emerges wherein the microscopic modules have distinct 
velocities and are more independent: they do not move col-
lectively in an ordered manner.

Life is one of the most, if not the most, astonishing 
instances of an emergent property. The molecular constitu-
ents of every living being, are phospholipids, water, proteins, 

RNA, DNA, and salts. Taken separately, they never show 
the phenomenon of life. Life emerges only if all the neces-
sary molecular constituents are organized in that peculiar 
hierarchical network structure, which is a cell (Barabási 
and Oltvai 2004). In any living being describable as hierar-
chical network (Alcocer-Cuarón et al. 2014), both upward 
and downward causations are possible. Upward causation 
is when the features of lower levels determine the emergent 
properties of the higher levels. A trendy and dramatic exam-
ple is offered by the coronavirus SARS-CoV-2 that, after 
jumping into a human being, has triggered the pandemic 
COVID-19. A microscopic agent, such as the SARS-CoV-2 
virus, replicates and invades an entire organism after infect-
ing a cell. Then, the infection can spread among individu-
als, societies, nations, and affects our lives from both the 
medical and social, and economic points of view. Down-
ward causation is when the properties and events of higher 
levels influence those of the lower levels. An example is 
the act of eating food that ends in influencing intracellular 
events. A key element for generating top–down causation in 
a living being is the fractal-like structure of chromatin. The 
chromatin’s behavior is influenced by both the genes it has 
and the forces exerted on it from the rest of the cell and the 
cell’s environment (Davies 2012). The possibility of having 
both downward and upward causation gives living beings 
the power to adapt, acclimate, evolve, and influence their 
environment. Living beings and their societies are Complex 
Adaptive Systems (Miller and Page 2007).

Groups of living creatures can organize in different net-
work architectures and show peculiar emergent properties. 
For instance, there are certain types of fishes, such as the 
bigeye trevallies (Caranx sexfasciatus) that organize in 
school, and certain types of birds, such as the snow geese 
(Chen caerulescens atlantica), that assemble in flocks. Any 
school of fish or any flock of birds can be described as a 
network whose structure is comparable to that of a hydrogel. 
Schools of fishes and flocks of birds exhibit the emergent 
property of swarm intelligence, which is a collective and 
decentralized intelligent behavior (Bonabeau et al. 1999). 

Fig. 1  Schematic representations of a solid (a), liquid (b), gas (c) phase, and a fluid with convective motion (d). The molecules (black dots) are 
the nodes of the networks and their intermolecular forces are the corresponding edges
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The swarm intelligence derives from the interactions among 
the individuals or agents that follow a code of three simple 
rules based on local information. The first is the alignment 
rule: an individual assumes a velocity close to the mean 
value of its nearest neighbors. The second is the cohere rule: 
after alignment, an individual takes a small step in the direc-
tion that the center of mass of the group chooses. The third is 
the separate rule: an agent should always avoid any collision.

Social insects, such as the bees, organize in colonies, 
whose structures have some features of the scale-free net-
works (Fewell 2003). In a hive, the most apparent hub is 
the queen: she does not centrally control all the colony 
functions, but, in honeybees, she secrets a pheromone that 
represses reproduction in workers and maintains the colo-
ny’s cohesion. There are other hubs within the worker task 
groups: they are the scouts or dancers. Their essential role 
is to communicate the food location and availability, which 
assures the cohesion of the bees that go out to forage. As 
in any scale-free network, the removal of hubs disrupts the 
network severely, whereas the loss of any other type of nodes 
would have a much smaller effect.

Finally, the symbiotic and trophic relationships that can 
be encountered in any ecosystem give rise to modular net-
works. Each module represents a biological species. The 
cooperative or competitive actions between distinct spe-
cies originate emergent properties. One relevant example 
is the biological macroevolution. The ecosystem as a whole 
evolves to a “self-organized nonequilibrium state”, where 
periods of stasis alternate with avalanches of causally con-
nected evolutionary changes (Sneppen et al. 1995). The 
number of avalanches of a given size s obeys to a power-law 
of the type N(s) ≈ s

−1.1 based on fossil record. Avalanches 
of all sizes occur, including large catastrophic ones, with no 
needs of external causes, such as climate change or the fall 
of meteorites. The possibility of having extinctions of all 
sizes is an emergent property of ecosystem dynamics.

2.4  Towards a formal definition of Natural 
Complexity

After describing the principal features shared by all the 
Complex Systems, it is spontaneous to propose a formal 
definition of Natural Complexity, which is expected to be 
cross-disciplinary because it might be applied in distinct 
disciplines. Natural Complexity ( NaC ) is a multivariable 
function that depends on:

1. The Multiplicity ( Mu ) of the network, which is the num-
ber N of nodes. The nodes are described by the temporal 
functions of the type: x1(t), x2(t),… , x

N
(t).

2. The Interconnection ( Ic ) of the network, which is the 
number L of the links among the nodes. All the potential 
edges can be represented by the N × N adjacency matrix 

A that describes the system’s wiring and the interaction 
strength between the nodes:

3. The Diversity of the nodes ( Di
N

 ) when the functions, 
x1(t), x2(t),… , x

N
(t) , are not the same.

4. The Diversity of links ( Di
L
 ) when the elements of the 

matrix A are different.
5. The Variability of the nodes ( Va

N
 ), which depends on 

how much the functions x1(t), x2(t),… , x
N
(t) evolve in 

time.
6. The Variability of the links ( Va

L
 ), which depends on 

how much the coefficients of the adjacency matrix A 
(i.e., a

11
(t) , a12(t),… , a

NN
(t) ) change over time.

7. The Integration ( Ig ) of the nodes’ and links’ features, 
which gives rise to those properties that are called emer-
gent because they belong to the entire network. As it has 
been sustained in the previous paragraph, the emergent 
properties depend on the network’s architecture. The 
network’s topology can be inferred from parameters 
such as the degree distribution ( P(d) ), the clustering 
coefficient ( C ) of the nodes, and the mean path length 
( sp ) of the network. Furthermore, the emergent proper-
ties depend on the environment surrounding the system 
as proved by the Darwinian evolution of life (Adami 
et al. 2000).

In synthesis, Natural Complexity ( NaC ) results to be a 
seven-variable function of the type:

The evaluation of NaC should not be limited to just a 
few of the seven variables indicated in Eq. (6), but it should 
encompass all of them. In the literature, there are many defi-
nitions of Natural Complexity and each one refers to one 
or just a few of the variables appearing in Eq. (6). It is not 
satisfactory to focus on just some structural features (e.g., 
the degree distribution P(d) ) and use the Shannon Entropy 
or the Kolmogorov Complexity to sort out different Complex 
Systems (Morzy et al. 2017). It is not adequate to limit our 
attention just on the emergent properties or functions of a 
system (i.e., its Ig ), and use algorithms, such as the Func-
tional Information, for measuring the degree of Complexity 
(Szostak 2003; Hazen et al. 2007). In economy, a metrics of 
complexity based on the export baskets of the different coun-
tries (i.e., their “emergent goods and services”) has been 
proposed (Sciarra et al. 2020). The drawback of an incom-
plete Natural Complexity description is encountered even in 
sociology and ecology (McShea 1996). The complexity of 

(5)A =

⎛
⎜
⎜
⎝

a
11

⋯ a
1N

⋮ ⋱ ⋮

a
N1

⋯ a
NN

⎞
⎟
⎟
⎠

(6)NaC = f
(

Mu, Ic, DiN, DiL, VaN, VaL, Ig
)

.
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both human and animal societies has been most often deter-
mined by measuring the number of relationships ( Ic ) and/or 
the diversity of social relationships ( Di

L
 ) (Kappeler 2019).

Accurate structural, functional, and dynamical analyses 
of any Complex System are often challenging tasks (Farine 
and Whitehead 2015). However, when the experimental 
access to a Complex System is limited, luckily, it has been 
demonstrated that a well-selected subset of variables can 
contain sufficient information about the rest. Such variables 
have been called sensors (Liu et al. 2013). Furthermore, if 
the final goal is the control of the Complex System behavior, 
it could be enough to identify the set of driver nodes that can 
guide the system’s entire dynamics (Liu et al. 2011).

3  Predictability

All the Complex Systems, targeted by the United Nations 
and mentioned in the Introduction, share another common 
feature beyond those presented in the previous section. They 
cannot be described exhaustively. In other words, science 
finds insurmountable obstacles in predicting their behavior, 
especially in the long term. This feature outlines an opera-
tional definition of Complex Systems. There are three prin-
cipal reasons why this definition holds. These reasons are 
presented in the next three subparagraphs.

3.1  Computational Complexity

Most of the computational problems regarding Complex 
Systems are solvable but intractable. Examples are planning, 
scheduling, machine-learning, financial forecasting, design 
of computers’ hardware, solving the Schrödinger equation 
for determining molecular energies, the Traveling Salesman 
Problem (TSP) (Monasson et al. 1999), system identification 
(Cubitt et al. 2012), protein folding (Berger and Leighton 
1998), etc. According to the theory of Computational Com-
plexity (CoC) (Goldreich 2008), all the computational prob-
lems can be grouped into two sets: the set of Polynomial 
(P) problems and the set of Exponential problems. A prob-
lem is polynomial when the number of computational steps 
( n◦comp.steps ), required to find the exact solution of the 
problem, is a polynomial function of the dimension N of 
the problem:

with k = 1, 2,….
All the P problems are problems of recognition; they 

are solvable and tractable. It is possible to determine the 
exact solution in a reasonable lapse of time, whatever is the 
dimension (N) of the problem.

(7)n
◦

comp. steps ∝ N
k

A problem is exponential when the number of computa-
tional steps is an exponential function of N. For instance, in 
the case of the Schrödinger equation, n◦comp. steps ∝ 2N , 
wherein N is the number of particles. Unfortunately, when 
we face exponential problems having large dimensions 
(i.e., large N values), it is impossible to find the exact solu-
tion in any reasonable lapse of time, whatever is the rate 
of our computing machines. In the case of the TSP, the 
n◦comp. steps ∝ N! ≈ N

N . The TSP requires that, given a 
graph with nodes (i.e., a map with cities), edges, and costs 
associated with the edges (i.e., connections and their costs), 
the least-cost closed tour containing each of the nodes just 
once is determined (see Fig. 2).

For a map with five sites, the maximum num-
ber  o f  comput a t iona l  s t eps  i s  5! = 120  ;  i f 
N = 15  ,  n◦comp. steps ≈ 1.3 × 1012  ;  i f  N = 100  , 
n◦comp. steps ≈ 9 × 10157 (see Table 3). According to the 
TOP500 project (https ://www.top50 0.org/), which ranks the 
500 most powerful non-distributed computer systems in the 
world, twice a year, the fastest supercomputer in the world 

Fig. 2  The solution of the TSP requires that, given a map with a cer-
tain number of cities, flights, and costs, the salesman finds the least-
cost closed tour crossing each city just once

Table 3  The n◦ comp. steps and time required to solve the TSP 
assuming of having the Japanese supercomputer Fugaku to make the 
computations

n
◦
sites n◦comp. steps Time

5 120 ≈ 3 × 10
−16

s

15 15! ≈ 1.3 × 1012
≈ 3 × 10

−6
s

100 100! ≈ 9 × 10157
≈ 2 × 10

+140
s

https://www.top500.org/
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in June 2020 is the Japanese Fugaku. It reaches the astonish-
ing computational rate of 415.5 PFlops/s (1 PFlops/s cor-
responds to 1 × 1015 floating-point operations per second). 
With the availability of Fugaku, the time required to solve 
the TSP is really short when N = 5 or N = 15 (see Table 3). 
It becomes extremely long when N = 100 : it is 2 × 10

+140
s , 

which corresponds to ≈ 6.4 × 10132 years . This amount of 
time is unreasonable. Suffice to think that it is enormously 
longer than the age of the universe, which has been esti-
mated to be 14 × 109 years . It is evident that it is necessary 
to abandon the idea of finding the exact solutions of large 
exponential problems if the only possible algorithm is that 
of brute force.1

The exponential problems with large N are intractable. 
They need to be transformed in Non-deterministic Poly-
nomial problems or NP-problems. In other words, plausi-
ble solutions are generated non-deterministically through 
heuristic algorithms, and they are evaluated after fixing 
an arbitrary criterion of acceptability. The original expo-
nential problems are handled as if they were polynomial 
because they are reduced to recognize if the solutions, gen-
erated non-deterministically, verify the imposed conditions 
or not. Mathematicians, computer scientists, and polymath 
scientists are contriving brand-new heuristic algorithms to 
achieve acceptable solutions to the NP-problems in always 
shorter times. Meanwhile, others try to figure out if there 
exist algorithms that can reduce the NP to P problems, or 
this reduction is impossible. If the NP were reduced to P 
problems, humanity would become able to understand 
nature as never before. As Kurt Gödel declared in a letter 
to John Von Neumann, in 1956, the discovery that the NPs 
are reducible to P problems would have “consequences of 
the greatest magnitude” (Sipser 1992). Human life would 
not be the same. Everything would be much more efficient 
(Fortnow 2009). The transportation schedules would be 
optimized, allowing people and goods to move quicker and 
cheaper. Manufacturers and business people would improve 
their production processes and increase profits. It would 
become easier to find out a vaccine for pandemics, such as 
COVID-19, and new effective treatments for incurable dis-
eases, make weather forecasts, predict catastrophic events, 
and the trends in stock markets. Humanity would have new 
valuable tools and methods to tackle the twenty-first century 
challenges. This is the reason why the Clay Mathematics 
Institute in Cambridge, Massachusetts, has named “P versus 
NP” as one of its “Millennium” problems. It offers one mil-
lion dollars to anyone who provides verified proof that either 
NP = P or NP ≠ P.

3.2  Variable patterns

Complex Systems exhibit variable patterns. Variable pat-
terns are objects (both inanimate and animate) and events, 
whose recognition is made difficult by their multiple fea-
tures, variability, and extreme sensitivity on the context. 
Examples of variable patterns are human faces and voices, 
fingerprints, handwritten cursive words and numbers, pat-
terns and symptoms in medical diagnosis, patterns in appar-
ently uncorrelated experimental data, aperiodic time series, 
political and social events. We need to formulate algorithms 
for recognizing every type of pattern, whatever is their con-
text. The traditional steps followed to recognize variable pat-
terns are: (1) data acquisition by instruments; (2) selection 
of the representative features of the pattern; (3) application 
of an algorithm for the classification step. So far, different 
statistical (Jain et al. 2000) and structural algorithms, along 
with artificial neural networks’ algorithms, have been pro-
posed for recognizing variable patterns (Bishop 2006). All 
of them suffer in universality and effectiveness.

The difficulty in recognizing variable patterns and 
describing Complex Systems (Lloyd 2001) highlights a third 
type of complexity that we might name as Descriptive Com-
plexity. The Descriptive Complexity is related to the total 
information needed to describe any Complex System and its 
variable patterns. Such information consists of two contribu-
tions, as outlined by the Nobel prize Gell-Mann and Lloyd 
(1996). The first contribution is the information needed to 
describe regular and rule-governed features, named as Effec-
tive Complexity. The second one is the information required 
to describe irregular and apparently random features, and it 
is connected to probability. It is useful to encode the descrip-
tion of the variable pattern into a bit string. For such string, 
we can make use of the concept of Algorithmic Informa-
tion Content (AIC),2 which is a kind of minimum descrip-
tion length. The AIC of the variable pattern is the length 
of the shortest program that will allow a given universal 
computer to print out the string and then halt. The AIC of 
the string is split into two terms: one for regularities and the 
other for features considered as incidental or random. The 
sum of the two contributions can be defined as Descriptive 
Complexity (DEC). The minimum description length of the 
regularities of the pattern represents Effective Complexity. 
It is worthwhile noticing that the Effective Complexity is 
context-dependent and even subjective. It depends on the 
coarse-graining, i.e., the level of detail, at which the entity 
is described, the language used to describe it, the previous 
knowledge and understanding, and the distinction made 
between regular and incidental attributes (Gell-Mann and 
Lloyd 2003).

1 The brute force solution of the TSP requires an exhaustive search 
that consists in measuring the length of all the permutations of edges 
and, then, seeing which is the cheapest. 2 Also said Kolmogorov Complexity.
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3.3  The intrinsic limitations in the predictive power 
of science

Even if, one day, someone demonstrated that all the expo-
nential problems are reducible to polynomial problems, i.e., 
NP = P , and universally valid and effective algorithms were 
formulated to recognize variable patterns, certain limita-
tions in predicting the behavior of Complex Systems would 
remain.

As far as the microscopic world is concerned, the Uncer-
tainty Principle holds. It was formulated, at first, by Heisen-
berg, and then, recently, extended and experimentally con-
firmed (Erhart et al. 2012). According to the Uncertainty 
Principle, it is impossible to determine accurately and simul-
taneously relevant variables of any microscopic particle, 
such as its position and momentum. This inaccuracy places 
limits to the deterministic dream of predicting the dynamic 
of the entire universe starting from the description of its 
ultimate constitutive particles.

We might think of limiting the description of Com-
plex Systems at the macroscopic level, neglecting their 
microscopic constituents. However, Complex Systems can 
exhibit chaotic dynamics. Chaotic dynamics are aperiodic 
and extremely sensitive to the initial conditions (Feldman 
2012). The experimental determination of the initial condi-
tions is always affected by unavoidable uncertainties and 
experimental errors. Science is said to be exact not because 
it is based on infinitely exact data, but because its rigorous 
methodology allows estimating the extent of uncertainty 
associated with any quantitative determination. The inescap-
able uncertainty in defining any system’s initial conditions 
makes the chaotic dynamics unpredictable in the long term 
by definition.

4  Bioethical Complexity

The intrinsic limitations in predicting the behavior of Com-
plex Systems make many ethical issues that arise from the 
unstoppable technological development, highly disputable. 
There is a mutual positive feedback action between science 
and technology (Gentili 2018a, b). New scientific knowl-
edge, sooner or later, promotes brand new technologies, and, 
vice versa, new technical achievements allow us to deepen 
our exploration of natural phenomena and hence gather finer 
data. The relentless technological innovations push human-
ity on the edge of always new ethical arguments and debates. 
All these ethical issues sprout from a universal fundamen-
tal question: “Is always fair to do what technology makes 
doable?” It is a tormenting question that has accompanied 
humanity, since from the beginning. Suffice to think about 
the Greek myth of Prometheus, who defied Zeus by stealing 
fire and giving it to the humans.

There are technologies involved in productive processes, 
which affect negatively our environment and seem to induce 
global warming. Is it fair to quit these processes although 
they give work to many people? Can we find valid alterna-
tives without creating unemployment?

There are other technologies that can manipulate, 
reshape, and re-engineer life; they are in perpetual refine-
ment (Metzl 2019; Kozubek 2016; Doudna and Sternberg 
2018; Parrington 2016). The rate of technological devel-
opment is swift, and the governance structures struggle to 
keep up. Some technologies intervene at the beginning of a 
new life, and inevitable bioethical discussions arise. These 
discussions are dominated by questions such as “Is it fair to 
manipulate embryonic stem cells?”; “Are the techniques of 
in-vitro fertilization fair?”; “Is abortion acceptable?”; “Is it 
sure to create genetically modified organisms although we 
cannot predict all the consequences of their spreading?”. 
Some technologies can significantly enhance human intel-
lect and physiology. “Should such enhancement technologies 
be used although they can change the material essence of 
what has been a human being?” (Rana and Samples 2019). 
Finally, other bioethical issues concern about suffering and 
the end of life. The latter problems raise questions such as 
“Is euthanasia fair?”; “What about therapeutic obstinacy?”; 
“Is organ donation fair?”; “Is it fair to perform experiments 
with animals?”.

It is compelling to find universally shared solutions to all 
these bioethical concerns, but it is tough to achieve them. 
The difficulties originate from the absence of universal ethi-
cal principles and the limits of predictability we have about 
Complex Systems as humans, ecosystems, and the climate 
are. All the bioethical issues mentioned here constitute what 
we might define as Bioethical Complexity (BEC).

5  How to tackle the twenty-�rst century 
challenges?

Based on what has been stated in this work, it is reason-
able to name the challenges included in the 2030 Agenda as 
Complexity Challenges. They regard Natural Complexity 
(NaC) and Bioethical Complexity (BEC), which are con-
nected to Computational Complexity (CoC) and Descriptive 
Complexity (DeC) (see Fig. 3).

Which are promising strategies to tackle the Complexity 
Challenges? First, we need an update on the methodological 
approaches to deepen and develop further the Complexity 
Science.
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5.1  New methodological approaches

Complexity Science grounds on multi-disciplinarity; it 
requires interdisciplinarity, and it targets trans-disciplinar-
ity. Figure 4 depicts the difference. When a Complex Sys-
tem, such as a human being represented by the Vitruvian 
Man, is described by many distinct disciplines, illustrated 
as different geometrical figures, then a multidisciplinary, 
fragmented, and polyhedric picture is generated. When the 
distinct fields interact and pinpoint the methods and models 
they share, a disciplinary network is formed, and a more 
organic description of the Complex System emerges through 

interdisciplinarity. The final goal is trans-disciplinarity, 
which will be achieved when the Complexity Science will 
formulate a uniform description of Complex Systems, break-
ing down the traditional disciplinary boundaries. This article 
wants to be a contribution in this direction.

Meanwhile, interdisciplinary efforts are needed to tackle 
the Complexity Challenges (Morin 2001). The comprehen-
sion of Natural Complexity requires dealing with Computa-
tional and Descriptive Complexity, as well. All the scientific 
disciplines must cooperate to succeed: mathematics, com-
puter science, all the natural sciences, along with economic 
and social sciences. When we face Bioethical Complexity, 

Fig. 3  Scheme showing that 
the challenges of this century, 
included in the 17 goals of the 
2030 Agenda, are Complexity 
Challenges because they regard 
Natural Complexity (NaC), 
Bioethical Complexity (BEC), 
Computational Complexity 
(CoC), and Descriptive Com-
plexity (DeC)

Fig. 4  The description of any 
Complex System, such as a 
human being represented by 
the Vitruvian Man, requires to 
move from a multidisciplinary 
to an interdisciplinary approach 
based on Complexity Science. 
The final goal is to achieve a 
uniform and comprehensive 
transdisciplinary image of any 
Complex System
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the involvement of not only scientists but also jurists, philos-
ophers, theologians, and artists is necessary. All forms of art 
might be beneficial. Artists, guided by their intimate feelings 
and intuitions, may spark new ideas in human minds and 
promote the formulation of unconventional ways of reading 
reality. The basis for fruitful interdisciplinary cooperation 
must be prepared at school and university. The teaching of 
separate disciplines, without any intercommunication, pro-
duces a fragmentation that forbids an overarching vision of 
the reality (Morin 2001). Education must be reorganized 
(Dominici 2018). An initial and easy-to-implement strat-
egy could be that of proposing interdisciplinary courses on 
Complex Systems in the different faculties (Gentili 2019). 
The European Commission has recently funded a Strategic 
Partnership European project Erasmus + titled “Enhanc-
ing higher education on COmplex SYstems THINKING 
for sustainable development”, whose acronym is “COSY 
THINKING” (Project N°: 2020-1-SE01-KA203-077872). 
Its final objective is to design an interdisciplinary curriculum 
focused on the sustainable development required by the 2030 
Agenda, and based on Complexity Science.

The study of Complex Systems shows that reduction-
ism, which is a cornerstone of the scientific method, is not 
enough. A systemic approach is also required. Furthermore, 
the experimental investigation of Complex Systems reveals 
that we cannot rely upon the reproducibility of the experi-
ments. Most of the experiments involving Complex Systems 
are historical events. In this regard, the image that the philos-
opher Popper (1979) has put forward in his essay “Of clouds 
and clocks” is particularly appropriate. In the past, science 
had been occupied with clocks, i.e., simple and deterministic 
systems having reproducible behavior. On the other hand, 
nowadays, science has to deal with clouds, i.e., Complex 
Systems, having unique and hardly replicable behaviors.

The investigation of Complex Systems demands the col-
lection, storage, and elaboration of massive datasets, i.e., 
the so-called Big Data (Marx 2013). Therefore, it is compel-
ling to contrive smart methods and tools to face the enor-
mous volume and the fast stream of data, their variety (they 
might have many types of formats), variability, and their 
relationships. Computer simulations are alternative ways of 
performing experiments on Complex Systems. It is urgent 
to accelerate the rate of our computing machines and extend 
their memory space. New algorithms are inevitably needed 
to face the Complexity Challenges. There are two promising 
strategies to succeed (Gentili 2018a, b). One is by improving 
the electronic computers, and the other is the interdiscipli-
nary research line of Natural Computing.

5.2  Improving electronic computers

The first electronic computers appeared in the 1950s, and 
their architecture was devised by John Von Neumann (Burks 

et al. 1963). Although their performances have been improv-
ing vertiginously, the architecture has not changed so far. 
The computer’s principal elements are an active central 
processing unit (CPU) and a passive memory. The mem-
ory stores both the data and the instructions to manipulate 
the data. Data and instructions are encoded as binary dig-
its through electrical signals, and transistors are the basic 
switching elements for processing Boolean logic.

Since 1965, the pace of the electronic computers’ 
improvement has been described by Moore’s law stating 
that the number of transistors per chip doubles every 2 years 
(Moore 1995). By miniaturizing the transistors, the voltage 
needed to power them scales downward, too. The number 
of transistors per chip increases, and the number of compu-
tational steps that can be performed at the same cost grows. 
Sooner or later, Moore’s law will stop to hold because tran-
sistors will be made of a few atoms. Chips’ manufacturers 
are investing billions of dollars in ideating new computing 
technologies beyond Moore’s law (Waldrop 2016). One 
strategy consists in substituting silicon, which is the pri-
mary constituent of current transistors, with other materials, 
such as graphene (Schwierz 2010) and carbon nanotubes 
(Cavin et al. 2012). Another strategy consists in revolution-
izing the hierarchical structure of the memory by introduc-
ing memristors. A memristor is an electronic component 
whose resistance is not constant but depends on how much 
electric charge has flowed in what direction through it in the 
past (Yang et al. 2013). Memristors’ cells can be exploited 
to devise a RAM that is not volatile. A further solution to 
reduce data-movement demands and data access bottlenecks 
between the CPU and memory is to extend the electronic 
devices into a third, vertical dimension by stacking together 
microprocessors and memory chips (Sabry Aly et al. 2015).

The relentless improvement of electronic computers and 
cloud computing (Waldrop 2016), which consists of using 
a worldwide network of remote servers hosted on the Inter-
net to store, manage, and process data, bring benefits to the 
investigation of Complex Systems. However, there is another 
promising research line for winning the Complexity Chal-
lenges, and it is Natural Computing.

5.3  Natural Computing

Researchers working in the field of Natural Computing 
(Rozenberg et al. 2012; Gentili 2018a, b; Gentili 2018a, b) 
draw inspirations from nature to propose:

New algorithms;
New materials and architecture to compute;
New methodologies and models to interpret Natural Com-
plexity.
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The rationale is that any distinguishable physicochemi-
cal state of matter and energy can be used to encode infor-
mation; every natural transformation is a kind of computa-
tion. Within Natural Computing, two research programs are 
prominent.

In the first program, scientists mimic the features and 
the performances of the natural information systems, i.e., 
all those living systems that exploit matter and energy to 
encode, collect, store, process, and send information. The 
natural information systems to imitate are the living cells 
(also said Biomolecular Information Systems or BIS), the 
nervous systems (also named as Neural Information Systems 
or NIS), the immune systems (Immune Information Sys-
tems or IIS), and the societies (Social Information Systems 
or SIS). The mimicry of the natural information systems 
has promoted the development of different research lines, 
as shown in Fig. 5a.

In the second program, researchers exploit the physico-
chemical law to make computations (see Fig. 5b). Every 
physicochemical law describes a causal event, and any causal 

event can be conceived as a computation. The causes are the 
inputs, the effects are the outputs, and the law governing the 
transformation is the algorithm of the computation.

In agreement with the rationale of Natural Computing, 
the cognitive scientists Gallistel and King (2010) and the 
neuroscientist Marr (2010) have proposed a methodology to 
describe and understand Complex Systems. Such method-
ology requires an analysis of any Complex System at three 
levels. The first analysis is at the “computational level”. It 
consists in describing its transformations as if they were 
computations after determining the inputs and the outputs. 
The second analysis is at the “algorithmic level”. It con-
sists in formulating algorithms that might carry out the 
computations pointed out in the previous level of analysis. 
The third and conclusive analysis is at the “implementation 
level” and consists of looking for mechanisms to imple-
ment the algorithms. If the analyses at the three levels have 
been conducted properly, the mechanism found in the final 
analysis will be a plausible replication of the Complex Sys-
tem’s behavior. Hopefully, this methodology will allow us to 

Fig. 5  List of the Natural 
Information Systems and the 
research lines that derive from 
their imitation in (a); list of the 
physicochemical laws that can 
be exploited to make computa-
tions in (b)
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better understand Complex Systems and it will give us new 
tools to reach the goals of the 2030 Agenda. It will likely 
promote the formulation of a brand new transdisciplinary 
theory concerning Natural Complexity (Gentili 2018a, b). 
Based on what is looming, this transdisciplinary theory will 
have information as its key-variable. Information will be 
outlined not only from the quantitative but also the qualita-
tive, i.e., semantic point of view. Such expected theory will 
presumably give some clues about that mysterious event, 
which was the appearance of life on Earth roughly 3.5 billion 
years ago. The appearance of life on Earth was like a “phase 
transition” (Walker et al. 2017) from inanimate chemical 
systems, driven just by force fields, to the living chemical 
systems, able to exploit the matter and energy to encode, 
process, send, and store information. A clarification of this 
enigmatic event will have repercussions in our attempts to 
face Bioethical Complexity and develop new technologies, 
such as Chemical Artificial Intelligence (Gentili et al. 2016, 
2017; Bartolomei et al. 2020).

6  Conclusions

Do we need to investigate Complex Systems? The answer 
is, undoubtedly, yes. Paraphrasing what the famous Ger-
man mathematician David Hilbert (1862–1943 AD) was 
used to say: As long as a branch of science tries to face 
an abundance of problems, “so long it is alive; a lack of 
problems foreshadows extinction or the cessation of inde-
pendent development.” The Complexity Science is par-
ticularly alive because it is indispensable when facing the 
challenges included in the 2030 Agenda compiled by the 
United Nations. This article is a contribution to the devel-
opment of Complexity Science because it proposes a list of 
the features shared by all the Complex Systems involved in 
the 2030 Agenda and a preliminary transdisciplinary defini-
tion of Natural Complexity. Reaching the goals of the 2030 
Agenda is a tough task due to the limited predictability of 
the Complex Systems. The reasons why the behavior of 
Complex Systems is hard to be predicted in the long term 
are explained in this article. The awareness of limited pre-
dictability of Complex Systems makes many cutting-edge 
technologies highly disputable from an ethical point of view: 
those technologies affecting the climate and those manipu-
lating life in particular. Humanity cannot ignore dealing with 
Bioethical Complexity. However, to win all the challenges 
of this century, included those listed in the 2030 Agenda, 
it is necessary to update the methodologies, as explained 
in this article. In particular, the high and massive barrier 
separating the scientific and humanistic knowledge should 
be demolished to reach a genuinely transdisciplinary per-
spective of complexity. Finally, Natural Complexity might 
be partly untangled if we successfully face Computational 

and Descriptive Complexity. In this regard, it is urgent to 
improve our computing machines’ performances and con-
trive new ones, pursuing the research line of Natural Com-
puting. These efforts will bring to the formulation of a new 
theory on Complex Systems (Caldarelli et al. 2018) with rel-
evant benefits for the sustainable development of our world.
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