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Abstract 

 Fraction and decimal arithmetic are crucial for later mathematics achievement and 

for ability to succeed in many professions. Unfortunately, these capabilities pose large 

difficulties for many children and adults, and students’ proficiency in them has shown 

little sign of improvement over the past three decades. To summarize what is known 

about fraction and decimal arithmetic and to stimulate greater amounts of research in the 

area, we devoted this review to analyzing why learning fraction and decimal arithmetic is 

so difficult. We identify and discuss two types of difficulties: (1) Difficulties that are 

inherent to fraction and decimal arithmetic, and (2) Culturally contingent sources that 

could be reduced by improved instruction and prior knowledge of learners. We conclude 

the review by discussing commonalities among three interventions that have helped 

children overcome the difficulties of mastering fraction and decimal arithmetic. 
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Why Is Learning Fraction and Decimal Arithmetic So Difficult? 

 In 1978, as part of the National Assessment of Educational Progress (NAEP), 

more than 20,000 U.S. 8th graders (13- and 14-year-olds) were asked to choose the closest 

whole number to the sum of 12/13 + 7/8. The response options were 1, 2, 19, 21 and "I 

don't know". Only 24% of the students chose the correct answer, “2” (Carpenter, Corbitt, 

Kepner, Linquist, & Reys, 1980). The most common answer was “19”. 

 This lack of understanding proved not to be limited to fraction arithmetic. The 

1983 NAEP asked another large, representative sample of U.S. 8th graders to choose the 

closest whole number to the decimal arithmetic problem, 3.04 * 5.3. The response 

options were 1.6, 16, 160, 1600, and “I don’t know”. Only 21% of 8th graders chose the 

correct answer, 16 (Carpenter, Lindquist, Matthews, & Silver, 1983). The most common 

answer was “1600”. 

In the ensuing years, many efforts have been made to improve mathematics 

education. Governmental commissions on improving mathematics instruction (e.g., 

NMAP, 2008), national organizations of mathematics teachers (e.g., NCTM, 2007), 

practice guides sponsored by the U.S. Department of Education to convey research 

findings to teachers (e.g., Siegler et al., 2010), widely adopted textbooks (e.g., Everyday 

Mathematics), and innumerable research articles (e.g., Hiebert & Wearne, 1986) have 

advocated greater emphasis on conceptual understanding, especially conceptual 

understanding of fractions. (Here and throughout the review, we use the term fractions to 

refer to rational numbers expressed in a bipartite format (e.g., 3/4). We use the term 

decimals to refer to rational numbers expressed in base-10 notation (e.g., 0.12)). 
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To examine the effects of these calls for change, we recently presented the above-

cited fraction arithmetic question to 48 8th graders taking an algebra course. The students 

attended a suburban middle school in a fairly affluent area. Understanding of fraction 

addition seems to have changed little if at all in the 36 years between the two 

assessments. In 2014, 27% of the 8th graders identified “2” as the best estimate of 12/13 + 

7/8. Thus, after more than three decades, numerous rounds of education reforms, 

hundreds if not thousands of research studies on mathematics teaching and learning, and 

billions of dollars spent to effect educational change, little improvement was evident in 

students’ understanding of fraction arithmetic. 

 Such lack of progress is more disappointing than surprising. Many tests and 

research studies in the intervening years have documented students’ weak understanding 

of fractions (e.g., NAEP, 2004; Stigler, Givvin, & Thompson, 2010). The difficulty is not 

restricted to the U.S. or to fractions. Understanding of multiplication and division of 

decimals also is weak in countries that are top performers on international comparisons of 

mathematical achievement, for example China (e.g., Liu, Ding, Zong, & Zhang, 2014; 

PISA, 2012).  

 Given the importance of knowledge of rational numbers for subsequent academic 

and occupational success, this weak understanding of fraction and decimal arithmetic is a 

serious problem. Early proficiency with fractions uniquely predicts success in more 

advanced mathematics. Analyses of large datasets from the U.S. and the U.K. showed 

that knowledge of fractions (assessed primarily through performance on fraction 

arithmetic problems) in 5th grade is a unique predictor of general mathematic 

achievement in 10th grade. This was true after controlling for knowledge of whole 
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number arithmetic, verbal and nonverbal IQ, working memory, family education, race, 

ethnicity, and family income (Siegler et al., 2012). Other types of data have led to the 

same conclusion. For example, a nationally representative sample of 1,000 U.S. algebra 

teachers ranked poor knowledge of "rational numbers and operations involving fractions 

and decimals" as one of the two greatest obstacles preventing their students from learning 

algebra (Hoffer, Venkataraman, Hedberg, & Shagle, 2007).  

 The importance of fraction and decimal computation for academic success is not 

limited to mathematics courses. Rational number arithmetic is also ubiquitous in biology, 

physics, chemistry, engineering, economics, sociology, psychology, and many other 

areas. Knowledge in these areas, in turn, is central to many common jobs in which more 

advanced mathematics knowledge is not a prerequisite, such as registered nurse and 

pharmacist (e.g., for dosage calculation). Moreover, fraction and decimal arithmetic is 

common in daily life, for example in recipes (e.g., if 3/4 of a cup of flour is needed to 

make a dessert for 4 people, how much flour is needed for 6 people), and measurement 

(e.g., can a piece of wood 36 inches long be cut into 4 pieces each 8.75 inches long). 

Fraction and decimal arithmetic are also crucial to understanding basic statistical and 

probability information reported in media and to understanding home finance 

information, such as compound interest and the asymmetry of percent changes in stock 

prices (e.g., the price of a stock that decreases 2% one month and increases 2% the next is 

always lower than at the outset).  

Fraction and decimal arithmetic are also vital for theories of cognitive 

development in general and numerical development in particular. As with so many other 

topics, Piaget and his collaborators were probably the first to recognize the importance of 
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understanding of rational number topics, such as ratios and proportions, for a general 

understanding of cognitive development. Inhelder and Piaget (Inhelder & Piaget, 1958; 

Piaget & Inhelder, 1975) posited that acquiring understanding of ratios and proportions is 

crucial to the transition between concrete operations and formal operations that occurs at 

roughly age 12 or 13 years.  Indeed, Inhelder and Piaget’s (1958) classic book on 

development of formal operations placed great emphasis on this type of reasoning, using 

tasks such as balance scales, shadows projection, and probability to assess the 

development of understanding of proportionality in preadolescence and adolescence. 

Understanding fraction and decimal arithmetic requires understanding of the fractions 

and decimals themselves; indeed, as will be seen, failure to grasp fraction and decimal 

arithmetic often reflects a more basic lack of understanding of the component fractions 

and decimals. 

Fractions and decimals also have an inherently important role to play in domain 

specific theories (Carey, 2011), in particular theories of numerical development. 

Although most existing theories of numerical development have focused entirely or 

almost entirely on whole numbers (e.g., Geary, 2006; Leslie, Gelman, & Gallistel, 2008; 

Wynn, 2002), encountering rational numbers provides children the opportunity to 

distinguish between principles that are true for natural numbers (whole numbers greater 

than or equal to one) and principles that are true of numbers more generally. For 

example, within the set of natural numbers, each number has a unique predecessor and 

successor, but within the set of rational numbers there are always infinite other numbers 

between any two other numbers. Moreover, every natural number is represented by a 

unique symbol (e.g., 4), but every rational number can be represented by infinite 
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expressions (e.g., 4/1, 8/2, 4.0, 4.00), and so on. Encountering fractions and decimals also 

provides children the opportunity to learn that despite the many differences between 

natural and rational numbers, they share the common feature that both express 

magnitudes that can be located and ordered on number lines (Siegler, Thompson, & 

Schneider, 2011).  

Similarly, fraction arithmetic provides children the opportunity to learn that the 

effects of arithmetic operations on magnitudes vary with the numbers to which the 

operations are applied. For example, multiplying natural numbers never decreases either 

number’s magnitude, but multiplying two fractions or decimals from 0-1 always results 

in a product less than either multiplicand. Similarly, dividing by a natural number never 

results in a quotient greater than the number being divided, but dividing by a fraction or 

decimal from 0-1 always does. Thus, learning fraction and decimal arithmetic provides an 

opportunity to gain a deeper understanding of arithmetic operations, in particular of 

multiplication and division. In line with this analysis, Siegler & Lortie-Forgues (2014) 

suggested that numerical development can be seen as the progressive broadening of the 

set of numbers whose properties, including their magnitudes and the effects of arithmetic 

operations on those magnitudes, can be accurately represented.  

Consistent with their importance, fractions and decimals recently have been the 

subjects of an increasing amount of research. In the past five years, studies have 

examined developmental and individual differences in mental representations of fractions 

(DeWolf, Grounds, Bassok, & Holyoak, 2014; Fazio, Bailey, Thompson, & Siegler, 

2014; Gabriel, Szucs, & Content, 2013; Hecht & Vagi, 2012; Huber, Moeller, & Nuerk, 

2014; Jordan, et al., 2013; Meert, Gregoire, & Noel, 2009; Meert, Gregoire, Seron & 
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Noel, 2012; Schneider & Siegler, 2010; Siegler & Pyke, 2013), developmental and 

individual differences in mental representation of decimals (Huber, Klein, Willmes, 

Nuerk, & Moeller, 2014; Kallai & Tzelgov, 2014), predictors of later fraction knowledge 

(Bailey, Siegler, & Geary, 2014; Jordan et al., 2013; Vukovic et al., 2014), relations 

between fraction understanding and algebra (Booth & Newton, 2012; Booth, Newton, & 

Twiss-Garrity, 2014), and effects of interventions aiming at improving knowledge of 

fractions (Fuchs et al., 2013, 2014) and decimals (Durkin & Rittle-Johnson, 2012; Isotani 

et al., 2011; Rittle-Johnson & Schneider, 2014).  

 Most of this recent research has focused on understanding of individual fractions 

and decimals (e.g., understanding whether 4/5 is larger than 5/9 or where .833 goes on a 

0-1 number line). Fewer studies have investigated fraction arithmetic. However, given the 

omnipresence of fraction and decimal arithmetic in many occupations and activities, their 

pivotal role in helping some people gain a deeper understanding of arithmetic operations 

than that needed to understand arithmetic with whole numbers, and the fact that people 

can have excellent knowledge of individual fractions or decimals without understanding 

arithmetic operations with them (Siegler & Lortie-Forgues, in press), development of 

rational number arithmetic seems worthy of serious attention.  

The remainder of this article is organized into four main sections. We first 

describe the development of knowledge of the four basic arithmetic operations with 

fractions and decimals, and the instructional environment in which these acquisitions 

occur. Next, we identify and describe a set of difficulties that are inherent to fraction and 

decimal arithmetic and that lead to specific types of misunderstandings and errors being 

widespread. After this, we describe culturally contingent variations in instruction and 



Fraction and Decimal Arithmetic       9 
 

prior knowledge of learners that influence the likelihood of children overcoming the 

difficulties and mastering fraction and decimal arithmetic. Finally, we describe several 

instructional interventions that have been successful in helping students overcome the 

difficulties in societies where many students fail to do so.  

Development of Fraction and Decimal Arithmetic  

Understanding development requires knowledge of the environments in which the 

development occurs. Therefore, we begin our review with a brief description of the 

educational environment in which students learn rational number arithmetic. The focus 

here and throughout this article is on acquisition of fraction and decimal arithmetic in the 

U.S., because more studies are available about how the process occurs in the U.S. than 

elsewhere. Data from other Western countries and from East Asia are cited when we have 

been able to find them and they provide relevant information. 

Environments in Which Children Learn Fraction Arithmetic 

The Common Core State Standards Initiative (CCSSI, 2010) provides useful 

information for understanding the environment in which children in the U.S. learn 

rational number arithmetic. The CCSSI has been adopted by more than 80% of U.S. 

states as official policy regarding which topics should be taught when. Moreover, the 

CCSSI recommendations have been incorporated on standardized assessments that 

themselves shape what is taught. Fully 92% of 366 middle school math teachers surveyed 

by Davis, Choppin, McDuffie, and Drake (2013) reported that new state assessments, 

which in most cases are designed to reflect the CCSSI goals, will influence their 

instruction. For these reasons, and because the timing corresponds to coverage in major 

U.S. textbook series such as Everyday Math, we use the CCSSI recommendations as a 
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guide to when children in the U.S. receive instruction in different aspects of rational 

number arithmetic.  

The CCSSI (2010) recommended that fraction arithmetic be a major topic of 

study in fourth, fifth, and sixth grade (roughly ages 9 to 12). Instruction begins with 

addition and subtraction of fractions with common denominators, proceeds to instruction 

in those operations with unequal denominators and to fraction multiplication, and then 

moves to fraction division. Reviewing the operations and teaching students how they can 

be applied to problems involving ratios, rates, and proportions are recommended for 

seventh and eighth grade. To the extent that these CCSSI recommendations are followed, 

substantial development of fraction arithmetic would be expected from fourth to eighth 

grade. 

Development of Fraction Arithmetic 

Even after this period of relatively intense instruction, however, performance is 

often poor. To illustrate the nature and magnitude of the problem, we will describe in 

some detail results from a study of the fraction arithmetic knowledge of 120 6th and 8th 

graders recruited from three public school districts near Pittsburgh, Pennsylvania (Siegler 

& Pyke, 2013). Sixth graders were studied because they would have received instruction 

in fraction arithmetic very recently; eighth graders were studied because they would have 

had experience with more advanced fractions problems (e.g., ratio, rate, and proportion 

problems), and would have had time to practice and consolidate the earlier instruction in 

fraction arithmetic. Children from all classrooms reported having been taught all four 

arithmetic operations with fractions.  
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Participants were presented 16 fraction arithmetic problems, four for each of the 

four arithmetic operations. On each operation, half of the problems had equal 

denominators, and half had unequal denominators. For each arithmetic operation, the four 

items were generated by combining 3/5 with 4/5, 1/5, 2/3, and 1/4 (e.g., 3/5+ 4/5, 

3/5+1/5, 3/5+2/3, and 3/5+1/4). Thus, all numbers in the arithmetic problems were five or 

less.  

The sixth graders in this study correctly answered only 41% of the fraction 

arithmetic problems, the 8th graders 57%. Performance was highest on fraction addition 

and subtraction (60% and 68% correct, respectively), followed by fraction multiplication 

(48%), and fraction division (20%). Equality of denominators had a large impact on 

accuracy of addition and subtraction: the increased procedural complexity associated with 

adding two fractions with unequal denominators led to less accurate performance on 

items with unequal denominators (55% and 62% for addition and subtraction, 

respectively), than on items with equal denominators (80% and 86%, respectively). 

Interestingly, even though the standard fraction multiplication procedure is not influenced 

by whether denominators of the multiplicands are equal, percent correct was lower on 

problems with equal than unequal denominators (36% vs. 59%). The reason was that 

when denominators were equal, students often confused the procedure for fraction 

multiplication with that for fraction addition and subtraction. This led to errors that 

involved keeping the denominator constant (e.g., 3/5 * 1/5 = 3/5), as with the correct 

procedure for addition (e.g., 3/5 + 1/5 = 4/5) and subtraction (3/5 – 1/5 = 2/5).  

 As in whole number arithmetic with younger children, strategy use on the fraction 

arithmetic problems was strikingly variable. Not only did different children use different 
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strategies, the same child often used different strategies on virtually identical pairs of 

problems. About 60% of the students used distinct procedures (usually one correct and 

one incorrect) for at least one arithmetic operation on virtually identical problems (e.g., 

3/5 * 1/5 and 3/5 * 4/5). Another type of variability involved errors: Children made the 

well documented whole number overextension errors (e.g., Ni & Zhou, 2005) that reflect 

inappropriate generalization from the corresponding whole number arithmetic procedures 

(e.g., 3/5 + 4/5 = 7/10), but they made at least as many wrong fraction operation errors, in 

which they inappropriately generalized procedures from other fraction arithmetic 

operations (e.g., 3/5 * 4/5 = 12/5). This variability was present among both 6th and 8th 

graders. The findings suggest that the students’ problem was not that they did not know 

the correct procedure, and not that they had a systematic misconception that fraction 

arithmetic was like whole number arithmetic, but rather that they were confused about 

which of several procedures was correct. This confusion led to a mix of correct 

procedures, independent whole number errors, and wrong fraction operation errors.  

It is important to note that the pattern of performance of children in the U.S. is not 

universal. On the same fraction arithmetic problems presented in Siegler and Pyke 

(2013), Chinese 6th graders scored almost three standard deviations higher than U.S. age 

peers, and were correct on 90% or more of problems on all four arithmetic operations 

(Bailey et al., 2015). However, the pattern is representative of results with U.S. children’s 

fraction arithmetic performance (Bailey, Hoard, Nugent, & Geary, 2012; Booth et al., 

2014; Byrnes & Wasik, 1991; Hecht, 1998; Hecht, Close, & Santisi, 2003; Hecht & Vagi, 

2010; Mazzocco & Devlin, 2008; Siegler et al., 2011). 

Environments in Which Children Learn Decimal Arithmetic 
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Decimal arithmetic is introduced slightly later than fraction arithmetic and taught 

primarily in two rather than three grades. The CCSSI proposes that in fifth grade, the four 

basic arithmetic operations should be introduced with numbers having one or two digits 

to the right of the decimal. Multi-digit decimal arithmetic is to be taught in sixth grade. 

Reviewing decimal arithmetic, like reviewing fraction arithmetic, is suggested for 

seventh grade, as is translating across decimals, fractions, and percentages.  

Despite fractions and decimals both representing rational numbers, the standard 

arithmetic procedures used with them are quite different. Unlike with fraction arithmetic, 

the standard procedures used for all decimal arithmetic operations closely resemble those 

used for whole number arithmetic, with the exception that decimal arithmetic requires 

correct placement of the decimal point. This exception is important, though, because the 

rules for placing the decimal point vary with the arithmetic operation and are rather 

opaque conceptually (to appreciate this, try to explain why 1.23 * 4.56 must generate a 

product with four decimal places). 

Development of Decimal Arithmetic 

To convey a sense of the development of decimal arithmetic, we focus on Hiebert 

and Wearne’s (1985) study of 670 fifth to ninth graders’ decimal arithmetic performance. 

For each arithmetic operation, they presented five or six problems that varied in the 

number of digits to the right of the decimal point of each operand (the numbers in the 

problem) and in whether there were equal or unequal numbers of digits to the right of the 

decimal point in the two operands.  

As with fraction arithmetic, substantial improvement occurred during this age 

range, but accuracy never reached very high levels. Between first semester of grade 6 and 
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second semester of grade 9, percent correct improved for addition from 20% to 80%, for 

subtraction from 21% to 82%, and for multiplication from 30% to 75%.  

Patterns of correct answers and errors on specific problems differed in ways that 

reflect characteristics of the usual computational procedures. Accuracy on addition and 

subtraction problems was much greater when the operands had equal numbers of digits to 

the right of the decimal. For instance, sixth graders' percent correct on decimal addition 

problems was 74% when addends had an equal number of decimal places (e.g., 4.6 + 2.3) 

but was only 12% when the number of decimal places differed (e.g., 5.3 + 2.42). This 

difference remained substantial at older grade levels as well. For example, ninth graders 

generated 90% correct answers on 0.60 - 0.36 but 64% correct answers on 0.86 - 0.3.  

 In the same study, accuracy of multiplication and division was not influenced by 

differing numbers of decimal places in the operands. Accuracy did not differ in ninth 

grade, for example, between 0.4 * 0.2 and 0.05 * 0.4 (67% and 65% correct) or between 

0.24 ÷ 0.03 and 0.028 ÷ 0.4 (72% and 70%). On the other hand, performance was much 

worse (4% vs. 56% correct in 6th grade) on multiplication of two decimals (e.g., 0.4 * 

0.2) than on multiplication of a decimal and a whole number (e.g., 8 * 0.6). In the next 

two sections, we examine the mix of intrinsic and culturally contingent sources of 

difficulty that lead to these patterns of performance and development. 

  

Inherent Sources of Difficulty in Fraction and Decimal Arithmetic 

 The previous section documented U.S. children’s weak performance with fraction 

and decimal arithmetic. In this section, we identify and discuss seven sources of this 

weak performance that are intrinsic to fraction and decimal arithmetic, intrinsic in the 
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sense that they would be present regardless of the particulars of the educational system 

and culture of the learners. The difficulties involve 1) fraction and decimal notation, 2) 

accessibility of fraction and decimal magnitudes, 3) opaqueness of standard fraction and 

decimal arithmetic procedures, 4) complex relations between rational and whole number 

arithmetic procedures, 5) complex relations of rational number arithmetic procedures to 

each other, 6) opposite direction of effects of multiplying and dividing positive fractions 

and decimals below and above one, and 7) sheer number of distinct components of 

fraction and decimal arithmetic procedures.  

This list of inherent difficulties should not be interpreted as exhaustive. Rather, 

it specifies some of the factors that contribute to the difficulty that children commonly 

encounter with fraction and decimal arithmetic. Also, these intrinsic factors may be 

culturally contingent in the long run, in the sense that people devised the notations and 

procedures and imaginably could devise different ones that do not pose these difficulties. 

Finally, intrinsic does not mean insuperable; in countries with superior educational 

systems and cultures that greatly value math learning, most students overcome the 

difficulties. With those caveats, we examine the seven intrinsic sources of difficulty. 

Fraction and Decimal Notations  

One factor that makes fraction and decimal arithmetic inherently more difficult 

than whole number arithmetic is the notations used to express fractions and decimals.  

 Fractions. A fraction has three parts, a numerator, a denominator, and a line 

separating the two numbers. This complex configuration makes fraction notation 

somewhat difficult to understand. For instance, students, especially in the early stages of 

learning, often misread fractions as two distinct whole numbers (e.g., 1/2 as 1 and 2), as a 
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familiar arithmetic operation (e.g., 1 + 2) or as a single number (e.g., 12) (Gelman, 1991; 

Hartnett & Gelman 1998). Even after learning how the notation works, fractions are still 

effortful to process. Maintaining two fractions in working memory while solving, for 

example, 336/14 * 234/18 requires considerably more cognitive resources than 

maintaining the corresponding whole number problem, 24 * 13. The greater memory load 

of representing fractions reduces the cognitive resources available for thinking about the 

procedure needed to solve the problem, for monitoring progress while executing the 

procedure, and for relating the magnitudes of the problem and answer. Consistent with 

this analysis, individual differences in working memory are correlated with individual 

differences in fraction arithmetic, even after other relevant variables have been 

statistically controlled (Fuchs et al., 2013; Hecht & Vagi, 2010; Jordan et al., 2013; 

Siegler & Pyke, 2013). 

 Decimals. The notation used to express decimals is more similar to that used with 

whole numbers, in that both are expressed in a base ten place value system. Nevertheless, 

the notations also differ in important ways. A longer whole number is always larger than 

a shorter whole number, but the length of a decimal is unrelated to its magnitude. Adding 

a zero to the right end of a whole number changes its value (e.g., 3 ≠ 30), but adding a 

zero to the right side of a decimal does not (e.g., 0.3 = 0.30). Naming conventions also 

differ (Resnick, 1989). Naming a whole number does not require stating a unit of 

reference (e.g., people rarely say that 25 means 25 of the 1’s units), but naming a decimal 

does (e.g., 0.25 is twenty-five hundredth and not twenty-five thousandth). Maintaining in 

memory the rules that apply to decimals, and not confusing them with the rules used with 

whole numbers, increases the working memory demands of learning decimal arithmetic.  
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Accessibility of Magnitudes of Operands and Answers  

 Whole number arithmetic is influenced by access to the magnitudes of operands 

and answers. Several paradigms indicate that after second or third grade, whole number 

magnitudes are accessed automatically, even when accessing them is harmful to task 

performance (e.g., Berch, Foley, Hill, & Ryan, 1999; Lefevre, Bisanz, & Mrkonjic, 1988; 

Thibodeau, LeFevre, & Bisanz, 1996). For example, when the task is to respond “yes” if 

the answer after the equal sign of an addition problem is identical to one of the addends 

and “no” if it is not, people are slower to respond “no” when the answer is the correct 

sum (e.g., 4 + 5 = 9) than when it is another non-matching number (e.g., 4 + 5 = 7) 

(LeFevre, Kulak, & Bisanz, 1991). Similarly, on verification tasks, people respond false 

more quickly when the magnitudes of incorrect answers are far from correct ones (e.g., 2 

+ 4 = 12) than when the two are closer (e.g., 2 + 4 = 8) (Ashcraft, 1982). 

Fractions. Unlike whole number magnitude, fraction, magnitudes have to be 

derived from the ratio of two values, which reduces the accuracy, speed, and automaticity 

of access to the magnitude representations (English & Halford, 1995). Accessing fraction 

magnitude also requires understanding whole number division, often considered the 

hardest of the four arithmetic operations (Foley & Cawley, 2003). These additional 

difficulties have led some authors to suggest that children have to go through a 

fundamental reorganization of their understanding of numbers before being able to 

represent fractions (e.g., Carey, 2011; Smith, Solomon, & Carey 2005; Vamvakoussi & 

Vosniadou 2010). Supporting this point, Smith, Solomon, & Carey (2005) showed that 

understanding of many concepts related to rational numbers (e.g., the presence of 

numbers between 0 and 1, the fact that numbers are infinitely divisible) seems to emerge 
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at the same time within an individual. Unfortunately, developing this level of 

understanding appears lengthy and difficult: only 56% of their older participants (5th and 

6th graders) had undergone this reorganization. 

Consistent with the fact that fraction magnitude is difficult to access, both 8th 

graders and community college students correctly identify the larger of two fractions on 

only about 70% of items, where chance is 50% correct (Schneider & Siegler, 2010; 

Siegler & Pyke, 2013). Similarly, when the smaller fraction has the larger denominator, 

fraction magnitude comparisons of both adults and 10- to 12-year-olds are slower than 

when the smaller fraction has the smaller denominator (Meert, Gregoire, & Noel, 2009; 

2010). People with better knowledge of fraction magnitudes (as measured by fraction 

magnitude comparison or number line estimation) usually perform better on fraction 

arithmetic, even after relevant variables such as knowledge of whole numbers, working 

memory, and executive functioning have been statistically controlled (Byrnes & Wasik, 

1991; Hecht, 1998; Hecht, Close, & Santisi, 2003; Hecht & Vagi, 2010; Jordan, et al., 

2013; Siegler & Pyke, 2013; Siegler, Thompson & Schneider, 2011). 

 Decimals. Representing the magnitudes of decimals without a 0 immediately to 

the right of the decimal point is as accurate and almost as quick as representing whole 

number magnitudes (DeWolf et al., 2014). However, representing decimals with one or 

more “0” immediately to the right of the decimal point is considerably more difficult. 

When we write a whole number, we do not preface it with “0’s” to indicate that no larger 

place values are involved (e.g., we often write “12” but almost never “0012.”) This 

difference between ways of writing whole numbers and decimals makes representing the 

magnitudes of decimals with 0’s immediately to the right of the decimal point quite 
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difficult. For instance, in Hiebert & Wearne (1986), only 43% of 9th graders correctly 

identified the largest number among 0.09, 0.385, 0.3 and 0.1814. Similarly, in Putt 

(1995), only about 50% of U.S. and Australian pre-service teachers correctly ordered 

from smallest to largest the numbers 0.606, 0.0666, 0.6, 0.66 and 0.060.  

The relation between decimal magnitude knowledge and decimal arithmetic has 

not received as much attention as the comparable relation with fractions. However, the 

one study that we found that addressed the issue indicated that knowledge of the 

magnitudes of individual decimals is positively related to the accuracy of decimal 

arithmetic learning (Rittle-Johnson & Koedinger, 2009).  

Opaqueness of Rational Number Arithmetic Procedures 

 Fractions. The conceptual basis of fraction arithmetic procedures is often far 

from obvious. Why are equal denominators needed for adding and subtracting but not for 

multiplying and dividing? Why can the whole number procedure be independently 

applied to the numerator and denominator in multiplication, but not in addition or 

subtraction? Why is the denominator inverted and multiplied when dividing fractions? 

All of these questions have answers, of course, but the answers are not immediately 

apparent, and they often require understanding algebra, which is generally taught after 

fractions, so that students lack relevant knowledge at the time when they learn fractions.  

 Decimals. Decimal arithmetic procedures are in some senses more transparent 

than fraction arithmetic procedures – they can be justified with reference to the 

corresponding whole number operation, which they resemble. For example, just as 

adding 123 + 456 involves adding ones, tens, and hundreds, adding 0.123 + 0.456 

involves adding tenths, hundredths, and thousandths. However, some features of decimal 
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arithmetic procedures, particular those related to placement of the decimal point, are 

unique to decimal arithmetic, and their rationale is often unclear to learners. For example, 

why is it that adding and subtracting numbers that each have two digits to the right of the 

decimal point (e.g., 0.44 and 0.22) results in an answer with two digits to the right of the 

decimal point, that multiplying the same numbers results in an answer with four digits to 

the right of the decimal point, and that dividing them can, as in the above problem, result 

in an answer with no digits to the right of the decimal point?  

Complex Relations Between Rational and Whole Number Arithmetic Procedures 

Fractions. The mapping between whole number and fraction arithmetic 

procedures is complex. For addition and subtraction, once equal denominators have been 

generated, numerators are added or subtracted as if they were whole numbers, but the 

denominator is passed through to the answer without any operation being performed. For 

multiplication, numerators and denominators of the multiplicands are treated as if they 

were independent multiplication problems with whole numbers, regardless of whether 

denominators are equal. For the standard division procedure, the denominator is inverted, 

and then numerator and denominator are treated as if they were independent whole 

number multiplication problems.  

These complex relations between whole number and fraction procedures probably 

contribute to the prevalence of independent whole number errors (e.g., adding numerators 

and denominators separately, as in 2/3 + 2/3 = 4/6). For instance, in Siegler and Pyke 

(2013), independent whole number errors accounted for 22% of sixth and eighth graders’ 

answers on fraction addition and subtraction problems. 



Fraction and Decimal Arithmetic       21 
 

 Decimals. The mapping between decimal and whole number arithmetic 

procedures is also complex. The procedures for adding and subtracting decimals are very 

similar to the corresponding procedures with whole numbers. However, although aligning 

the rightmost digits of whole numbers preserves the correspondence of their place values, 

aligning the rightmost decimals being added or subtracted does not have the same effect 

when the numbers of digits to the right of the decimal point differ. Instead, the location of 

the decimal point needs to be aligned to correctly add and subtract. 

 This difference between whole number and decimal alignment procedures leads to 

frequent errors when decimal addition and subtraction problems have unequal numbers of 

digits to the right of the decimal point. For instance, in Hiebert & Wearne (1985), seventh 

graders' decimal subtraction accuracy was 84% when the operands had an equal number 

of digits to the right of the decimal point (e.g., 0.60 - 0.36), whereas it was 48% when the 

operands differed in the number of digits to the right of the decimal (e.g., 0.86 - 0.3)  

Complex Relations of Rational Number Arithmetic Procedures to Each Other  

 Fractions. Complex relations among procedures for different fraction arithmetic 

operations also contribute to the difficulty of fraction arithmetic. For example, adding and 

subtracting of fractions with an equal denominator requires leaving the denominator 

unchanged in the answer, whereas multiplying fractions with an equal denominator 

requires multiplying the denominators. Inappropriately importing the addition and 

subtraction procedure into multiplication leads to errors such as 2/3 * 2/3 = 4/3. In 

Siegler and Pyke (2013), 55% of answers to fraction division problems and 46% of 

answers to fraction multiplication problems involved inappropriately importing 

components from other fraction arithmetic procedures. 



Fraction and Decimal Arithmetic       22 
 

 Decimals. Decimal arithmetic procedures are also confusable with one another. 

This is particularly evident in procedures for correctly placing the decimal point in the 

answer for different arithmetic operations. For example, the location of the decimal point 

in addition and subtraction requiring aligning the decimal points so that numbers with the 

same place value are being added or subtracted. In contrast, multiplication does not 

require such alignment, and the location of the decimal point in the answer corresponds 

to the sum of the decimal places in the multiplicands (e.g., the product of 8.64 * 0.4 will 

have three numbers to the right of the decimal point). Confusion among decimal 

arithmetic operations is seen in frequent errors in which the procedure used to place the 

decimal point in addition and subtraction is imported into multiplication, producing errors 

such as 0.3 * 0.2 = 0.6. Such errors accounted for 76% of all answers by 6th graders in 

Hiebert and Wearne (1985). 

Direction of Effects of Multiplying and Dividing Proper Fractions and Decimals 

 Understanding the direction of effects of multiplying and dividing proper 

fractions and decimals (those between 0 and 1) poses special problems for learners. 

Multiplying natural numbers always results in an answer greater than either multiplicand, 

but multiplying two proper fractions or decimals invariably results in answers less than 

either multiplicand. Similarly, dividing by a natural number never results in an answer 

greater than the number being divided, but dividing by a proper fraction or decimal 

always does. Knowing the effects of multiplying and dividing numbers from 0-1 might be 

made yet more difficult by the fact that adding and subtracting numbers from 0-1 has the 

same directional effect as adding and subtracting whole numbers, as do all four arithmetic 

operation with fractions and decimals greater than one. Both middle school students and 
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pre-service teachers show poor understanding of the directional effects of fraction and 

decimal multiplication and division (Fischbein, Deri, Nello, & Marino, 1985; Siegler & 

Lortie-Forgues, in press). 

Sheer Number of Distinct Procedures 

 Fractions. Fraction arithmetic requires learning a large number of distinct 

procedures, probably more than for any other mathematical operation taught in 

elementary school. It requires skill in all four whole number arithmetic procedures, as 

well as mastery of procedures for finding equivalent fractions, simplifying fractions, 

converting fractions to mixed numbers and mixed numbers to fractions, knowing whether 

to invert the numerator or denominator when dividing fractions, and understanding when 

equal denominators are maintained in the answer (addition and subtraction) and when the 

operation in the problem should be applied to the denominator as well as the numerator 

(multiplication and division).  

Decimals. Decimal arithmetic does not require mastery of as many distinct 

procedures as fraction arithmetic, but it does pose some difficulties beyond those of 

whole number arithmetic. In particular, the standard procedure for placing the decimal 

point in answers to decimal addition and subtraction problems is distinct from that used 

with multiplication problems, and both are distinct from that used with decimal division 

problems.  

Culturally contingent sources of difficulty 

 Several factors that are not inherent to fraction and decimal arithmetic, but instead 

are determined by cultural values and characteristics of educational systems, also 

contribute to difficulties learning fraction and decimal arithmetic. The culturally 
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contingent factors determine the impact of the inherent sources of difficulty. For 

example, confusability between fraction and whole number arithmetic procedures is an 

inherent source of difficulty, but high quality instruction and high motivation to learn 

mathematics leads to this and other sources of difficulty having a less deleterious effect 

on fraction arithmetic learning in East Asia than in the U.S.  

We divided culturally contingent factors into two categories: (1) factors related to 

instruction and (2) factors related to learners' prior knowledge. In several cases, the only 

relevant research that we could locate involves fractions, but the same factors might well 

handicap learning of decimal arithmetic. 

These culturally contingent factors, of course, are not unique to rational number 

arithmetic; rather they extend to mathematics more generally. In an insightful discussion 

of the issue, Hatano (1990) distinguished between compulsory and optional skills within 

a culture. Reading was an example of a compulsory skill in both East Asia and the U.S.; 

regardless of individual abilities and interests, both cultures view it as essential that 

everyone learn to read well. Music was an example of an optional skill in both cultures; 

both cultures view musicality as desirable but not necessary, an area where individual 

abilities and interests can determine proficiency. In contrast, East Asian and U.S. cultures 

view mathematics differently; in East Asia, mathematics is viewed as compulsory in the 

same sense that both cultures view reading, whereas in the U.S., mathematics is viewed 

as optional, in the same sense that both cultures view music. The present review focuses 

on cultural variables that specifically involve rational number arithmetic, but related 

cultural variables no doubt influence learning in many other areas as well.  

Instructional Factors 
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 Limited understanding of rational number arithmetic operations by 

teachers. At minimum, a person who understands an arithmetic operation should know 

the direction of effects that the operation yields. Without understanding the direction of 

effects of arithmetic operations, people cannot judge an answer’s plausibility and judge 

the plausibility of the procedure that generated it. Indeed, people who mistakenly believe 

that multiplication always yields a product as great as or greater than either multiplicand 

might infer that correct procedures are implausible and that incorrect procedures are 

plausible. For instance, a person who believed that multiplication must yield answers 

greater than either multiplicand might judge the correct equation “3/5 * 4/5 = 12/25” to 

be implausible, because 12/25 is less than either multiplicand; the same person might 

judge the incorrect "3/5 * 4/5 = 12/5” to be plausible, precisely because the answer is 

larger than both multiplicands.  

 Fractions. To assess understanding of fraction arithmetic, Siegler and Lortie-

Forgues (in press) presented 41 pre-service teachers 16 fraction direction of effects 

problems of the form, “Is N1/M1 + N2/M2 > N1/M1”, where N1/M1 was the larger operand. 

For example, one problem was “True or false: 31/56 * 17/42 > 31/56”. Two-digit 

numerators and denominators were used to avoid use of mental arithmetic to obtain the 

exact answer and use that to answer the question. The problem set included all eight 

combinations of the four arithmetic operations, with fraction operands either above one 

or below one. The pre-service teachers attended a high quality school of education in 

Canada, and their academic performance was above provincial norms. 

The main prediction was that the accuracy of such judgments would reflect the 

mapping between the magnitudes produced by whole number and fraction arithmetic. 
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Accuracy of judgments of the direction of effects was expected to be well above chance 

on addition and subtraction, regardless of the fractions involved, and also to be well 

above chance on multiplication and division with fractions greater than one. This 

hypothesis was based on the fact that the direction of effects for these six combinations of 

arithmetic operation and fraction magnitude is the same as with the corresponding whole 

number operation. However, below chance judgment accuracy was predicted on 

multiplication and division with fractions less than 1, because these cases yield the 

opposite direction of effects as multiplying and dividing whole numbers. Thus, despite 

having performed thousands of fraction multiplication problems with numbers from 0-1, 

and thus having thousands of opportunities to observe the outcomes of multiplication 

with such fractions, the adults to whom we posed such problems were expected to 

perform below chance in predicting the effects of multiplication with fractions below 1. 

The same was expected for division. 

These predictions proved accurate. The pre-service teachers performed well above 

chance on the six types of problems on which they were expected to be accurate, but well 

below chance on both multiplication and division of fractions below 1 (Table 1). For 

example, when asked to judge whether multiplying two fractions below 1 would produce 

an answer larger or smaller than the larger multiplicand, the pre-service teachers correctly 

predicted the answer on 33% of trials. 

The below-chance accuracy of judgments on the direction of effects task for 

multiplication and division of fractions below 1 was not due to the task being impossible. 

Mathematics and science majors at a highly selective university correctly answered 100% 

of the same multiplication direction of effects problems. The incorrect predictions also 
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were not due to the pre-service teachers lacking knowledge of individual fraction 

magnitudes or of how to execute fraction arithmetic procedures. The pre-service teachers 

generated extremely accurate estimates of the magnitudes of individual fractions below 1 

(almost as accurate as those of the math and science majors at the highly selective 

university) and consistently solved fraction multiplication problems, yet they judged the 

direction of effects of fraction multiplication less accurately than chance. The division 

results were highly similar. 

Converging results have been obtained in studies in which teachers were asked to 

generate a story or situation that illustrated the meaning of fraction multiplication and 

division (e.g., Ball, 1990; Depaepe et al., 2015; Li & Kulm, 2008; Lin, Becker, Byun, 

Yang, & Huyang, 2013; Lo & Luo, 2012; Ma, 1999; Rizvi & Lawson, 2007; Tirosh, 

2000). For instance, only 5 of 19 (26%) U.S pre-service teachers were able to generate a 

story or a situation showing the meaning of the division problem 1 3/4 ÷ 1/2 (Ball, 1990). 

Similarly, when asked to explain the meaning of 2/3 ÷ 2 or 7/4 ÷ 1/2, the vast majority of 

U.S. teachers failed to provide an explanation that went beyond stating the "invert and 

multiply" algorithm; Chinese teachers had little difficulty explaining the same problem 

(Li & Kulm, 2008; Ma, 1999).  

Limited understanding of fraction arithmetic is not limited to U.S. teachers. When 

Belgian pre-service teachers were asked to identify the appropriate arithmetic operation 

for representing the word problem "Jens buys 3/4 kg minced meat. He uses 1/3 to make 

soup balls and the remaining part is used for making bolognaise sauce. How much (sic) 

kg minced meat does he use for his soup balls," only 19% correctly identified the 

problem as corresponding to 1/3 * 3/4 (Depaepe et al., 2015). 
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In contrast, when Chinese teachers were asked to explain the meaning of 1 3/4 ÷ 

1/2, 90% generated at least one valid explanation. Taiwanese pre-service teachers were 

also highly proficient at generating meaningful models of fraction addition, subtraction, 

and multiplication (Lin et al., 2013). Moreover, when asked to identify whether fraction 

multiplication or division was the way to solve a story problem, Taiwanese pre-service 

teachers were correct far more often than U.S. peers (74% versus 34%; Luo, Lo & Leu, 

2011). Thus, lack of qualitative understanding of fraction arithmetic by North American 

and European teachers is culturally contingent. 

Decimals. These difficulties in understanding fraction multiplication and division 

are not limited to fractions. We conducted a small experiment on understanding of 

multiplication and division of decimals between 0 and 1 with 10 undergraduates from the 

same university as the one attended by the pre-service teachers in Siegler and Lortie-

Forgues (in press). These undergraduates were presented the direction of effects task with 

decimals, with each common fraction problem from the direction of effects task being 

translated into its nearest 3-digit decimal equivalent (e.g., “31/56 * 17/42 > 31/56” 

became “0.554 * 0.405 > 0.554”).  

Results with decimals paralleled those with common fractions: high accuracy 

(88% to 100% correct) on the six problem types in which fraction arithmetic produces the 

same pattern as natural number arithmetic, and below chance performance on the two 

problem types that shows the opposite pattern as with natural numbers (38% and 25% 

correct on multiplication and division of fractions below one). Thus, the inaccurate 

judgments on the direction of effects task were general to multiplication and division of 

numbers from 0-1, rather than being limited to numbers written in fraction notation. 
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Without understanding of rational number arithmetic, teachers cannot 

communicate the subject in a meaningful way, much less address students' 

misconceptions and questions adequately (e.g., Tirosh, 2000; Li & Huang, 2008). 

Consistent with this assumption, a strong positive relation has been observed between 

teachers' knowledge of fractions and decimals (including arithmetic) and their knowledge 

of how to teach these subjects to students (Depaepe et al., 2015). At minimum, 

understanding rational number arithmetic would prevent teachers from passing on 

misunderstandings to their pupils. For example, it would prevent them from stating that 

multiplication always yields a product larger than either multiplicand or that division 

always yields a quotient smaller than the number being divided. 

 Emphasis of teaching on memorization. For many years, U.S. researchers, 

organizations of mathematics teachers, and national commissions charged with 

improving mathematics education have lamented that instruction focuses too much on 

memorizing procedures and too little on understanding (e.g., Brownell, 1947; NCTM, 

1989; NMAP, 2008). Focusing on how to execute procedures, to the exclusion of 

understanding them, has several negative consequences. Procedures learned without 

understanding are difficult to remember (Brainerd & Gordon, 1994; Reyna & Brainerd, 

1991), especially over long periods of time. Lack of understanding also prevents students 

from generating procedures if they forget them. Consistent with this perspective, the 

CCSSI (2010) and other recent attempts to improve U.S math instruction strongly 

recommend that conceptual understanding of procedures receive considerable emphasis.  

It is unclear whether these recommendations have been implemented in 

classrooms. Even teachers who have been given extensive, well-designed instruction in 
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the conceptual basis of fraction and decimal arithmetic, and in how to teach them, often 

do not change their teaching (Garet et al., 2011). Unsurprisingly, Garet et al. found that 

the lack of change in teaching techniques was accompanied by a lack of change in 

students’ learning. Teachers’ continuing emphasis on memorization could reflect the 

greater ease of teaching in familiar ways, absence of incentives to change, not being able 

to convey knowledge to students that they themselves lack, and desire to avoid being 

embarrassed by questions about concepts that they cannot answer.  

Minimal instruction in fraction division. At least in some U.S. textbooks, 

fraction division is the subject of far less instruction than other arithmetic operations. 

Illustrative of this phenomenon, Son and Senk (2010) found that Everyday Mathematics 

(2002), a widely used U.S. textbook series that has a relatively large emphasis on 

conceptual understanding, contained 250 fraction multiplication problems but only 54 

fraction division problems in its fifth and sixth grade textbooks and accompanying 

workbooks. 

To determine whether Everyday Mathematics is atypical of U.S. textbooks in its 

lack of emphasis on fraction division, we examined a very different textbook, Saxon 

Math (Hake & Saxon, 2003), perhaps the most traditional U.S. math textbook series 

(Slavin & Lake, 2008). Although differing in many other ways, Saxon Math was like 

Everyday Math in including far more fraction multiplication than division problems (122 

versus 56). This difference might be understandable if fraction division were especially 

easy, but it appears to be the least mastered fraction arithmetic operation among North 

American students and teachers (Siegler & Lortie-Forgues, in press; Siegler & Pyke, 

2013).  
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Such de-emphasis of fraction division is culturally contingent. Analysis of a 

Korean math textbook for Grades 5 and 6, which is when fraction multiplication and 

division receive the greatest emphasis there, as in the U.S., showed that the Korean 

textbook included roughly the same number of fraction multiplication problems as 

Everyday Math (239 versus 250), but more than eight times as many fraction division 

problems (440 versus 54) (Son & Senk, 2010). Viewed from a different perspective, the 

Korean textbook series included considerably more fraction division than fraction 

multiplication problems (440 versus 239), whereas the opposite was true of the U.S. 

textbooks (250 versus 54). The minimal emphasis on fraction division in these and quite 

possibly other U.S. textbooks almost certainly contributes to U.S. students’ poor mastery 

of fraction division. 

 To the best of our knowledge, no cross-national comparison of textbook problems 

have been done for decimal arithmetic. However, U.S. textbooks also give short shrift to 

decimal division; our examination of 6th grade Saxon Math indicated that only 3% (8 of 

266) of decimal arithmetic problems involved division. 

 Textbook explanations of arithmetic operations. Textbook explanations are 

another culturally contingent influence on learning. In the U.S., whole number 

multiplication is typically explained in terms of repeated addition (CCSSI, 2010). 

Multiplying 4 * 3, for instance, is taught as adding four three times (4 + 4 + 4) or adding 

three four times (3 + 3 + 3 +3). This approach has the advantage of building the concept 

of multiplication on existing knowledge of addition, but it has at least two disadvantages. 

First, because adding positive numbers always yields an answer larger than either addend, 

defining multiplication in terms of addition suggests the incorrect conclusion that the 
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result of multiplying will always be larger than the numbers being multiplied. Second, the 

repeated-addition interpretation is difficult to apply to arithmetic with fractions and 

decimals that are not equivalent to whole numbers. For instance, how to interpret 1/3 * 

3/4 or 0.33 * 0.75 in terms of repeated addition is far from obvious.  

Repeated addition is not the only way to explain multiplication. For example, 

multiplication can be presented as “N of the M’s with whole numbers (e.g., 4 of the 2’s) 

and as “N of the M” with fractions (1/3 of the 3/4). This presentation might help convey 

the unity of whole number and fraction multiplication and therefore improve 

understanding of the latter. 

 A similar point can be made about division. In U.S. textbooks and in the CCSSI 

(2010) recommendations, division is introduced as fair sharing (dividing objects equally 

among people). For example, 15 ÷ 3 could be taught as 15 cookies shared equally among 

3 friends. Again, this interpretation is straightforward with natural numbers but not with 

rational numbers, at least not when the divisor is not a whole number (e.g., what does if 

mean to share 15 cookies among 3/8 of a friend?).  

Again, the standard presentation is not the only possible one. At least when a 

larger number is divided by a smaller one, both whole number and fraction division can 

be explained as indicating how many times the divisor can go into the dividend (e.g., how 

many times 8 can go into 32, how many times 1/8 can go into 1/2). It is unknown at 

present whether these alternative interpretations of fraction arithmetic operations are 

more effective than the usual ones in U.S. textbook, but they might be.  

Limitation of Learners' Knowledge 
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Deficiencies in prior relevant knowledge also hinder many children’s acquisition 

of fraction and decimal arithmetic. These again are culturally contingent, in that children 

in some other countries show far fewer deficiencies of prior knowledge. 

 Limited whole number arithmetic skill.  

 Fractions. All fraction arithmetic procedures require whole number arithmetic 

calculations. For example, 3/4 + 1/3 requires five whole number calculations: translating 

3/4 into twelfths requires multiplying 3 * 3 and 4 * 3; translating 1/3 into twelfths 

requires multiplying 1 * 4, and 3 * 4; and obtaining the numerator of the sum requires 

adding 9 + 4. Even more whole number operations are necessary if the answer must be 

simplified or if the operands are mixed numbers (e.g., 2 1/4). Any inaccuracy with whole 

number arithmetic operations can thus produce fraction arithmetic errors.  

Whole number computation errors cause a fairly substantial percentage of U.S. 

students’ fraction arithmetic errors. For example, incorrect execution of whole number 

procedures accounted for 21% of errors on fraction arithmetic problems in Siegler and 

Pyke (2013). Such whole number computation errors are far less common among East 

Asian students doing similar problems (Bailey, et al., 2015). More generally, whole 

number arithmetic accuracy has repeatedly been shown to be related to fraction 

arithmetic accuracy, and early whole number arithmetic accuracy predicts later fraction 

arithmetic accuracy, even after controlling for other relevant variables (Bailey et al., 

2014; Hecht & Vagi, 2010; Hecht et al., 2003; Jordan et al., 2013; Seethaler, Fuchs, Star, 

& Bryant, 2011).  



Fraction and Decimal Arithmetic       34 
 

 Decimals. Decimal arithmetic also requires whole number arithmetic calculations. 

At least one study indicates that whole number arithmetic accuracy predicts decimal 

arithmetic accuracy (Seethaler et al., 2011). 

 Limited knowledge of the magnitudes of individual fractions. Accurate 

representations of the magnitudes of individual fractions and decimals can support 

fraction and decimal arithmetic, by allowing learners to evaluate the plausibility of their 

answers to fraction arithmetic problems and the procedures that produced them (e.g., 

Hecht, 1998; Hiebert & LeFevre, 1986; Byrnes & Wasik, 1991). Magnitude knowledge 

also can make arithmetic procedures more meaningful. For instance, a child who knew 

that 2/7 and 4/14 have the same magnitude would understand why 2/7 can be transformed 

into 4/14 when adding 2/7 + 5/14 better than a child without such knowledge.  

 Fractions. Children with less knowledge of the magnitudes of individual fractions 

also tend to have less knowledge of fraction arithmetic (Byrnes & Wasik, 1991; Hecht, 

1998; Hecht et al., 2003; Hecht & Vagi, 2010; Jordan, et al., 2013; Siegler & Pyke, 2013; 

Siegler et al., 2011; Torbeyns, Schneider, Xin, & Siegler, 2014). The strength of this 

relation is moderate to high (Pearson r’s range from 0.44 to 0.86 in the above-cited 

experiments). Moreover, the relation continues to be present after controlling for such 

factors as vocabulary, nonverbal reasoning, attention, working memory and reading 

fluency (e.g., Jordan et al., 2013). The relation is also present when the arithmetic tasks 

require estimation rather than calculation (Hecht, 1998), and when the samples are drawn 

from countries other than the U.S., such as Belgium (Torbeyns et al., 2014; Bailey et al., 

2015). Perhaps most important, the relation is causal; interventions that emphasize 

fraction magnitudes improve fraction arithmetic learning (Fuchs et al., 2013, 2014). 
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Lack of understanding of fraction magnitudes also may contribute to difficulty in 

learning algebra. Consistent with this hypothesis, knowledge of fraction magnitudes in 

middle school predicts later algebra learning (Bailey et al., 2012; Booth & Newton, 2012; 

Booth et al., 2013).  

 Limited conceptual understanding of arithmetic operations.  

Fractions. Not surprising given their results with pre-service teachers, Siegler and 

Lortie-Forgues (in press) found that sixth and eighth graders had the same weak 

qualitative understanding of fraction multiplication and division. For example, the middle 

school students correctly anticipated the direction of effects of multiplying two fractions 

below one on only 31% of trials, very similar to the 33% of trials among the pre-service 

teachers. This relation again was not attributable to lack of knowledge of the fraction 

multiplication procedure; the children multiplied fractions correctly on 81% of problems. 

The results with these students also suggested that inaccurate judgments on the direction 

of effects task could not be attributed to forgetting material taught years earlier. Sixth 

graders who had been taught fraction division in the same academic year and fraction 

multiplication one year earlier also performed below chance on the direction of effects 

task for fraction multiplication and division (30% and 41% correct, respectively).  

Decimals. Poor understanding of decimal arithmetic has also been documented. 

Hiebert and Wearne (1985; 1986) showed that most students' knowledge of decimal 

arithmetic consists of memorized procedures for which they have little or no 

understanding. One line of evidence for this conclusion is that students often cannot 

explain the rationale for the procedures they use. For instance, fewer than 12% of sixth 

graders could justify why they were aligning the operands’ decimal points when adding 
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and subtracting decimals (Hiebert & Wearne, 1986). In the same vein, when students 

need to estimate solutions to problems, their answers are often unreasonable. For 

instance, when asked to select the closest answer to 0.92 * 2.156, with the response 

options 18, 180, 2, 0.00018 and 0.21, the answer “2” was chosen by only 8% of fifth 

graders, 18% of sixth graders, 33% of seventh graders, and 30% of ninth graders (Hiebert 

& Wearne, 1986).  

Weak understanding of decimal arithmetic is not limited to arithmetic problems 

presented in their typical format or to U.S. students. When Italian 9th graders (14- to 15-

year olds) were presented the problem, "The price of 1 m of a suit fabric is 15,000 lire. 

What is the price of 0.65 m?" only 40% of the adolescents correctly identified the item as 

a multiplication problem. By comparison, 98% of the same participants correctly 

identified the operation on a virtually identical problem where the values were whole 

numbers (Fischbein et al., 1985). 

 As in previous cases, children’s ability to surmount the challenges of 

understanding decimal arithmetic depends on cultural and educational variables. For 

instance, when 6th graders in Hong Kong and Australia were asked to translate into an 

arithmetic operation the word problem "0.96 L of orange juice was shared among 8 

children. How much orange juice did each child have," 90% of the children from Hong 

Kong correctly answered 0.96 ÷ 8. By comparison, only 48% of Australian children 

answered the same problem correctly (Lai & Murray, 2014). 

 General cognitive abilities. 

 Fractions. Fraction arithmetic poses a substantial burden on limited processing 

resources. It requires interpreting the notation of fractions, inhibiting the tendency to treat 
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numerators and denominators like whole numbers, and carrying out a series of steps 

while maintaining intermediate results and keeping track of the final goal. Sustaining 

attention during instruction on easily confusable fraction arithmetic procedures also 

seems likely to place high demands on executive functions. Not surprisingly given this 

analysis, fraction arithmetic performance is uniquely predicted by individual differences 

in executive functions (Siegler & Pyke, 2013) as well as by individual differences in 

working memory and attentive behaviour (Hecht & Vagi, 2010; Jordan et al., 2013; 

Seethaler, et al., 2011).  

 Decimals. Although less research is available on the relation between basic 

cognitive processes and decimal arithmetic, the one relevant study that we found 

indicated that working memory was uniquely predictive of fraction and decimal 

arithmetic performance (Seethaler et al., 2011). 

Interventions for Improving Learning 

 The prior sections of this article indicate that many students in the U.S. and other 

Western countries fail to master fraction and decimal arithmetic; that at least seven 

inherent sources of difficulty contribute to their weak learning; and that culturally 

contingent variables, including the instruction learners encounter and their prior relevant 

knowledge, influence the degree to which they surmount the inherent difficulties. 

Alongside these somewhat discouraging findings, however, were some more encouraging 

findings– children in East Asian countries learn rational number arithmetic far more 

successfully, and Western children who are provided well-grounded interventions also 

learn well. This final section examines three especially promising interventions that allow 

greater numbers of children in Western societies to learn rational number arithmetic.  



Fraction and Decimal Arithmetic       38 
 

Fractions 

 One intervention that has been found to produce substantial improvement in 

fraction addition and subtraction was aimed at fourth graders who were at-risk for 

mathematics learning difficulties (Fuchs et al., 2013, 2014). The intervention focused on 

improving knowledge of fraction magnitudes through activities that required 

representing, comparing, ordering, and locating fractions on number lines. Fraction 

addition and subtraction were also taught, but received less emphasis than in the control 

“business as usual” curriculum.  

The intervention produced improvement on every outcome measured, including 

questions about fractions released from recent NAEP tests. The improvement produced 

by the intervention on fraction arithmetic was large, almost 2.5 standard deviations larger 

than the gains produced by a standard curriculum that emphasized the part–whole 

interpretation of fractions and fraction arithmetic. 

Decimals 

 A computerized intervention conducted on typical 6th graders generated 

improvements in decimal arithmetic (Rittle-Johnson & Koedinger, 2009). In this 

intervention, students were presented lessons on decimal place values and decimal 

addition and subtraction. One experimental condition followed the typical procedure in 

U.S. textbooks of presenting the two types of lessons sequentially (i.e., the lessons on 

place value were followed by the lessons on arithmetic). The other condition intermixed 

the two types of lessons. Intermixing the lessons produced larger gains in addition and 

subtraction of decimals.  

Fractions, Decimals, and Percentages 
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 Moss and Case’s (1999) intervention produced substantial gains on arithmetic 

word problems involving fractions, decimals, and percentages. Typical fourth graders 

were first introduced to percentages, then to decimals, and then to fractions. The rational 

numbers were always represented as part of a continuous measure, such as a portion of a 

larger amount of water in a cylinder or a segment of a distance on a number line or board 

game. Students were taught to identify benchmarks (50%, 25% and 75%) on these 

objects, and were taught to solve rational number arithmetic problems using the 

benchmarks. For instance, students were taught to find 75% of a 900-ml bottle by first 

computing 50% of 900 ml (450 ml), then computing 25% of the 900 ml by computing 

50% of the 50% (225 ml), and then adding the two values together (675ml). Students 

were not taught any formal procedure to carry out fraction arithmetic operations.  

The intervention yielded large gain in fraction knowledge. For example, students 

who received the intervention showed greater gains when solving arithmetic problems of 

the form "what is 65% of 160" with percentages, decimals, and fractions than did a 

control group who received a traditional curriculum on rational number arithmetic. 

 A shared characteristic of these three effective interventions is that all emphasize 

knowledge of rational number magnitudes. Focusing instruction on fraction and decimal 

magnitudes allowed children to overcome the limited accessibility of magnitudes of 

operands and answers that seems to be a major difficulty in learning fraction and decimal 

arithmetic. Knowledge of fraction and decimal magnitudes is not sufficient to produce 

understanding of rational number arithmetic. The pre-service teachers in Siegler and 

Lortie-Forgues (in press) had excellent knowledge of fraction magnitudes between 0 and 

1, yet were below chance in predicting the effects of multiplying and dividing fractions in 
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the same range. However, such knowledge of rational number magnitudes does seem 

necessary for understanding rational number arithmetic. Without understanding the 

magnitudes of the numbers being combined arithmetically, it is unclear how children 

could make sense of the effects of arithmetic operations transforming those magnitudes. 

Together, these interventions demonstrate that by improving standard practices, one can 

increase the number of students who surmount the challenges inherent to fraction and 

decimal arithmetic.  

Conclusions  

  Fraction and decimal arithmetic pose large difficulties for many children and 

adults, despite the prolonged and extensive instruction devoted to these topics. The 

problem has persisted over many years, despite continuing efforts to ameliorate it. These 

facts are alarming, considering that rational number arithmetic is crucial for later 

mathematics achievement and for ability to succeed in many occupations (McCloskey, 

2007; Siegler et al., 2012). 

 Fraction and decimal arithmetic are also theoretically important. Both knowledge 

of the magnitudes of individual rational numbers and knowledge of the magnitudes 

produced by rational number arithmetic are important parts of numerical development 

beyond early childhood. They provide most children’s first opportunity to learn that 

principles that are true of whole numbers and of whole number arithmetic are not 

necessarily true of numbers and arithmetic in general. Comprehensive theories of 

numerical development must include descriptions and explanations of the growth of 

rational number arithmetic, as well as of why knowledge in this area is often so limited. 
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 In hopes of stimulating greater amounts of research on what we believe to be a 

crucial aspect of numerical development, we devoted this review to analyzing why 

learning fraction and decimal arithmetic is so difficult. To address this question, we 

identified seven difficulties that are inherent to fraction arithmetic, decimal arithmetic or 

both -- their notation, inaccessibility of the magnitudes of operands and answers, 

opaqueness of procedures, complex relations between rational and whole number 

arithmetic procedures, complex relations of rational number arithmetic procedures to 

each other, direction of effects of multiplication and division of numbers from 0-1 being 

the opposite as with whole numbers, and the large number of distinct procedures involved 

in rational number arithmetic. These difficulties are inherent to rational number 

arithmetic-- every learner faces them.  

 We also considered culturally contingent sources of learning difficulties. These 

are factors determined by cultural values and characteristics of educational systems. For 

instance, relative to Western countries, East-Asian countries have highly knowledgeable 

teachers (Ma, 1999) and place a large emphasis on students solving difficult mathematics 

problems (Son & Senk, 2010). Moreover, East Asian students come to the task of 

learning rational number arithmetic with better knowledge of whole number arithmetic 

(Cai, 1995) and better knowledge of fraction magnitudes (Bailey et al., 2015). These and 

many other cultural variables influence the likelihood that children will overcome the 

inherent difficulties of learning fraction and decimal arithmetic. 

 We divided culturally contingent sources of difficulty into ones involving 

instruction and ones involving learners' prior knowledge. The instructional factors 

included limited understanding of arithmetic operations by teachers, emphasis on 
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memorization rather than understanding, minimal instruction in fraction division, and 

textbook explanations of arithmetic operations that are difficult to apply beyond whole 

numbers. Sources of difficulties involving learners’ prior knowledge included limited 

knowledge of whole number arithmetic and of the magnitudes of individual fractions, as 

well as limited general processing abilities. These sources of difficulty, of course, are not 

independent. Teachers’ focus on memorization may reflect reluctance to reveal their own 

weak conceptual understanding, learners’ weak understanding of fraction magnitudes 

may reflect inadequate prior teaching; and so on. Moreover, more general cultural values, 

such as whether a society views mathematics learning as compulsory or optional, 

doubtlessly also influence learning of fraction and decimal arithmetic. 

 Perhaps the most encouraging conclusion from the review is that interventions 

aimed at helping children surmount the difficulties inherent to fraction and decimal 

arithmetic can produce substantial gains in performance and understanding. Interventions 

that focus on rational number magnitudes appear to be especially effective in helping 

children learn fraction and decimal arithmetic. Rational number arithmetic thus appears 

to be a promising area for both theoretical and applied research, one that could promote 

more encompassing theories of numerical development and also yield important 

educational applications. 
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Table 1. 

Accuracy (percent correct) of pre-service teachers on the direction of effect problems  

 

Operations Fractions below one Fractions above one  

Addition 92 92 

Subtraction 89 92 

Multiplication 33 79 

Division 29 77 

  

  

 

 

 


