
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2000 Proceedings Americas Conference on Information Systems
(AMCIS)

2000

Why is Open Source Software Viable? A Study of
Intrinsic Motivation, Personal Needs and Future
Returns
Alexander Hars
University of Southern California, hars@bus.usc.edu

Shaosong Ou
University of Southern California, sou@bus.usc.edu

Follow this and additional works at: http://aisel.aisnet.org/amcis2000

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Hars, Alexander and Ou, Shaosong, "Why is Open Source Software Viable? A Study of Intrinsic Motivation, Personal Needs and
Future Returns" (2000). AMCIS 2000 Proceedings. 379.
http://aisel.aisnet.org/amcis2000/379

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2000%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000/379?utm_source=aisel.aisnet.org%2Famcis2000%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Why Is Open Source Software Viable? -
A Study of Intrinsic Motivation, Personal Needs, and Future Returns

Alexander Hars
hars@bus.usc.edu

Shaosong Ou
sou@bus.usc.edu

Marshall School of Business, Univ. of Southern California

Abstract

Traditional business models for software development
are currently being challenged by the phenomenon of
open source software where communities of programmers
leverage the Internet to develop free software without
receiving any direct compensation. To understand the
success and the prospects of open source software it is
necessary to examine the motivation of the participants in
open source projects. This paper presents a theoretical
model to study the three main factors leading to
participation in open source projects: intrinsic motivation,
personal need and expectation of future returns.
Implications of the model are derived and their
significance discussed. We conclude that open source
software will be an enduring alternative to traditional
software development and that it is possible to combine
aspects of both development approaches.

Challenging established business models

In the past 30 years, software has become a major
industry. Highly profitable software companies have
emerged. All of these companies are based on the premise
that software is a proprietary good. Although its
reproduction and distribution costs are nearly zero, they
regard software primarily as a private good which is the
property of the “owner”.

This traditional business model is now being
challenged by the phenomenon of open source software.
In contrast to traditional software, open source software is
provided to the public for free. The user does not only
have the right to use and run the software; its source code
is also provided free of charge and the user explicitly
receives the right to make modifications to the source
code and to distribute these modifications. Open source
software is typically developed by teams of programmers
that collaborate via the Internet. In addition, these
programmers do not receive direct compensation for their
work.

While this model of developing software which treats
software essentially as a public good has a history that can
be traced back into the 1960s (see Table 1), the

phenomenon has received little attention from commercial
developers or from academia until recently. The impact of
these efforts seemed to be limited to what small bands of
idealistic programmers can achieve. However, in the last
years one open source project, Linux has matured
sufficiently to reach the spotlight. Linux was written by
Finnish student Linus Torvalds in 1991. He then released
his source code to the public and received continuous
support and updates via the Internet from programmers all
over the world (Bollinger and Beckman 1999). Linux has
rapidly increased its market share and drawn converts in
many business. It is now actively supported by many
leading software vendors including Corel, Oracle, SAP,
IBM, etc. (e.g. Seltzer 1999). The number of installations
is estimated to be over 7.5 Million (Comerford, 1999) and
the stock market has placed high values on companies in
the Linux space.

Table 1. Open Source Timeline (Gonzalez Barahona,
Heras Quiros and Bollinger 1999, Seltzer 1999,
Comerford 1999)

Year Event
1950s
and

1960s

Software source code is distributed without
restrictions in IBM and DEC user groups,
ACM’s Algorithms Section etc.

1969 Ken Thompson writes the first version of
Unix. Its source code is distributed freely
throughout the seventies.

1978 Donald Knuth (Stanford) publishes TEX as
free software

1979 Following AT&T’s announcement to
commercialize UNIX, UC Berkeley begins
with the creation of its own version of UNIX,
BSD (Berkeley Software Distribution).
Eric Allmann, a student at UC Berkely
develops a program which routes messages
between computers over ARPANET. It later
evolves into Sendmail.

1983 Stallmann publishes GNU Manifesto calling
for free software, and establishes Free
Software Foundation.

1986 Larry Wall creates Perl (Practical Extraction
and Report Language), a versatile
programming language used for writing CGI
(Common Gateway Interface) scripts.

486

1987 Developer Andrew Tanenbaum releases
Minix, a version of Unix for the PC, Mac,
Amiga, and Atari ST. It comes with complete
source code.

1991 Linus Torvalds publishes version 0.02 of a
new Unix variant that he calls Linux in a
Minix newsgroup.

1993 FreeBSD 1.0 is released. Based on BSD Unix,
FreeBSD includes networking, virtual
memory, task switching, and large filenames.
Ian Murdock creates a new linux distribution
called Debian Linux.

1994 Marc Ewing forms Red Hat Linux. It quickly
becomes the leading Linux distributor.
Bryan Sparks founds Caldera with backing by
former Novell CEO Ray Noorda.

1995 The Apache Group builds a new Web server,
Apache, based on the National Center for
Supercomputing Applications' (NCSA's)
HTTPd 1.3 and a series of patch files. It has
become the dominant HTTP server today.

1998 Netscape not only gives away Communicator
5.0 (Mozilla) but also releases its source code.
Major software vendors, including Computer
Associates, Corel, IBM, Informix, Interbase,
Oracle, and Sybase, announce plans to port
their products to Linux. Sun announces plans
to release the source code for Java 2 to
developers.

1999 Number of Linux users estimated at 7.5
Million.

2000 More software companies such as Novell and
Real release versions of their products which
run on Linux.

Many commercial software companies are currently
assessing the impact of open source software on the
software market: is it true, as many open source
proponents suggest that all software should – and
eventually will – be free? One of the key questions in this
puzzle regards the sustainability of the open source
phenomenon. It is not difficult to imagine that a few
projects can get underway where enthusiastic
programmers join forces to develop a major software for
free. But will it be possible to reach the same momentum
repeatedly for many different kinds of software? The
answer hinges largely on the motivation that drives the
programmers to participate in such a project. In this
article, different sources of motivation and their
implications for the sustainability and the strengths and
weaknesses of open source efforts will be derived.

Sources of motivation

Although prior theoretical research has not directly
addressed behavioral issues about open source software

programmers, literatures from other disciplines do
provide good starting points. Utility maximization
theories (e.g., Varian 1999) and investment theories in
economics (Becker 1962), for example, are readily
available to explain some behaviors and motivations of
these programmers. Psychological and motivational
studies can also be utilized (Deci 1975). Within the
literature on motivation, three core categories of
motivations need to be distinguished: those who are
intrinsically motivated to write programs, those who
program for their personal and work-related needs and
those who treat developing open source software as a
form of investment and expect future returns. In the
following, these three cases will be analyzed in detail:

Intrinsic motivation

The programmers who find programming interesting
and attractive fall into this category. According to Deci
(1975), human beings are born with the basic and
undifferentiated need for feeling competent and self-
determining. Not all human behaviors leads to extrinsic
rewards (e.g., money, food, clothes etc.), but “intrinsically
motivated behavior is the behavior that is motivated by a
person’s need for feeling competent and self-determining
in dealing with his environment”. The cognitive model of
behavior has five elements, stimulus inputs, awareness of
potential satisfaction, goals, goal-directed behavior, and
rewards (Deci 1975). For these programmers, the
existence of software with open source code and the
internet are the stimulus inputs, which will invoke the
programmer of his awareness of potential satisfaction,
i.e., the satisfaction from feeling competent and self-
determining by programming. Being intrinsically
motivated, he will proceed to set up a goal of
programming open source software to realize the
satisfaction or rewards. The goal-directed behavior is
spending time and effort in programming without
receiving extrinsic rewards. The reward to his behavior is
feeling competent and self-determining.

These programmers thus consider programming
intrinsically motivating. The cost associated with
programming (e.g., opportunity cost, physical effort,
emotional anxiety) is compensated by the intrinsic
rewards (feeling competent and self-determining), which
is the underlying reason that sustains their behavior of
programming. As long as the pay-off is greater than the
cost, programming will continue. Programmers will
reduce the effort spent in programming or stop
programming when the rewards cannot cover the cost.
This implication can be directly derived from basic
economics principles. Assuming all agents are
economically rational and behave to maximize their own
utility levels, their behaviors are determined by the
pursuit of rewards.

487

The intrinsic motivations associated with
programming open source software may come from two
sources, writing programs itself or increasing the welfare
of others by programming. We label these groups as
hobby pursuers and altruists.

1. Hobby pursuers
Open source software developers are frequently
programming enthusiasts. They seem to develop software
just for “fun”. They love programming like other hobby
pursuers love cooking or playing instruments. Their
feelings for competent and self-determination can arise
from a number of sources, e.g., manipulating computer’s
performance by writing codes and issuing commands,
watching the computer behave in certain ways or
appreciating their mastery of programming skills. If open
source developers are mainly hobbyists, this has
interesting implications for open source projects: The
time that each programmer is able to spend on open
source development will be limited; due to budget
constraints, Among the programmers with the same
amount of leisure time, those with low income are likely
to spend less effort in programming than high-income
ones. In addition hobby pursuing programmers may be
difficult to coordinate as they often lack an externally
identifiable motivation which allows to predict their
behavior and interests.

2. Altruists
Another variant of intrinsic motivation is the urge to

increase other people’s welfare by writing useful
programs. Developing free software and publicizing the
source code can bring convenience to others and increase
their utility and productivity levels. Serving people with
one’s effort in open source software is thus the source of
feeling competent and self-determining, i.e., the source of
intrinsic motivation. For an altruistic programmer, the
better and the more he can serve, the stronger he feels
competent and self-determining and the larger are the
rewards he receives from programming. A crucial
implication is that altruistic programmers prefer to
develop software that reaches a large number of users and
has high value to these users. In contrast to hobbyists, a
team of altruists will be less at risk to become sidetracked
in esoteric functionality. They can be expected to focus on
that functionality that is most valuable to users. The
hypothesis that open source programmers are motivated
by altruism, however, has a significant flaw: One would
expect that programmers would focus on software
usability which is the key determinant of the value of
software to an end-user. However, open source software
is often characterized by cumbersome and difficult-to use
interfaces.

According to the cognitive model of behaviors,
rewards of intrinsically motivated activities are more
sustainable than other activities because a person is in

continual interaction with the environment and has a
continual need for feelings of competence and self-
determination. So when satisfaction is achieved a new
awareness of potential satisfaction will arise which will
energize a new sequence of cognitive behavior (Deci
1975). Based on this mechanism, we assume that this
group of programmers receives constantly increasing
rewards or satisfactions by programming, i.e., the
relationship between rewards from programming and the
amount of effort spent in programming is linear and
positive. That is, a unit increase in effort will increase
rewards by the same amount. The behavior also incurs
costs. The costs may be associated with their physical or
mental expenses, e.g., fatigue and anxiety, or they may
include the opportunity cost caused by engaging in a non-
profit activity. It is a reasonable move to assume that
these costs are positively associated with the amount of
their effort. Moreover, we can further assume that the
marginal increase in the costs is higher when the effort
spent in programming is increased. In other words,
increasing programming hours from 10 to 15 hours per
week incurs higher unit costs than increasing the hours
from 5 to 10. As trading extrinsic rewards for intrinsic
ones, extrinsic rewards become more valuable as they
become relatively scarce. The same amount of sacrifice in
extrinsic rewards therefore incurs extra loss. The
relationships between effort and rewards/costs are
represented in Figure 1.

As shown in Figure 1, the reward function is linear,
but the cost function is convex. Each programmer as a
rational economic agent will try to determine the best
amount of effort to spend in programming open source
software to maximize his or her own utility level, which is
the difference between rewards and costs. The utility-
maximizing point is at E, where its marginal cost equal to
marginal rewards. The corresponding effort level, rewards
and costs are point e*, r* and c* respectively. The utility

488

level that the programmer receives is (r*-c*), the
difference between rewards and costs.

This model implies that intrinsically motivated
programmers will spend certain amount of time and effort
in programming as standard software programmers, even
without receiving explicit compensation for it. This
implication is compatible with the fact that open source
software programmers program for free. These
programmers will choose to spend e* amount of effort in
programming, where their utility level is maximized at
(r*-c*). This amount is jointly determined by opportunity
costs, physical conditions, leisure time and income
(hobby pursuers) and software functionality and
popularity (altruists).

Personal Needs

Intrinsic motivation is not the only reason for
participating in an open source project. As the history of
prominent open source projects shows, many open source
projects have been initiated for entirely different reasons.
The programming language PERL was created by Larry
Wall because he needed to generate web pages
programmatically. He found it too cumbersome to write
his programs in C and therefore developed simple
routines that could be reused and combined. He later
shared these routines with other programmers (O’Reilly
1999, p.194). The Apache Server was driven by a similar
motivation. In 1995, a large number of web masters were
using the NCSA HttpD web server. It had many problems
which the web masters circumvented by programming
their own patches. Quickly, a core group of web masters
formed to share their patches. They rewrote the web
server to include more patches and the Apache web server
was born (Unknown 1998).

Both cases illustrate an additional motivation that is
based on the personal need of a programmer (or a group
of programmers) for specific functionality (Behlendorf
1999, p. 159). The existence of personal needs has
important implications for open source projects. First, it
shows that participants in open source projects may act
rationally in their own self-interest, if they provide their
software for free as long as long as selling software
involves significant transaction costs. Second, it shows
that there should be a limit to the amount of effort that a
participant in open source project provides for free. The
more complex a product becomes, the less its value
depends on interactions with other modules of software,
the more its contribution can be identified and
communicated, the more likely it is that a programmer
will sell his software rather than provide it for free. Some
cases may already be cited. Eric Allmann, for example,
the founder of Sendmail which is one of the most
successful email server programs, has started a company
which provides an add-on product to Sendmail which

simplifies its configuration and administration. This is a
larger module which is useful to most adopters of
Sendmail and thus can be marketed effectively. The third
implication of personal need may be the most important:
it shows that the interests of the users and developers of
software are often aligned: both are interested in
improving the functionality; both are willing to invest in
improvements. However, traditional software houses
structure their licenses agreements in a way which
prevents customers to invest in their software by making
modifications, by tweaking and tuning it and by sharing
these improvements with others. This would raise the
value of a license to prospective buyers and thus increase
the revenue stream or market position of the software
vendor. However, because of the fear of piracy, software
houses give up considerable potential investments which
customers would be willing to make in the source code.
From the perspective of leveraging a need in improved
functionality, this category of motivation thus
demonstrates a crucial oversight in the marketing and
product evolution strategies of current software
companies.

Expectation of future returns

A third category of motivation is based on the
expectation that participation in an open source project
will lead to future revenue. Participation thus is treated as
an investment for which a payback can be expected at a
later time (DiBona, Ockman & Stone, 1999, p. 13). The
economics of such investments are well understood. The
question that remains specific to the open source
community is the nature of such rewards. Three types of
investments models must be distinguished:

1. Commercialization of related products and services
One of the traditional strategies of generating business

is to provide one product for free which then generates
follow-up sales opportunities. This has been demonstrated
in many industries. In the open source domain, companies
such as Red Hat, Caldera, Corel, etc. are investing in the
development of Linux to ensure that they can provide
services like consulting, training, implementation and
distribution etc. But it should be noted that participating
in an open source project by a company that markets
services around this project may be a double-edge sword.
The company may be naturally biased against increasing
the usability of the software because of the concerns of
loosing service opportunities.

2. Investment in human capital
According to human capital theories (Becker 1962),

human skills, capabilities and knowledge are special
capital forms – human capital. Investment in human
capital can take forms such as schooling, training and
learning and is anchored with expected future returns
(higher output, better performance, more profits etc.).

489

Open source software programmers who aim at
improving their skill of writing programs are human
capital investors – investors that invest in their own
human capital stock. Open source software has large
number of users, open source code and collaborating
developers. Thus the community of the open source
software developers provides an excellent environment to
extend one’s skills of writing programs.

3. Advertisement
Some programmers may regard working for open

source software as an effective way to demonstrate their
capability and skillfulness in programming. Claims of
competence in programming can be well reinforced by the
achievements in open source projects. Participating in
open source projects therefore can be a good advertising
channel to publicize one’s skillfulness and capabilities.
Advertisement is also associated with future returns.

The fact that every open source project leaves a record
of the commitment of each participant has an important
implication: The larger the contribution of an individual,
the more likely it is that a commercial developer will
recognize the value of the individual and the larger the
incentive will become for this individual to apply his
skills in a paid position. Thus the openness of open source
projects may work to some against open source projects.
It may help to lure the best programmers and most
productive minds away from these projects into much
more highly paid commercial development.

Summary

This article has shown that characterizations of open
source developers as being motivated by intrinsic
motivation and altruism may neglect other equally or even
more important motivations of open source software
developers which are rooted in self-interest. These
motivations are the self-interest in the improvement of
software functionality and the investment into marketing,
growth and sales opportunities. The open source
phenomenon thus may have an economically much
stronger foundation than previously thought. The analysis
of motivations also imply that commercial software
companies have more alternatives in changing their
marketing and product evolution strategies in reaction to
the open source phenomenon. Software companies, for
example, could find partially open approaches which
accommodate their customers’ needs to improve and
extend standard software and at the same time increase
the overall utility and market value of their software
products. As a consequence, open source must be seen as
a lasting, sustainable phenomenon. Rather than replacing
commercial development, however, it will increase the
variety of business models in the software industry.

References

Becker, G. S., “Investment in Human Capital: A
Theoretical Analysis”, Journal of Political Economy (70
supplement), 1962, pp. 9-49.

Behlendorf, B., “Open Source as a Business Strategy”, in
DiBona, Chr., Ockman, S. and Stone, T. (eds.) “Open
Sources”, Sebastopol, CA (O’Reilly), pp. 149-170.

Bollinger, T. and Beckman P. “Linux On The Move”,
IEEE Software (January/February), 1999, pp. 30-35.

Comerford, R. “The Path to Open-Source Systems”, IEEE
Spectrum (May), 1999, pp. 25-31.

Deci, E. Intrinsic Motivation, Plenum Press, New York,
NY, 1975.

DiBona, Chr., Ockman, S. and Stone, T. (eds.) “Open
Sources”, Sebastopol, CA (O’Reilly).

Gonzalez Barahona, J., Heras Quiros, P. and Bollinger, T.
“A Brief History of Free Software and Open Source”,
IEEE Software (January/February), 1999, pp. 32-33.

O’Reilly, T. “Hardwarde, Software and Infoware”, in
DiBona, Ockman and Stone (1999), pp. 189-196.

Seltzer, L. “Milestones in the Open-Source Movement”,
PC Magazine (March), 1999.

Unknown, “Linux and Apache”, Computer (October),
1998, pp. 12.

Varian, H. Intermediate Microeconomics A Modern
Approach, W. W. Norton & Company, New York, NY,
1999.

490

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	Why is Open Source Software Viable? A Study of Intrinsic Motivation, Personal Needs and Future Returns
	Alexander Hars
	Shaosong Ou
	Recommended Citation

