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Abstract

Computational results demonstrate that posterior

sampling for reinforcement learning (PSRL)

dramatically outperforms existing algorithms

driven by optimism, such as UCRL2. We pro-

vide insight into the extent of this performance

boost and the phenomenon that drives it. We

leverage this insight to establish an Õ(H
p
SAT )

Bayesian regret bound for PSRL in finite-horizon

episodic Markov decision processes. This im-

proves upon the best previous Bayesian regret

bound of Õ(HS
p
AT ) for any reinforcement

learning algorithm. Our theoretical results are

supported by extensive empirical evaluation.

1. Introduction

We consider the reinforcement learning problem in which

an agent interacts with a Markov decision process with the

aim of maximizing expected cumulative reward (Burnetas

& Katehakis, 1997; Sutton & Barto, 1998). Key to per-

formance is how the agent balances between exploration

to acquire information of long-term benefit and exploita-

tion to maximize expected near-term rewards. In princi-

ple, dynamic programming can be applied to compute the

Bayes-optimal solution to this problem (Bellman & Kal-

aba, 1959). However, this is computationally intractable

for anything beyond the simplest of toy problems and di-

rect approximations can fail spectacularly poorly (Munos,

2014). As such, researchers have proposed and analyzed a

number of heuristic reinforcement learning algorithms.

The literature on efficient reinforcement learning offers sta-

tistical efficiency guarantees for computationally tractable

algorithms. These provably efficient algorithms (Kearns

& Singh, 2002; Brafman & Tennenholtz, 2002) predom-

inantly address the exploration-exploitation trade-off via

optimism in the face of uncertainty (OFU): at any state, the

agent assigns to each action an optimistically biased esti-
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mate of future value and selects the action with the greatest

estimate. If a selected action is not near-optimal, the es-

timate must be overly optimistic, in which case the agent

learns from the experience. Efficiency relative to less so-

phisticated exploration arises as the agent avoids actions

that can neither yield high value nor informative data.

An alternative approach, based on Thompson sampling

(Thompson, 1933), involves sampling a statistically plau-

sibly set of action values and selecting the maximizing

action. These values can be generated, for example, by

sampling from the posterior distribution over MDPs and

computing the state-action value function of the sampled

MDP. This approach, originally proposed in Strens (2000),

is called posterior sampling for reinforcement learning

(PSRL). Computational results from Osband et al. (2013)

demonstrate that PSRL dramatically outperforms existing

algorithms based on OFU. The primary aim of this paper is

to provide insight into the extent of this performance boost

and the phenomenon that drives it.

We show that, in Bayesian expectation and up to constant

factors, PSRL matches the statistical efficiency of any stan-

dard algorithm for OFU-RL. We highlight two key short-

comings of existing state of the art algorithms for OFU

(Jaksch et al., 2010) and demonstrate that PSRL does not

suffer from these inefficiencies. We leverage this insight

to produce an Õ(H
p
SAT ) bound for the Bayesian regret

of PSRL in finite-horizon episodic Markov decision pro-

cesses where H is the horizon, S is the number of states,

A is the number of actions and T is the time elapsed. This

improves upon the best previous bound of Õ(HS
p
AT ) for

any RL algorithm. We discuss why we believe PSRL sat-

isfies a tighter Õ(
p
HSAT ), though we have not proved

that. We complement our theory with computational exper-

iments that highlight the issues we raise; empirical results

match our theoretical predictions.

More importantly, we highlights a tension in OFU RL be-

tween statistical efficiency and computational tractability.

We argue that any OFU algorithm that matches PSRL in

statistical efficiency would likely be computationally in-

tractable. We provide proof of this claim in a restricted

setting. Our key insight, and the potential benefits of ex-

ploration guided by posterior sampling, are not restricted

to the simple tabular MDPs we analyze.
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2. Problem formulation

We consider the problem of learning to optimize a ran-

dom finite-horizon MDP M⇤=(S,A,R⇤,P ⇤,H,⇢) over re-

peated episodes of interaction, where S = {1, .., S} is

the state space, A = {1, .., A} is the action space, H is

the horizon, and ⇢ is the initial state distribution. In each

time period h = 1, .., H within an episode, the agent ob-

serves state sh 2 S , selects action ah 2 A, receives a

reward rh ⇠ R⇤(sh, ah), and transitions to a new state

sh+1 ⇠ P ⇤(sh, ah). We note that this formulation, where

the unknown MDP M⇤ is treated as itself a random vari-

able, is often called Bayesian reinforcement learning.

A policy µ is a mapping from state s 2 S and period h =
1, .., H to action a 2 A. For each MDP M and policy µ
we define the state-action value function for each period h:

QM
µ,h(s,a) :=EM,µ

2

4

HX

j=h

rM (sj ,aj)
�
�
�sh=s,ah=a

3

5, (1)

where rM (s,a)=E[r|r⇠RM (s,a)]. The subscript µ in-

dicates that actions over periods h+1,...,H are selected

according to the policy µ. Let V M
µ,h(s) :=QM

µ,h(s,µ(s,h)).

We say a policy µM is optimal for the MDP M if

µM 2argmaxµV
M
µ,h(s) for all s2S and h=1,...,H .

Let Ht denote the history of observations made prior

to time t. To highlight this time evolution within

episodes, with some abuse of notation, we let skh=st for

t=(k�1)H+h, so that skh is the state in period h of

episode k. We define Hkh analogously. An RL algorithm

is a deterministic sequence {⇡k|k=1,2,...} of functions,

each mapping Hk1 to a probability distribution ⇡k(Hk1)
over policies, from which the agent samples a policy µk

for the kth episode. We define the regret incurred by an RL

algorithm ⇡ up to time T to be

Regret(T,⇡,M⇤) :=

dT/He
X

k=1

∆k, (2)

where ∆k denotes regret over the kth episode, defined with

respect to true MDP M⇤ by

∆k :=
X

S

⇢(s)(V M∗

µ∗,1(s)�V M∗

µk,1
(s)) (3)

with µ⇤=µM∗

. We note that the regret in (2) is random,
since it depends on the unknown MDP M⇤, the learning
algorithm ⇡ and through the history Ht on the sampled
transitions and rewards. We define

BayesRegret(T,⇡,�) :=E[Regret(T,⇡,M⇤) |M⇤
∼�], (4)

as the Bayesian expected regret for M⇤ distributed accord-

ing to the prior �. We will assess and compare algorithm

performance in terms of the regret and BayesRegret.

2.1. Relating performance guarantees

For the most part, the literature on efficient RL is sharply

divided between the frequentist and Bayesian perspective

(Vlassis et al., 2012). By volume, most papers focus on

minimax regret bounds that hold with high probability for

any M⇤2M some class of MDPs (Jaksch et al., 2010).

Bounds on the BayesRegret are generally weaker analyt-

ical statements than minimax bounds on regret. A regret

bound for any M⇤2M implies an identical bound on the

BayesReget for any � with support on M. A partial con-

verse is available for M⇤ drawn with non-zero probability

under �, but does not hold in general (Osband et al., 2013).

Another common notion of performance guarantee is given

by so-called “sample-complexity” or PAC analyses that

bound the number of ✏-sub-optimal decisions taken by an

algorithm (Kakade, 2003; Dann & Brunskill, 2015). In

general, optimal bounds on regret Õ(
p
T ) imply optimal

bounds on sample complexity Õ(✏�2), whereas optimal

bounds on the sample complexity give only an Õ(T 2/3)
bound on regret (Osband, 2016).

Our formulation focuses on the simple setting on finite

horizon MDPs, but there are several other problems of in-

terest in the literature. Common formulations include the

discounted setting1 and problems with infinite horizon un-

der some connectedness assumption (Bartlett & Tewari,

2009). This paper may contain insights that carry over to

these settings, but we leave that analysis to future work.

Our analysis focuses upon Bayesian expected regret in fi-

nite horizon MDPs. We find this criterion amenable to (rel-

atively) simple analysis and use it obtain actionable insight

to the design of practical algorithms. We absolutely do not

“close the book” on the exploration/exploitation problem -

there remain many important open questions. Nonetheless,

our work may help to develop understanding within some

of the outstanding issues of statistical and computational

efficiency in RL. In particular, we shed some light on how

and why posterior sampling performs so much better than

existing algorithms for OFU-RL. Crucially, we believe that

many of these insights extend beyond the stylized problem

of finite tabular MDPs and can help to guide the design of

practical algorithms for generalization and exploration via

randomized value functions (Osband, 2016).

3. Posterior sampling as stochastic optimism

There is a well-known connection between posterior sam-

pling and optimistic algorithms (Russo & Van Roy, 2014).

In this section we highlight the similarity of these ap-

proaches. We argue that posterior sampling can be thought

of as a stochastically optimistic algorithm.

1Discount �=1−1/H gives an effective horizon O(H).
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Before each episode, a typical OFU algorithm constructs

a confidence set to represent the range of MDPs that are

statistically plausible given prior knowledge and observa-

tions. Then, a policy is selected by maximizing value si-

multaneously over policies and MDPs in this set. The agent

then follows this policy over the episode. It is interesting to

contrast this approach against PSRL where instead of max-

imizing over a confidence set, PSRL samples a single sta-

tistically plausible MDP and selects a policy to maximize

value for that MDP.

Algorithm 1 OFU RL

Input: confidence set constructor Φ

1: for episode k=1,2,.. do

2: Construct confidence set Mk=Φ(Hk1)
3: Compute µk2argmaxµ,M2Mk

V M
µ,1

4: for timestep h=1,..,H do

5: take action akh=µk(skh,h)
6: update Hkh+1=Hkh[(skh,akh,rkh,skh+1)
7: end for

8: end for

Algorithm 2 PSRL

Input: prior distribution �

1: for episode k=1,2,.. do

2: Sample MDP Mk⇠�(· |Hk1)
3: Compute µk2argmaxµV

Mk

µ,1

4: for timestep h=1,..,H do

5: take action akh=µk(skh,h)
6: update Hkh+1=Hkh[(skh,akh,rkh,skh+1)
7: end for

8: end for

3.1. The blueprint for OFU regret bounds

The general strategy for the analysis of optimistic algo-

rithms follows a simple recipe (Strehl & Littman, 2005;

Szita & Szepesvári, 2010; Munos, 2014):

1. Design confidence sets (via concentration inequality)

such that M⇤2Mk for all k with probability �1��.

2. Decompose the regret in each episode

∆k=V M∗

µ∗,1�V M∗

µk,1
=V M∗

µ∗,1�V Mk

µk,1
| {z }

∆
opt

k

+V Mk

µk,1
�V M∗

µk,1
| {z }

∆conc
k

where Mk is the imagined optimistic MDP.

3. By step (1.) ∆
opt
k 0 for all k with probability �1��.

4. Use concentration results with a pigeonhole argument
over all possible trajectories {H11,H21,..} to bound,
with probability at least 1��,

Regret(T,⇡,M⇤)≤

dT/He
X

k=1

∆
conc
k |M⇤

∈Mk≤f(S,A,H,T,�).

3.2. Anything OFU can do, PSRL can expect to do too

In this section, we highlight the connection between poste-

rior sampling and any optimistic algorithm in the spirit of

Section 3.1. Central to our analysis will be the following

notion of stochastic optimism (Osband et al., 2014).

Definition 1 (Stochastic optimism).

Let X and Y be real-valued random variables with finite

expectation. We will say that X is stochastically optimistic

for Y if for any convex and increasing u :R!R:

E[u(X)]�E[u(Y )]. (5)

We will write X<soY for this relation.

This notion of optimism is dual to second order stochastic

dominance (Hadar & Russell, 1969), X<soY if and only

if �Y <ssd�X . We say that PSRL is a stochastically opti-

mistic algorithm since the random imagined value function

V Mk

µk,1
is stochastically optimistic for the true optimal value

function V M∗

µ∗,1 conditioned upon any possible history Hk1

(Russo & Van Roy, 2014). This observation leads us to a

general relationship between PSRL and the BayesRegret of

any optimistic algorithm.

Theorem 1 (PSRL matches OFU-RL in BayesRegret).
Let ⇡opt be any optimistic algorithm for reinforcement
learning in the style of Algorithm 1. If ⇡opt satisfies re-
gret bounds such that, for any M⇤ any T >0 and any �>0
the regret is bounded with probability at least 1��

Regret(T,⇡opt,M⇤)≤f(S,A,H,T,�). (6)

Then, if � is the distribution of the true MDP M⇤ and the
proof of (6) follows Section 3.1, then for all T >0

BayesRegret(T,⇡PSRL,�)≤2f(S,A,H,T,�=T�1)+2. (7)

Sketch proof. This result is established in Osband et al.

(2013) for the special case of ⇡opt=⇡UCRL2. We include

this small sketch as a refresher and a guide for high level

intuition. First, note that conditioned upon any data Hk1,

the true MDP M⇤ and the sampled Mk are identically

distributed. This means that E[∆opt|Hk1]0 for all k.

Therefore, to establish a bound upon the Bayesian regret

of PSRL, we just need to bound
PdT/He

k=1 E[∆conc
k |Hk].

We can use that M⇤ |Hk1=
DMk |Hk1 again in step (1.)

from Section 3.1 to say that both M⇤,Mk lie within Mk
for all k with probability at least 1�2� via a union bound.
This means we can bound the concentration error in PSRL,

BayesRegret(T,⇡PSRL,�)≤

dT/He
X

k=1

E[∆conc
k |M⇤,Mk∈Mk]+2�T

The final step follows from decomposing ∆
conc
k by

adding and subtracting the imagined optimistic value Ṽk

generated by ⇡opt. Through an application of the triangle
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inequality, ∆
conc
k  |V Mk

µk,1
� Ṽk|+ |Ṽk�V ⇤

µk,1
| we can

mirror step (4.) to bound the regret from concentration,
PdT/He

k=1 E[∆conc
k |M⇤,Mk2Mk]2f(S,A,H,T,�).

This result (and proof strategy) was established in multi-

armed bandits by Russo & Van Roy (2014). We complete

the proof of Theorem 1 with the choice �=T�1 and that

the regret is uniformly bounded by T .

Theorem 1 suggest that, according to Bayesian expected re-

gret, PSRL performs within a factor of 2 of any optimistic

algorithm whose analysis follows Section 3.1. This in-

cludes the algorithms UCRL2 (Jaksch et al., 2010), UCFH

(Dann & Brunskill, 2015), MORMAX (Szita & Szepesvári,

2010) and many more.

Importantly, and unlike existing OFU approaches, the al-

gorithm performance is separated from the analysis of the

confidence sets Mk. This means that PSRL even attains

the big O scaling of as-yet-undiscovered approaches to

OFU, all at a computational cost no greater than solving

a single known MDP - even if the matched OFU algorithm

⇡opt is computationally intractable.

4. Some shortcomings of existing OFU-RL

In this section, we discuss how and why existing OFU al-

gorithms forgo the level of statistical efficiency enjoyed by

PSRL. At a high level, this lack of statistical efficiency

emerges from sub-optimal construction of the confidence

sets Mk. We present several insights that may prove cru-

cial to the design of improved algorithms for OFU. More

worryingly, we raise the question that perhaps the optimal

statistical confidence sets Mk would likely be computa-

tionally intractable. We argue that PSRL offers a compu-

tationally tractable approximation to this unknown “ideal”

optimistic algorithm.

Before we launch into a more mathematical argument it

is useful to take intuition from a simple estimation prob-

lem, without any decision making. Consider an MDP with

A=1,H=2,S=2N+1 as described in Figure 1. Every

episode the agent transitions from s=0 uniformly to s2
{1,..,2N} and receives a deterministic reward from {0,1}
depending upon this state. The simplicity of these exam-

ples means even a naive monte-carlo estimate of the value

should concentrate 1/2±Õ(1/
p
n) after n episodes of in-

teraction. Nonetheless, the confidence sets suggested by

state of the art OFU-RL algorithm UCRL (Jaksch et al.,

2010) become incredibly mis-calibrated as S grows.

To see how this problem occurs, consider any algorithm for

for model-based OFU-RL that builds up confidence sets for

each state and action independently, such as UCRL. Even

if the estimates are tight in each state and action, the result-

ing optimistic MDP, simultaneously optimistic across each

state and action, may be far too optimistic. Geometrically

Figure 1. MDPs to illustrate the scaling with S.

Figure 2. MDPs to illustrate the scaling with H .

Figure 3. Union bounds give loose rectangular confidence sets.

these independent bounds form a rectangular confidence

set. The corners of this rectangle will be
p
S misspecified

to the underlying distribution, an ellipse, when combined

across S independent estimates (Figure 3).

Several algorithms for OFU-RL do exist which address

this loose dependence upon S (Strehl et al., 2006; Szita

& Szepesvári, 2010). However, these algorithms depend

upon a partitioning of data for future value, which leads

to a poor dependence upon the horizon H or equivalently

the effective horizon 1
1��

in discounted problems. We can

use a similar toy example from Figure 2 to understand

why combining independently optimistic estimates through

time will contribute to a loose bound in H .
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The natural question to ask is, “Why don’t we simply apply

these observations to design an optimistic algorithm which

is simultaneously efficient in S and H?”. The first imped-

iment is that designing such an algorithm requires some

new intricate concentration inequalities and analysis. Do-

ing this rigorously may be challenging, but we believe it

will be possible through a more careful application of ex-

isting tools to the insights we raise above. The bigger chal-

lenge is that, even if one were able to formally specify such

an algorithm, the resulting algorithm may in general not be

computationally tractable.

A similar observation to this problem of optimistic opti-

mization has been shown in the setting of linear bandits

(Dani et al., 2008; Russo & Van Roy, 2014). In these works

they show that the problem of efficient optimization over

ellipsoidal confidence sets can be NP-hard. This means that

computationally tractable implementations of OFU have to

rely upon inefficient rectangular confidence sets that give

up a factor of
p
D where D is the dimension of the underly-

ing problem. By contrast, Thompson sampling approaches

remain computationally tractable (since they require solv-

ing only a single problem instance) and so do not suffer

from the loose confidence set construction. It remains an

open question whether such an algorithm can be designed

for finite MDPs. However, these previous results in the

simpler bandit setting H=1 show that these problems with

OFU-RL cannot be overcome in general.

4.1. Computational illustration

In this section we present a simple series of computational

results to demonstrate this looseness in both S and H .

We sample K=1000 episodes of data from the MDP and

then examine the optimistic/sampled Q-values for UCRL2

and PSRL. We implement a version of UCRL2 optimized

for finite horizon MDPs and implement PSRL with a uni-

form Dirichlet prior over the initial dynamics P (0,1)=
(p1,..,p2N ) and a N(0,1) prior over rewards updating as if

rewards had N(0,1) noise. For both algorithms, if we say

that R or P are known then we mean that we use the true R
or P inside UCRL2 or PSRL. In each experiment, the es-

timates guided by OFU become extremely mis-calibrated,

while PSRL remains stable.

The results of Figure 5 are particularly revealing. They

demonstrates the potential pitfalls of OFU-RL even when

the underlying transition dynamics entirely known. Sev-

eral OFU algorithms have been proposed to remedy the

loose UCRL-style L1 concentration from transitions (Fil-

ippi et al., 2010; Araya et al., 2012; Dann & Brunskill,

2015) but none of these address the inefficiency from

hyper-rectangular confidence sets. As expected, these loose

confidence sets lead to extremely poor performance in

terms of the regret. We push full results to Appendix C

along with comparison to several other OFU approaches.

Figure 4. R known, P unknown, vary N in the MDP Figure 1.

Figure 5. P known, R unknown, vary N in the MDP Figure 1.

Figure 6. R,P unknown, vary H in the MDP Figure 2

5. Better optimism by sampling

Until now, all analyses of PSRL have come via comparison

to some existing algorithm for OFU-RL. Previous work,

in the spirit of Theorem 1, leveraged the existing analy-

sis for UCRL2 to establish an Õ(HS
p
AT ) bound upon

the Bayesian regret (Osband et al., 2013). In this section,

we present a new result that bounds the expected regret

of PSRL Õ(H
p
SAT ). We also include a conjecture that

improved analysis could result in a Bayesian regret bound

Õ(
p
HSAT ) for PSRL, and that this result would be unim-

provable (Osband & Van Roy, 2016).

5.1. From S to
p
S

In this section we present a new analysis that improves the

bound on the Bayesian regret from S to
p
S. The proof of

this result is somewhat technical, but the essential argument

comes from the simple observation of the loose rectangular

confidence sets from Section 4. The key to this analysis

is a technical lemma on Gaussian-Dirichlet concentration

(Osband & Van Roy, 2017).
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Theorem 2. Let M⇤ be the true MDP distributed accord-

ing to prior � with any independent Dirichlet prior over

transitions. Then the regret for PSRL is bounded

BayesRegret(T,⇡PSRL,�)=Õ
⇣

H
p
SAT

⌘

. (8)

Our proof of Theorem 2 mirrors the standard OFU-

RL analysis from Section 3.1. To condense our no-

tation we write xkh:=(skh,akh) and V k
k,h:=V Mk

µk,h
. Let

the posterior mean of rewards r̂k(x):=E[r⇤(x)|Hk1],
transitions P̂k(x):=E[P ⇤(x)|Hk1] with respective devi-

ations from sampling noise wR(x):=rk(x)�r̂k(x) and

wP
h (x):=(Pk(x)�P̂k(x))

TV k
kh+1.

We note that, conditional upon the data Hk1 the true
reward and transitions are independent of the rewards
and transitions sampled by PSRL, so that E[r⇤(x)|Hk1]=

r̂k(x),E[P
⇤(x)|Hk1]= P̂k(x) for any x. However,

E[wR(x)|Hk1] and E[wP
h (x)|Hk1] are generally non-zero,

since the agent chooses its policy to optimize its reward un-
der Mk. We can rewrite the regret from concentration via
the Bellman operator (section 5.2 of Osband et al. (2013)),

E

h

V k
k1−V ⇤

k1|Hk1

i

= E

h

(rk−r⇤)(xk1)+Pk(xk1)
TV k

k2−P ⇤(xk1)
TV ⇤

k2 | Hk1

i

= E



(rk−r⇤)(xk1)+
⇣

Pk(xk1)−P̂k(xk1)
⌘T

V k
k2

+ E

h⇣

V k
k2−V ⇤

k2

⌘

(s0)|s0∼P ⇤(xk1)
i

|Hk1

�

= ...

= E



PH
h=1

{rk(xk1)−r̂⇤(xk1)}

+
PH

h=1

⇢

⇣

Pk(xkh)−P̂k(xkh)
⌘T

V k
kh

�

| Hk1

�

≤ E

h

PH
h=1

|wR(xkh)|+
PH

h=1
|wP

h (xkh)| | Hk1

i

. (9)

We can bound the contribution from unknown rewards

wR
k (xkh) with a standard argument from earlier work

(Buldygin & Kozachenko, 1980; Jaksch et al., 2010).

Lemma 1 (Sub-Gaussian tail bounds).

Let x1,..,xn be independent samples from sub-Gaussian

random variables. Then, for any �>0

P

 

1

n

�
�

nX

i=1

xi

�
��

r

2log(2/�)

n

!

�. (10)

The key piece of our new analysis will be to show that the

contribution from the transition estimate
PH

h=1 |w
P (xkh)|

concentrates at a rate independent of S. At the root of

our argument is the notion of stochastic optimism (Osband,

2016), which introduces a partial ordering over random

variables. We make particular use of Lemma 2, that re-

lates the concentration of a Dirichlet posterior with that of a

matched Gaussian distribution (Osband & Van Roy, 2017).

Lemma 2 (Gaussian-Dirichlet dominance).

For all fixed V 2 [0,1]N , ↵2 [0,1)N with ↵T
1�2,

if X⇠N(↵>V/↵>
1,1/↵>

1) and Y =PTV for

P ⇠Dirichlet(↵) then X<soY .

We can use Lemma 2 to establish a similar concentration

bound on the error from sampling wP
h (x).

Lemma 3 (Transition concentration). For any independent

prior over rewards with r2 [0,1], additive sub-Gaussian

noise and an independent Dirichlet prior over transitions

at state-action pair xkh, then

wP
h (xkh)2H

s

2log(2/�)

max(nk(xkh)�2,1)
(11)

with probability at least 1��.

Sketch proof. Our proof relies heavily upon some techni-

cal results from the note from Osband & Van Roy (2017).

We cannot apply Lemma 2 directly to wP , since the fu-

ture value V k
kh+1 is itself be a random variable whose value

depends on the sampled transition Pk(xkh). However, al-

though V k
kh+1 can vary with Pk, the structure of the MDP

means that resultant wP (xkh) is still no more optimistic

than the most optimistic possible fixed V 2 [0,H]S .

We begin this proof only for the simply family of MDPs
with S=2, which we call M2. We write p :=Pk(xkh)(1)
for the first component of the unknown transition at xkh

and similarly p̂ := P̂k(xkh)(1). We can then bound the tran-
sition concentration,

|wP
h (xkh)| = |(Pk(xkh)− P̂k(xkh))

TV k
kh+1|

≤ |(p− p̂)||(V k
kh+1(1)−V k

kh+1(2))|

≤ |p− p̂| sup
Rk,Pk

|(V k
kh+1(1)−V k

kh+1(2))|

≤ |(p− p̂)|H (12)

Lemma 2 now implies that for any ↵2R+ with ↵T
1�2,

the random variables p⇠Dirichlet(↵) and X⇠N(0,�2=
1/↵T

1) are ordered,

X<so p� p̂ =) |X|H<so |p� p̂|H<so |w
P
h (xkh)|.

(13)

We conclude the proof for M 2M2 through an application

of Lemma 1. To extend this argument to multiple states

S>2 we consider the marginal distribution of Pk over any

subset of states, which is Beta distributed similar to (12).

We push the details to Appendix A.

To complete the proof of Theorem 2 we combine Lemma 1

with Lemma 3. We rescale � �/2SAT so that these con-

fidence sets hold at each R(s,a),P (s,a) via union bound

with probability at least 1� 1
T ,

E

h
PH

h=1

�
|wR(xkh)|+ |wP

h (xkh)|
 
|Hk1

i


PH

h=12(H+1)
q

2log(4SAT )
max(nk(xkh)�2,1) . (14)
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We can now use (14) together with a pigeonhole principle

over the number of visits to each state and action:

BayesRegret(T,⇡PSRL,�)


PdT/He

k=1

PH
h=12(H+1)

q
2log(4SAT )
nk(xkh)

+2SA+1

 10H
p

SAT log(4SAT ).

This completes the proof of Theorem 2.

Prior work has designed similar OFU approaches that im-

prove the learning scaling with S. MORMAX (Szita &

Szepesvári, 2010) and delayed Q-learning (Strehl et al.,

2006), in particular, come with sample complexity bounds

that are linear in S, and match lower bounds. But even in

terms of sample complexity, these algorithms are not neces-

sarily an improvement over UCRL2 or its variants (Dann &

Brunskill, 2015). For clarity, we compare these algorithms

in terms of T⇡(✏) :=min
�
T | 1

T BayesRegret(T,⇡,�)✏
 

.

DelayQ MORMAX UCRL2
PSRL

Theorem 2

Õ
⇣

H9SA
✏4

⌘

Õ
⇣

H7SA
✏2

⌘

Õ
⇣

H2S2A
✏2

⌘

Õ
⇣

H2SA
✏2

⌘

Table 1. Learning times compared in terms of Tπ(✏).

Theorem 1 implies TPSRL(✏)=Õ(H
2SA
✏2

). MORMAX and

delayed Q-learning reduces the S-dependence of UCRL2,

but this comes at the expense of worse dependence on H ,

and the resulting algorithms are not practical.

5.2. From H to
p
H

Recent analyses (Lattimore & Hutter, 2012; Dann & Brun-

skill, 2015) suggest that simultaneously reducing the de-

pendence of H to
p
H may be possible. They note that

“local value variance” satisfies a Bellman equation. Intu-

itively this captures that if we transition to a bad state V '
0, then we cannot transition anywhere much worse dur-

ing this episode. This relation means that
PH

h=1w
P
h (xkh)

should behave more as if they were independent and grow

O(
p
H), unlike our analysis which crudely upper bounds

them each in turn O(H). We present a sketch towards an

analysis of Conjecture 1 in Appendix B.

Conjecture 1. For any prior over rewards with r2 [0,1],
additive sub-Gaussian noise and any independent Dirichlet

prior over transitions, we conjecture that

E
⇥
Regret(T,⇡PSRL,M⇤)

⇤
=Õ

⇣p
HSAT

⌘

, (15)

and that this matches the lower bounds for any algorithm

up to logarithmic factors.

The results of (Bartlett & Tewari, 2009) adapted to finite

horizon MDPs would suggest a lower bound Ω(H
p
SAT )

on the minimax regret for any algorithm. However, the as-

sociated proof is incorrect (Osband & Van Roy, 2016). The

strongest lower bound with a correct proof is Ω(
p
HSAT )

(Jaksch et al., 2010). It remains an open question whether

such a lower bound applies to Bayesian regret over the class

of priors we analyze in Theorem 2.

One particularly interesting aspect of Conjecture 1 is that

we can construct another algorithm that satisfies the proof

of Theorem 2 but would not satisfy the argument for Con-

jecture 1 of Appendix B. We call this algorithm Gaussian

PSRL, since it operates in a manner similar to PSRL but ac-

tually uses the Gaussian sampling we use for the analysis

of PSRL in its algorithm.

Algorithm 3 Gaussian PSRL

Input: Posterior MAP estimates rk, P̂k, visit counts nk

Output: Random Qk,h(s,a)<soQ
⇤
h(s,a) for all (s,a,h)

1: Initialize Qk,H+1(s,a) 0 for all (s,a)
2: for timestep h=H,H�1,..,1 do

3: Vk,h+1(s) max↵Qk,h+1(s,↵)

4: Sample wk(s,a,h)⇠N
⇣

0, (H+1)2

max(nk(s,a)�2,1)

⌘

5: Qk,h(s,a) rk(s,a)+P̂k(s,a)
TV+wk(s,a,h) 8(s,a)

6: end for

Algorithm 3 presents the method for sampling random Q-

values according to Gaussian PSRL, the algorithm then

follows these samples greedily for the duration of the

episode, similar to PSRL. Interestingly, we find that our

experimental evaluation is consistent with Õ(HS
p
AT ),

Õ(H
p
SAT ) and Õ(

p
HSAT ) for UCRL2, Gaussian

PSRL and PSRL respectively.

5.3. An empirical investigation

We now discuss a computational study designed to illus-

trate how learning times scale with S and H , and to em-

pirically investigate Conjecture 1. The class of MDPs we

consider involves a long chain of states with S=H=N
and with two actions: left and right. Each episode the agent

begins in state 1. The optimal policy is to head right at ev-

ery timestep, all other policies have zero expected reward.

Inefficient exploration strategies will take Ω(2N ) episodes

to learn the optimal policy (Osband et al., 2014).

Figure 7. MDPs that highlight the need for efficient exploration.

We evaluate several learning algorithms from ten random

seeds and N=2,..,100 for up to ten million episodes each.

Our goal is to investigate their empirical performance and

scaling. We believe this is the first ever large scale empir-

ical investigation into the scaling properties of algorithms

for efficient exploration.
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We highlight results for three algorithms with Õ(
p
T )

Bayesian regret bounds: UCRL2, Gaussian PSRL and

PSRL. We implement UCRL2 with confidence sets opti-

mized for finite horizon MDPs. For the Bayesian algo-

rithms we use a uniform Dirichlet prior for transitions and

N(0,1) prior for rewards. We view these priors as simple

ways to encode very little prior knowledge. Full details and

a link to source code are available in Appendix D.

Figure 8 display the regret curves for these algorithms for

N 2{5,10,30,50}. As suggested by our analysis, PSRL

outperforms Gaussian PSRL which outperforms UCRL2.

These differences seems to scale with the length of the

chain N and that even for relatively small MDPs, PSRL

is many orders of magnitude more efficient than UCRL2.

Figure 8. PSRL outperforms other methods by large margins.

We investigate the empirical scaling of these algorithms

with respect to N . The results of Theorem 2 and Conjec-

ture 1 only bound the Bayesian regret according to the prior

�. The family of environments we consider in this exam-

ple are decidedly not from this uniform distribution; in fact

they are chosen to be as difficult as possible. Nevertheless,

the results of Theorem 2 and Conjecture 1 provide remark-

ably good description for the behavior we observe.

Define learning time(⇡,N) :=min
n

K | 1
K

PK
k=1∆k0.1

o

for the algorithm ⇡ on the MDP from Figure 7 with size N .

For any B⇡>0, the regret bound Õ(
p
B⇡T ) would imply

log(learning time)(⇡,N)=B⇡H⇥ log(N)+o(log(N)).
In the cases of Figure 7 with H=S=N then the bounds

Õ(HS
p
AT ), Õ(H

p
SAT ) and Õ(

p
HSAT ) would

suggest a slope B⇡ of 5,4 and 3 respectively.

Remarkably, these high level predictions match our empiri-

cal results almost exactly, as we show in Figure 9. These re-

sults provide some support to Conjecture 1 and even, since

the spirit of these environments is similar example used

in existing proofs, the ongoing questions of fundamental

lower bounds (Osband & Van Roy, 2016). Further, we note

that every single seed of PSRL and Gaussian PSRL learned

the optimal policy for every single N . We believe that this

suggests it may be possible to extend our Bayesian analy-

sis to provide minimax regret bounds of the style in UCRL2

for suitable choice of diffuse uninformative prior.

Figure 9. Empirical scaling matches our conjectured analysis.

6. Conclusion

PSRL is orders of magnitude more statistically efficient

than UCRL and the same computational cost as solving a

known MDP. We believe that analysts will be able to for-

mally specify an OFU approach to RL whose statistical ef-

ficiency matches PSRL. However, we argue that the result-

ing confidence sets which address both the coupling over H
and S may result in a computationally intractable optimiza-

tion problem. Posterior sampling offers a computationally

tractable approach to statistically efficient exploration.

We should stress that the finite tabular setting we analyze is

not a reasonable model for most problems of interest. Due

to the curse of dimensionality, RL in practical settings will

require generalization between states and actions. The goal

of this paper is not just to improve a mathematical bound

in a toy example (although we do also do that). Instead,

we hope this simple setting can highlight some shortcom-

ings of existing approaches to “efficient RL” and provide

insight into why algorithms based on sampling may offer

important advantages. We believe that these insights may

prove valuable as we move towards algorithms that solve

the problem we really care about: synthesizing efficient ex-

ploration with powerful generalization.
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