EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Why is software late? : an empirical study of reasons for delay
in software development

Citation for published version (APA):
Genuchten, van, M. J. I. M. (1991). Why is software late? : an empirical study of reasons for delay in software
development. IEEE Transactions on Software Engineering, 17, 582-590.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 22. Aug. 2022

https://research.tue.nl/en/publications/c02d35d5-e5ed-45f0-bcac-71e9bdf17533

582

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 6, JUNE 1991

Why is Software Late? An Empirical Study of
Reasons For Delay in Software Development

Michiel van Genuchten

Abstract—This paper describes a study of the reasons for delay
in software development that was carried out in 1988 and 1989 in
a Software Engineering Department. The aim of the study was to
gain an insight into the reasons for differences between plans and
reality in development activities in order to be able to take actions
for improvement. A classification was used to determine the
reasons. One hundred and sixty activities, comprising over 15 000
hours of work, have been analyzed. Actions have been taken in
the Department as a result of the study. These actions should
enable future projects to follow the plan more closely. The actions
for improvement include the introduction of maintenance weeks.
Similar studies in other software development departments have
shown that the reasons varied widely from one department to
another. It is recommended that every department should gain
an insight into its reasons for delay in software development so
as to be able to take appropriate actions for improvement.

Index Terms— Analysis of software development, empirical
study, improvement, measurement, metrics, project management,
reasons for delay, software development, software engineering
management.

I. INTRODUCTION

here is frequently a difference between the planned and

actual progress of a software project. Why projects do
not run according to plan is less clear. This paper describes a
study which was carried-out in 1988 and 1989 in a Software
Development Department. The aim of the study was to obtain
information about the differences between plans and reality in
software development. The study led to actions for improve-
ment in the department concerned, which should enable future
projects to follow the plan more closely.

The aim of this paper is to add to the present knowledge
concerning the reasons for overrun and delays in software
development. The paper consists of the following sections:
Section II describes a number of surveys on delays and reasons
for delays, as described in the literature. Section III explains
the definition and planning of the study. The results of the
study are given in Section IV. The results were interpreted by
the project leaders participating in the study. The interpretation
of the results is described in Section V. Finally, the conclusions
of the study are presented.

Manuscript received February 15, 1990; revised January 10, 1991. Recom-
mended by M. S. Deutsch.

The author is with the Department of Management Information Systems
and Automation, Faculty of Industrial Engineering, Paviljoen D3, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Nether-
lands.

IEEE Log Number 9144265.

PERCENTAGE OF PROJECTS

40 —
30
20
10
-25 25 75 125 225 325 425 525
PERCENTAGE OF EFFORT OVERRUN
Fig. 1. Distribution of relative effort overruns [7].

1. SURVEYS ON THE OVERRUN OF DEVELOPMENT PROIJECTS

Three empirical studies concerning the overrun of devel-
opment projects will be discussed in this section. These
studies will be referred to as “surveys.” The definition of the
surveys and their results will then be compared with the study
described in Sections III through V of this paper.

A. Survey by Jenkins, Naumann, and Whetherbe [7]

Jenkins et al. [7] interviewed the developers of 72 in-
formation system development projects in 23 major U.S.
corporations. The aim of the survey was to collect empirical
data on the systems development process in organizations. The
average duration of the projects was 10.5 months. Over 70%
of the projects took less than 1000 person days to finish. The
users of the developed systems stated that they were “satisficd”
to “very satisfied” with the result in 72% of the projects. The
relative effort overruns are given in Fig. 1.

The average effort overrun was 36%. Fig. 1 shows that 38%
of the projects had an overrun of between 0 and 50%. Nine
percent of the projects had an underrun of between 0 and 50
%. The relative schedule overruns are given in Fig. 2.

The average schedule overrun was 22%. Fig. 2 shows
that 40% of the projects had an overrun of between O and
50%. One conclusion of Jenkins ef al. was that the cost and
schedule overruns seem to be uniformly distributed among
large, medium, and small projects. They did not look into the
reasons for delays and overruns.

B. Survey by Phan, Vogel, and Nunamaker [9], [10]

Rescarchers at the University of Arizona attempted to

0098-5589/91/0600—-0582$01.00 © 1991 IEEE

VAN GENUCHTEN: WHY IS SOFTWARE LATE?

PERCENTAGE OF PROJECTS

50

40 -

-25 26 75 125 225 326 455
PERCENTAGE OF SCHEDULE OVERRUN

525

Fig. 2. Distribution of relative schedule overruns [7].

USUALLY 37 %

ALWAYS 4 %

\ NEVER 4 %
SCMETIMES 42 % \
N

\/

Fig. 3. Prevalence of cost overruns [9].

RARELY 12 %

determine why the planned lead times and costs of information
system development projects were overrun {9], [10]. Question-
naires were sent to 827 members of the American Institution
of Certification of Computer Professionals. The survey yielded
191 responses. The respondents were involved in projects with
an average duration of 102 person months. On average, the
lead time was 14 months and 17 people worked on a project.
The average cost overrun was 33%, similar to the 36% overrun
reported by Jenkins et al. [7].

The survey was comprised of 100 questions. In 72 of these
the respondents were asked to recall the frequency with which
the events occurred as: (a) always; (b) usually; (c) sometimes;
(d) seldom/rarely; or (e) never. Over 70% of the respondents
claimed that user requirements and expectations were usually
met. Fig. 3 shows the prevalence of cost overruns.

Only 16% of the respondents answered that they never or
rarely had cost overruns. Cost overruns were usual for 37% of
them. Fig. 4 shows the prevalence of schedule overruns.

Fig. 4 shows that more than 80% of the respondents
stated that their projects were sometimes or usually late.
The survey also addressed the reasons for cost overruns
and late deliveries. According to 51% of the respondents,
over-optimistic estimation was usually a reason for a cost
overrun. Almost 50% stated that frequent changes in design
and implementation were usually a reason for a cost overrun.
Nine percent stated that these were always a reason. The
survey also investigated why the product lead times were
overrun. Over-optimistic planning was a reason to which
44% usually attribute the delay. Minor and major changes

583

USUALLY 31 %

SOMETIMES 50 %
NEVER 2 %

Fig. 4. Prevalence of late deliveries [10].

were usually a reason for 33 and 36% of the respondents,
respectively. The lack of software development tools was only
mentioned by 17% as a usual reason.

The four actions most frequently taken to regain control
over delayed projects were:

1) Upgrading the priority of the project

2) Shifting part of the responsibility and obligations to

other groups
3) Renegotiating the plan and schedule
4) Postponing features and upgrades to the next version.

C. Survey by Thambain and Wilemon [12]

The aim of a field study by Thambain and Wilemon [12]
was to investigate the practices of project managers regarding
their project control experiences. The scope of the survey
was not confined to software engineering projects; the leaders
of electronics, petrochemical, construction, and pharmaceuti-
cal projects were interviewed. Data was collected from 304
participants in project management workshops or seminars.
Those questioned had an average of five years’ experience in
technical project management. The average lead time for the
projects was one year, and on average eight people worked
on a project.

Among other things, the survey investigated what the project
leaders and their superiors (such as senior functional managers
or general managers) believed to be the reasons for cost and
lead time overruns. The reasons for overruns were arranged in
order of importance by project leaders and general managers.
The results are given in Table L.

It is striking to note that the project leaders and general
managers do not agree on the importance of 9 of the 15
reasons. According to the researchers, the “practical implica-
tion of this finding is that senior management expects proper
project planning, organization, and tracking from project lead-
ers. They further believe that the external criteria, such as
customer changes and project complexities, impact project
performance only if the project had not been defined properly
and sound management practices were ignored. On the other
hand, management thinks that some of the subtle problems,
such as sinking team spirit, priority shifts, and staffing are of
lesser importance” [12].

The researchers also investigated the reasons which caused
the problems referenced in Table I. These less obvious reasons
were called “subtle reasons,” which can be classified into five
categories:

584 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 6, JUNE 1991
TABLE 1
DIRECTLY OBSERVED REASONS FOR SCHEDULE SLIPS AND COST OVERRUNS
RANK BY Agreement
between
General Project general and project
managers managers PROBLEM management
1 10 Insufficient front-end planning Disagree
2 3 Unrealistic project plan Strongly agree
3 8 Project scope underestimated Disagree
4 1 Customer/management changes Disagree
5 14 Insufficient contingency planning Disagree
6 13 Inability to track progress Disagree
7 5 Inability to track problems early Agree
8 9 Insufficient number of checkpoints Agree
9 4 Staffing problems Disagree
10 2 Technical complexity - Disagree
11 6 Priority shifts Disagree
12 10 No commitment by personnel to plan Agree
13 12 Uncooperative support groups Agree
14 7 Sinking team spirit Disagree
15 15 Unqualified project personnel Agree
.
Problems with organizing the project team TABLE II

* Weak project leadership

* Communication problems

* Conflict and confusion

* Insufficient upper management involvement.

Obviously, the subtle reasons cited by the project leaders
and general managers were not technical reasons, but related
to organizational, managerial, and human aspects.

1II. DEFINITION AND PLANNING OF THE STUDY

A. Definition of the Study

The framework of experimentation, as proposed by Basili ez
al. [1] will be used to define the study which is described in this
paper. According to this framework, a definition consists of six
parts: motivation, object, purpose, perspective, domain, and
scope. The motivation of this study was to gain an insight into
the reasons for delay in order to be able to improve the control
of future development projects. This new insight should lead
to actions for improvement designed to enable future projects
to follow their plan more closely. The object of the study
was defined as the primary entity examined [1]. The object in
this case was software development activities. Projects can be
analyzed on various levels of detail; namely, as a whole (as
done by Jenkins ef al. [7]), at phase level, or at activity level.
Data was collected and analyzed at the activity level in this
study, because experience has shown that a project generally
does not overrun because of one or two main problems,
but rather because of a large number of minor problems.
According to Brooks [3]: “How does a project get one year
late? One day at a time.” These small problems could almost
certainly be overlooked if data were collected at the project
level. In this study an activity was defined as a unit of work that
is identified in a plan and can be tracked during its execution.
A typical activity may be the specification of a subsystem, the
design of a module, or the integration of some modules.

THE DEFINITION OF THE STUDY

Motivation To increase insight into the reasons for dela
Object Software engineering activities

Purpose To evaluate reasons for delay

Perspective Project leader

Domain Project

Scope Six projects in one development department

The purpose of the study was to evaluate the reasons for
delay. This was done from the perspective of the project leader.
The domain studied was software projects. The scope of the
study covered six development projects in one software devel-
opment department. The definition of the study is summarized
in Table II.

B. Planning the Study

The motivation of the study was to gain an insight into
the reasons for delay in software development. The kind of
questions the study aimed to answer were:

* What are the predominant reasons for delay?

» What-is the distribution of the reasons for delay?

+ How is the delay distributed over the phases of a project?

* Which actions for improvement can prevent delay in

future projects?

The following basic principles were used for data collection:

1) The control of a project refers to the control of quality,
effort, and lead time. The study was based on the
assumption that an activity is only completed when
the (sub)product developed fulfills the specifications. In
other words, if the quality of the product developed is
adequate. In the department concerned this was moni-
tored by reviews and testing. This assumption allowed
attention to be focused on the collection of data relating
to time and effort.

VAN GENUCHTEN: WHY IS SOFTWARE LATE?

585

TABLE III
DATA DETERMINED FOR EACH ACTIVITY

PLANNED ACTUAL DIFFERENCE REASON
EFFORT — — — —
STARTING DATE — — —_ .
ENDING DATE — — —
DURATION — — — —
2) Data collection focused on the differences between a TABLE IV

plan and reality. All planning data were obtained from
the most recently approved plan. If a project was offi-
cially replanned, the new plan was taken as the starting
point for the comparison between the plan and reality.
The consequences of a replan will therefore not show
up in the measurements. Six projects were studied: one
of them was not replanned, four were replanned once,
and one was replanned twice during the study. It might
be argued that the differences between plan and reality
were greater than the measurements will show.

3) The third principle was that data collection should not
take the project leaders much time. This was a condition
stated by the development department.

The definition of the study and the above principles resulted
in a one-page data collection form. This consisted of a table
with the data to be collected for each activity and a classifica-
tion of reasons for delays. The table is shown in Table IIL

The planned and actual efforts were expressed in hours. The
starting and ending dates were given in weeks. The duration
of an activity was defined as the calendar period between the
starting and ending dates. All planning data were obtained
from the most recently approved plan. The difference column
indicated if there was any difference between the plan and
reality. The reasons for the three types of differences were
distinguished in the final column:

¢ The reason for a difference between the planned and
actual effort

+ The reason for a difference between the planned and
actual starting date

» The reason for a difference between the planned and

_actual duration.

A reason for the difference between the planned and actual
ending date was not mentioned, because this difference can
be explained by the difference in the starting date and the
difference in duration.

Obviously, much of the data in Table III was not only kept
for the purpose of this study: the planned and actual hours
and duration were also required for normal project control
purposes. A recent survey [11] showed that in practice, data of
this kind are not kept as a matter of course; as many as 50% of
the respondents claimed that they did not record progress data
during the course of their projects. In this study the project
plans provided the planned effort, starting date, and ending
date. The clerical office provided the actual data, which were
collected on the basis of time sheets. The actual data were

GROUPS OF REASONS

Description

Group of reasons Reason relating to

the availability of the developers

the experience of the developers

conditions which must be fulfilled

the software product to be developed

the organization in which the development
takes place

the tools used to develop the software

none of the previous categories

capacity-related
personnel-related
input-related
product-related
organization-related

tools-related
other

validated in interviews with the participating project leaders
every other week.

The final column was filled in specially for this study. This
was performed by the project leader who, in consultation
with the researcher, determined the reasons for differences
between planning and reality. A classification was used, for
two purposes, to .determine a reason: first, the classification
gave structure to the reasons identified and allowed results
to be compared; and secondly, the classification saved time
for thinking up reasons. Six groups of possible reasons for
differences were identified in the classification. The division
into six groups was based on a discussion with the project
leaders concerned and on a previous study {6]. The groups are
listed in Table IV.

The division into six groups has proved to be valid for
several (software) development departments. In fact, similar
studies using the same groups of reasons were applied in
a number of departments. About 30 reasons for delay were
found within the groups. A first classification of reasons was
identified after a discussion with the participating ptoject
leaders. A definite classification of reasons was identified after
a pilot study. Similar studies in other departments showed that
the reasons were specific to the engineering environment in
question because of differences among the software engineers,
the type of software developed, and the organization of the
department. This confirms the measurement principle, which
states that metrics must be tailored to their environment, as
formulated in [2]. The classification of reasons, as used in this
study, is displayed in Table V.

A reason labeled “other” was included in each category,
because it was not exactly clear at the start of the study what
reasons could be expected. During the study, however, it was
found that the reason “other” only needed to be used rarely.

586

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 6, JUNE 1991

TABLE V
THE CLASSIFICATION OF REASONS AS USED IN THIS STUDY

CAPACITY-RELATED REASONS

11 capacity not available because of overun in previous activity
12 capacity not available because of overrun in other activity
13 capacity not available because of unplanned maintenance

14 capacity not available because of unplanned demonstration
15 capacity not available because of other unplanned activities
16 capacity not available because of other causes

19 other

PERSONNEL-RELATED REASONS

21 too little experience with development environment
22 more inexperienced people in team than expected
29 other

INPUT-REQUIREMENTS NOT FULFILLED

31 requirements late

32 requirements of insufficient quality

33 (specs of) delivered software late

34 (specs of) delivered software of insufficient quality
35 (specs of) hardware late

36 (specs of) delivered hardware of insufficient quality
39 other

PRODUCT-RELATED REASONS

41 changing requircments during activity

42 changing of the interfaces during the activity

43 complexity of application underestimated

44 more problems than expected with performance requirements or memory constraints
45 product of insufficient quality developed (redesign necessary)

49 other

ORGANIZATON-RELATED REASONS

51 less continuity in project staffing than expected

52 more interruptions than expected

53 influence of software Quality Assurance

54 bureaucracy
59 other

TOOLS-RELATED REASONS

61 development tools too late or inadequately available
62 test tools too late or inadequately available

69 other

OTHER
71-79

If the actual hours, starting dates, and ending dates were
recorded, little time was needed to determine the reason for
any difference. In practice, determining the actual hours and
starting and ending dates was found in practice to take a great
deal more time than determining the reasons. This was done
in an interview once every other week with the project leader
in question. It was important to analyze the data during the
project, because it would have been difficult to collect accurate
data after the project had finished, and validating the data
would have been almost impossible. Several reasons could be
given for each difference, with a maximum of four; in practice,
it was found that the difference could usually be ascribed to
one reason.

C. Comparison of the Study and Surveys

The study definition which was just described will be
compared with the surveys, as in Section II. They will be

compared with respect to their motivation, object, scope,
and the data collection technique used. The motivation of
the survey by Jenkins et al. [7] was to conduct empirical
research on the information systems development process in
organizations. The survey by Phan et al. {10] aimed to collect
factual data with regard to the management and control of
software projects. Thambain and Wilemon [12] investigated
the practices of project managers in relation to their project
control experience. The motivation of the study described in
this paper was to gain an insight into reasons for delay.

The object of the three surveys was projects—Jenkins et al.
[7] and Phan et al. [10] took information systems development
projects as their object, while Thambain and Wilemon’s [12]
survey was concerned with engineering projects. The object
of the study described in this paper is the activities performed
within a project. The scope of the surveys covered multiple
projects in multiple organizations. This study is limited to
six development projects within one department. The last and

VAN GENUCHTEN: WHY IS SOFTWARE LATE?

most obvious difference between the surveys and the study
described in this paper is the data collection technique. Jenkins
et al. conducted interviews on 72 completed projects. Phan
et al. sent out a questionnaire and received 143 qualified
responses. Thambain and- Wilemon collected questionnaires
from 304 participants in workshops and seminars. In the study
described here, data were collected and validated during the
execution of the projects on the basis of a number of interviews
with the project leaders and the available project data. Because
of the differences mentioned, the study and surveys were
complementary, rather than similar.

IV. RESULTS

The study took place in a Software Development Depart-
ment in the second half of 1988 through the first half of
1989. The Department was concerned with the development
and integration of system software in the operating system
and data communication fields. The Department employed 175
software engineers and covered a range of 300 products. Six
representative projects in the Department were selected for the
study. A total of 160 activities in the projects were studied.
The data in Table III were determined for each activity; these
were the planned and actual hours and the starting and ending
dates. The average duration of an activity was 4 weeks, and
the average effort was close to 100 person hours.

When determining the actual effort and actual starting and
ending dates, the existing registration was found to be of
limited value, because some of the data on the actual imple-
mentation of the project were not available in a usable form.
Recording starting and ending dates was no problem, because
management emphasized the control of duration. Starting
and ending dates were reported at the progress meetings.
The number of hours spent on each activity was difficult to
determine in the first part of the study for two reasons: first,
the lack of reliability of the recorded hours. The validation of
the data by project leaders showed that the difference between
the recorded hours and the impression of the project leader
was sometimes too large to be credible. Second, it was found
that the numbering of the activities by the project leaders was
found not to be unique in every case. This meant that the hours
recorded could not be related to activities. The actual hours
were not recorded if the effort could not be related to activities
or the validation indicated that something was wrong. As a
result, the planned and actual efforts could only be compared
for 97 of the 160 activities.

The most important results of the study are presented in the
form of four figures. Fig. 5 shows the frequency distribution
of the difference between the planned and actual durations of
the activities.

Fig. 5 shows that over 30% of the activities were finished
according to plan. Nine percent show a one week underrun;
17% show a one-week overrun. Fig. 6 shows the relative
difference between the planned and actual efforts for 97
activities. This figure relates to only 97 activities due to the
problems which occurred in the recording of hours for each
activity.

Fig. 6 shows that about 50% of the activities overran their
plan by more than 10%. About 30% underran their plan by

587

PERCENTAGE OF ACTIVITIES

15’“
10!’

5

0-5-5-4-3-2—1 01234566 7 89101121314
REAL - PLANNED LEAD TIME in weeks

Fig. 5. Frequency distribution of the difference between the planned
and actual durations (N=160).

PERCENTAGE OF ACTIVITIES
30{
25}’

200
|

15

10

4 -08 -06 -04 -02 0 02 04 06 08 1 12
(REAL - PLANNED) / REAL EFFORT

Fig. 6. Frequency distribution of the relative difference between the planned
and actual efforts (N=97). ’

more than 10%. The comparison of the planned and actual
figures yielded some useful insights. It showed, for instance,
that the relative differences between planned and actual efforts
increased for the subsequent phases of the project; the delays
and overruns increased toward the end of the project. The same
result has been found in other engineering environments [4].
This fact makes it possible to discourage the idea that delays
can be overcome as the project progresses.

Figs. 7 and 8 present the reasons for the delays and overruns.
During the study it was found that many activities started
too late. Fig. 7 shows the distribution of the reasons for
activities which start too late. These were divided into the
groups identified in Section IIL. Note that when an activity
started too late because of a delay in a previous activity, it was
recorded as reason 11, a capacity-related reason (see Table V).
This explains the large capacity section in Fig. 7.

The input-related reasons had to do with the late delivery of
hardware components developed in parallel with the software.
The start of the software development activities was also
delayed because of this. The reasons for the differences
between the planned and actual duration are listed in Fig. 8.

Within the groups identified it was found that the most
frequent reasons for differences between the planned and

588 [EEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 6, JUNE 1991

CAPACITY-RELATED
43

] TOOLS-RELATED
2

INPUT-RELATED
8

Fig. 7. Distribution of reasons for differences between the actual and planned
starting date (N = 53).

CAPACITY-RELATED
45

PERSONNEL-RELATED
7

OTHER-REASONS
1

INPUT-RELATED

TOOLS-RELATED PRODUCT-RELATED
2 35

Fig. 8. Distribution of the reasons for differences between the actual and
planned durations (N = 113).

actual durations were: reasons 12 to 16: “more time spent
on other work than planned” (these reasons were named in
27% of the cases). Reason 43: “complexity of application
underestimated.” Some outsiders blame all the software delays
on underestimation. In this case, underestimation was given as
an explanation in about 20% of the cases.

V. INTERPRETATION OF THE RESULTS

The results were interpreted during a meeting attended by
the project leaders taking part, the department manager, and
the researcher. In the researcher’s opinion, data of this kind
should, in the first place, be analyzed together with the people
involved in data collection. Six reasons for this are given:
first, it is the engineer’s, project leader’s, and manager’s job
to control software development. They should be supported
with all the available data. Second, those involved represent
the knowledge of software development in the department
concerned; this knowledge is needed to interpret the results.
Third, those involved can assess the feasibility of any actions
for improvement. Fourth, actions which are decided on by
members of the organization concerned will be accepted more
easily, and thus be implemented more quickly, than actions
recommended by an outsider. Fifth, interpretation of the results
shows the people involved that the data is being used for
their benefit. This should motivate them to participate in
future analyses. Finally, a meeting like this can contribute to
creating a common understanding among project leaders and
general managers regarding problems within the department.
Collective interpretation of the results can help to prevent

different perceptions of the problems, as was reported by
Thambain and Wilemon [12] (see Section II).

During the meeting it was found that the results of the study
confirmed and quantified a number of existing impressions of
project leaders and the manager. For some of those present,
the results provided new information. For instance, it was not
clear to everyone that the amount of other work had such a
significant effect on duration.

The following are examples of the possible actions for
improvement that were discussed at the meeting.

It was found that the amount of “other work” in the projects
studied was underestimated. During the meeting it was shown
that the other work consisted mainly of maintenance. Those
present decided that in future projects, more time and capacity
should be set aside for “other work.”

During the meeting it was shown that the maintenance
activities in particular constantly interrupted development.
A number of possible ways of separating development and
maintenance was discussed. The possibility of setting up a
separate maintenance group was discussed and rejected. It was
decided to schedule the maintenance work as far as possible
in maintenance weeks, and to include two maintenance weeks
in each quarter. It was obvious that not all maintenance can be
delayed for a number of weeks. Any defect that affected the
customer’s operation was resolved immediately, irrespective
of the maintenance weeks. Defects of this kind were only a
small fraction of the defects, and correcting them involved only
a small fraction of the maintenance effort. The vast majority
of defects was found in products before they were released to
customers. By carrying out most of the maintenance during
maintenance weeks, it was hoped that development could
proceed more quickly and with fewer interruptions during
the other weeks. This suggestion was implemented by the
department within one month after the meeting.

The department wanted to gain more insight into the origin
of maintenance. Another analysis study started. Its aim was to
gain an insight into the origin of maintenance in order to be
able to take improvement measures which could reduce future
maintenance effort.

At the end of the meeting it was concluded that the study had
yielded sufficient results for those involved. A considerable
contribution was the fact that ongoing discussions could now
be supported by facts.

Comparable studies have been carried out in a number of
other software development departments. The result of one of
those studies is given for the sake of comparison, and also to
discourage unjustified generalizations of the results given so
far. Fig. 9 shows the reasons for differences between planned
and actual durations, which are given for 80 activities, carried
out in a development department which develops systems
software and CAM software [8]. The groups of reasons
distinguished in Section III were again used here.

The differences between the distribution of reasons given
in Fig. 8 should be obvious. Based on ongoing measurements
in a number of departments, the author concludes that the
distribution of causes varies strongly for each department.
Every department should therefore gain an insight into its

VAN GENUCHTEN: WHY 1S SOFTWARE LATE?

PRODUGT-RELATED
a7 PERSONNEL-RELATED
3

CAPACITY-RELATED
n

INPUT-RELATED
4

ORGANIZATION-RELATED
45 -

Fig. 9. Distribution of the causes of differences between the actual and
planned durations in another department [8].

reasons for delay in software development projects in order
to be able to take appropriate actions for improvement.

VI. CONCLUSIONS

The conclusions below consist of two parts: first, the study
and its results are compared with the surveys discussed in
Section II of this paper, after which the main conclusions of
the study will be restated.

Three surveys concerned with the investigation of delays
and the reasons for delays were presented in Section II of
this paper. A comparison of the definition of the surveys and
the study presented in this paper was given in Section IIL
The comparison showed that the surveys on the one hand,
and the study on the other, were complementary rather than
similar. The comparison of the results of the present study with
the surveys described in the literature provides the following
information:

The average overruns found in the present study approxi-
mated the overruns found by Phan et al. [9], [10] and Jenkins
et al. [7]. However, in the present study the relative lead time
overrun was greater than the relative effort overrun. Jenkins
et al. found the opposite result.

Over-optimistic planning was cited as a probable cause in all
the studies which examined reasons for delay. Phan et al. found
that 44% of the respondents named over-optimistic planning
as a reason. An unrealistic project plan and underestimation
of the scope were named as major reasons in Thambain and
Wilemon’s [12] survey. The study described in this paper
recorded underestimation of the complexity as a reason in
20% of the cases.

Thambain and Wilemon’s investigation of the subtle reasons
for delay indicate that the reasons were not technical in
nature, but were related to organizational, managerial, and
human aspects. The present study shows a similar result.
The product- and tools-related reasons represent most of the
technical reasons. They comprise only one-third of the reasons
mentioned.

It must still be noted that relatively few studies on delays
and their reasons have been described in the literature. More-
over, this statement is generally true for empirical studies of
the control of software development.

An empirical study of the control of software projects was
presented in this paper. An important advantage of the study

589

definition selected was that, in spite of the limited effort
required from the project leaders taking part, results were
achieved fairly quickly. The cooperation of the developers and
project leaders was vital in carrying out the study. One of the
conditions for the cooperation of the project leaders was that it
was made clear in advance for what the data collected would
and would not be used.

Insight into the predominant reasons for delay enabled ac-
tions for improvement to be taken in the department concerned.
An important conclusion was that the distribution of reasons
for delay varied widely from one department to another. The
author recommends that every engineering department should
gain an insight into its reasons for delay in order to be able to
take adequate actions for improvement.

This study targeted the activities within a project. If a project
plan is regarded as a set of agreements concerning the work
to be done, it might be said that the study investigated to
what extent agreements within projects were fulfilled. External
entities also have an influence on the execution of a project
plan. One example is the fact that departmental management
does not provide the planned resources. Another cxample is
failure of a marketing department to deliver clearly defined
requirements on time. The author concludes that to some
extent, a project cannot be executed according to plan, be-
cause external entities do not fulfil their agreements. Software
engineers should continue to investigate how agreements are
fulfilled within projects. The author would also recommend a
comparable study on the fulfilment of those agreements which
influence the execution of a project plan, but are not controlled
by the project team.

ACKNOWLEDGMENT

The author would like to thank the following people for
their cooperation: E. Buijs, M. Fierst van Wijnandsbergen, E.
der Veen, H. Keizers, G. Scholten, L. Hulstman, and E. de
Vries, and also T. Bemelmans, F. Heemstra, M. Howard, R.
Kusters, and again, M. Fierst van Wijnandsbergen, for their
contributions to and comments on an earlier version (see [S])
of this paper.

REFERENCES

[1] V. R. Basili, R. W. Selby, and D. H. Hutchens, “Experimentation
in software engineering,” IEEE Trans. Software Eng., vol. SE-12, pp.
733-743, July 1986.

[2] V. R. Basili and H. D. Rombach, “The TAME project: toward
improvement-oriented software environments,” IEEE Trans. Software
Eng., vol. SE-14, pp. 758-773, June 1988.

[3] F. B. Brooks, The Mythical Man-Month: Essays on Software Engineer-
ing. London: Addison-Wesley, 1975.

[4] M. J. L. M. van Genuchten, “Towards a software factory,” Ph.D. thesis,
Eindhoven Univ. Technology, The Netherlands, 1991.

[5] M. I. L. M. van Genuchten and M. Fierst van Wijnandsbergen, “An
empirical study on the control of software development,” in Proc. Conf.
Organization and Information Syst. (Bled, Yugoslavia), Sept. 13-15,
1989, pp. 705-718.

[6] F. J. Heemstra, “Estimation and control of software development
projects,” Ph.D. thesis, Eindhoven Univ. Technology, Kluwer, Deventer,
The Netherlands, 1989.

[71 A. M. Jenkins, J. D. Naumann, and J. C., Wetherbe, “Empirical
investigation of systems development practices and results,” Inform.
Manage., vol. 7, pp. 73-82, 1984.

[8] F. L. G. van Lierop and R. S. A. Volkers, “Controlling software
projects: a matter of measurement,” Masters thesis, Faculty of Industrial

590

9

—

[10]
(1]

{12]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 6, JUNE 1991

Eng., Eindhoven Univ. Technology, Kluwer, Deventer, The Netherlands,
1989. :

D. Phan, “Information systems project management: an integrated
resource planning perspective model,” Ph.D. thesis, Dept. Management
Inform. Syst., Univ. Arizona, Tucson, 1990.

D. Phan, D. Vogel, and J. Nunamaker, “The search for perfect project
management,” Computerworld, pp. 95-100, Sept. 1988.

W. J. A. M. Siskens, F. J. Heemstra, and H. van der Stelt, “Cost control
of automation projects: an empirical study” (in Dutch), Informatie, vol.
31, pp. 3443, Jan. 1989.

H. J. Thambain and D. L. Wilemon, “Criteria for controlling projects
according to plan,” Project Management J., pp. 75-81, June 1986.

Michiel van Genuchten received the M.Sc. degree
in industrial engineering from the Eindhoven
University of Technology, The Netherlands.

He is currently employed by the Eindhoven
University of Technology, Department of Indus-
trial Engineering, Section Management Information
Systems and Automation, and Philips Electronics
(Lighthouse Consulting Group). His research inter-
ests include the control and analysis of software
engineering, the application of production control
concepts to software engineering, and the reuse of
software.

