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for fingerprint-based similarity calculations?
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Abstract

Background: Cheminformaticians are equipped with a very rich toolbox when carrying out molecular similarity
calculations. A large number of molecular representations exist, and there are several methods (similarity and
distance metrics) to quantify the similarity of molecular representations. In this work, eight well-known similarity/
distance metrics are compared on a large dataset of molecular fingerprints with sum of ranking differences (SRD)
and ANOVA analysis. The effects of molecular size, selection methods and data pretreatment methods on the
outcome of the comparison are also assessed.

Results: A supplier database (https://mcule.com/) was used as the source of compounds for the similarity
calculations in this study. A large number of datasets, each consisting of one hundred compounds, were compiled,
molecular fingerprints were generated and similarity values between a randomly chosen reference compound and
the rest were calculated for each dataset. Similarity metrics were compared based on their ranking of the
compounds within one experiment (one dataset) using sum of ranking differences (SRD), while the results of the
entire set of experiments were summarized on box and whisker plots. Finally, the effects of various factors (data
pretreatment, molecule size, selection method) were evaluated with analysis of variance (ANOVA).

Conclusions: This study complements previous efforts to examine and rank various metrics for molecular similarity
calculations. Here, however, an entirely general approach was taken to neglect any a priori knowledge on the
compounds involved, as well as any bias introduced by examining only one or a few specific scenarios. The
Tanimoto index, Dice index, Cosine coefficient and Soergel distance were identified to be the best (and in some
sense equivalent) metrics for similarity calculations, i.e. these metrics could produce the rankings closest to the
composite (average) ranking of the eight metrics. The similarity metrics derived from Euclidean and Manhattan
distances are not recommended on their own, although their variability and diversity from other similarity metrics
might be advantageous in certain cases (e.g. for data fusion). Conclusions are also drawn regarding the effects of
molecule size, selection method and data pretreatment on the ranking behavior of the studied metrics.

Keywords: Fingerprint, Similarity, Ranking, Data fusion, Analysis of variance, Sum of ranking differences, Distance
metrics

Background
Quantifying the similarity of two molecules is a key

concept and a routine task in cheminformatics [1-3]. Its

applications encompass a number of fields, mostly medi-

cinal chemistry-related, such as virtual screening [4].

Although some commonly applied best practices for

molecular similarity calculations exist, they are mostly

based on practical experience. Meanwhile, a virtually

infinite “method space” is available and waiting to be

explored, with a plethora of molecular representations

and a significant number of similarity (or conversely,

distance) definitions to compare these representations.

Even though much effort has been made to reveal and

assess numerous possibilities, our knowledge is still rela-

tively scarce about the effects the choice of methods has

on the outcome of molecular similarity calculations and

rankings.

Previous work aiming to compare and assess such

methods includes a 2009 article by Bender and coworkers,
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in which 37 molecular fingerprints were compared and

their similarities were quantified (based on their rank-

orderings of the same dataset) by means of statistical

methods, such as principal component analysis (PCA) [5].

They were able to estimate the extent to which the infor-

mation captured by these descriptors overlap, and also to

visualize them in a three-dimensional space. Despite the

fact that diverse fingerprints (i.e. fingerprints that capture

different aspects of molecular structure) could be identi-

fied, the use of multiple fingerprints for consensus scoring

only marginally improved the results obtained with a

single fingerprint. However, using different finger-

prints, different (active) molecules were retrieved,

which suggests the use of orthogonal fingerprints indi-

vidually in virtual screenings. Based on their evaluation

with the calculation of retrieval rates of active mole-

cules, extended connectivity fingerprints performed

best (although only slightly better from the runner-up

SEFP4, LCFP4 and FCFP4/6 fingerprints), regardless of

diameter (i.e. ECFP4 and ECFP6 performed equally

well, the notations are explained in the corresponding

reference) [6].

In a 2014 paper Cereto-Massagué and coworkers

conclude that most of the commonly used and popular

fingerprints have very similar performances, inter-target

differences for the same fingerprint being usually greater

than the differences for different fingerprints for the

same target molecule [7]. They also conclude that under

the same conditions, circular fingerprints usually perform

best.

Similarity (or distance) metrics are employed in a wide

variety of areas, stimulating the assessment of their per-

formance in e.g. texture image retrieval [8], webpage

clustering [9] or event identification in social media [10].

From an area that is more closely related to cheminfor-

matics, a 2013 article by Reisen and coworkers compares

16 similarity measures based on their performances in

high-content screening (HCS) [11]. They conclude that

nonlinear correlation-based similarity metrics such as

Kendall’s τ and Spearman’s ρ outperformed other fre-

quently used metrics, such as the Euclidean distance

(for HCS).

Several studies have also been published on the com-

parison of similarity metrics in cheminformatics-related

fields, mostly by Peter Willett’s group at the University

of Sheffield. In a 2002 article, they compare 22 similarity

metrics [12]. In their conclusions, they reinforce the

popularity of the Tanimoto coefficient and they suggest

several other similarity metrics for data fusion. In the

same year, Chen and Reynolds suggest the use of the

Tanimoto index instead of the Euclidean distance for 2D

Fragment-Based Similarity Searching [13]. A year later

Salim and coworkers find that combinations of 2–4

similarity metrics can outperform the Tanimoto index,

although no combination shows consistently high per-

formance across different scenarios [14]. In a 2006

review, Willett maintains, among other conclusions that

“the well-established Tanimoto is the coefficient of choice

for computing molecular similarities unless there is spe-

cific information about the sizes of the molecules” [15].

In a 2013 article Todeschini and coworkers perform

the comparison of 51 similarity coefficients, their con-

clusions also support the usefulness of the Tanimoto

index, as well as identifying two additional metrics “that

may be worthy of future study for applications in che-

moinformatics” [16]. Willett’s group has also extensively

studied possible applications of data fusion techniques

to improve the performance of similarity calculations

[17]. He reported that data fusion was able to enhance

the performance of similarity-based virtual screening in

two different approaches as well: similarity fusion (where

more similarity measures are used with a single refer-

ence structure) and group fusion (where a single similar-

ity measure is used with more reference structures),

concluding however that “group fusion is generally far

superior to similarity fusion”. In an earlier work, they

identified the Tanimoto coefficient as the best similarity

metric for group fusion [18].

It is worth noting that despite the generally positive

findings about the applicability of the Tanimoto coeffi-

cient, several of its weaknesses have also been reported

from as early as in a 1998 study by Flower [19]. Around

the same time, a tendency of the Tanimoto index to

choose small compounds in dissimilarity selection was

reported [20,21]. This finding was later corroborated

and detailed by Holliday and coworkers [22]. Godden

and coworkers reported the tendency of the Tanimoto

index to produce similarity values around 1/3 even for

structurally distant molecules [23].

In the literature (including several of the studies cited

above) similarity measures are usually compared accord-

ing to their performance in a few specific scenarios, such

as the retrieval of molecules that are active on a specific

protein, based on a limited number of reference com-

pounds. Most of these studies (e.g. [13,16]) utilize data-

bases of molecules that have previously been shown to

be biologically relevant (e.g. MDDR or NCI anti-AIDS

databases). In this paper we present a large-scale com-

parison of eight commonly available similarity metrics

(Tanimoto, Dice, Cosine, Substructure [24] and Super-

structure [25] similarities, and similarity definitions

derived from the Manhattan, Euclidean and Soergel

distances, see Equation 1) based on their rankings of

the same datasets, using analysis of variance (ANOVA)

and sum of ranking differences (SRD) [26,27]. Our goal

was to study the ranking behavior of well-known and

easily available similarity metrics on many independent

datasets (modelling many independent scenarios of
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similarity searching), without any kind of a priori

knowledge about the molecules involved. To that end,

we have used a large supplier database (Mcule) of com-

mercially available compounds for our calculations

[28]. We also examine the effects of molecular size,

selection method (i.e. random draw vs. deliberate

selection of diverse molecules) and data pretreatment

on the rankings and performances of the mentioned

metrics.

Methods
For the majority of the calculations, we have used KNIME

[29], an open-source data analysis and cheminformatics

software and the implementation of Chemaxon’s JChem

[30] in KNIME. Molecules were drawn from the Mcule

Purchasable Compounds Database (~5 M compounds)

[28]. They were split into three categories based on their

size: fragments, leadlike and druglike molecules (Table 1).

An “All” category was also formed, where molecules were

drawn regardless of size.

Theory of similarity/distance measures

Most of the similarity and distance measures studied in

this work are well-known and commonly used; their def-

initions are summarized in Table 2. Note that similarities

and distances can be interconverted using the following

equation [31]:

similarity ¼
1

1þ distance
ð1Þ

i.e. every similarity metric corresponds to a distance

metric and vice versa. (From here on in this paper, we

use the two definitions interchangeably). Since distances

are always non-negative (R ∈ [0; +∞]), similarity values

calculated with this equation will always have a value

between 0 and 1 (with 1 corresponding to identical ob-

jects, where the distance is 0). It is worth noting how-

ever, that the scales of different similarity metrics can be

different, even though they cover the same range (i.e.

0 ≤ S ≤ 1). For example if the Euclidean distances of a

group of objects from a reference object range from 5 to

8, their Euclidean similarities to the reference object will

range from 1/9 to 1/6. Meanwhile, their Manhattan dis-

tances (which for dichotomous variables is equal to the

Euclidean distances squared) will range from 25 to 64,

meaning that their Manhattan similarities will range

from 1/65 to 1/26.

A significant limiting factor in the selection of distance

measures was that a large number of metrics are not de-

fined for dichotomous variables. Thus, the mentioned

six metrics were compared, with two graph-based simi-

larity metrics (Substructure and Superstructure) imple-

mented in JChem for KNIME in addition. These metrics

are not defined in the same, purely mathematical man-

ner as the other six, rather in an algorithmic approach,

which is explained in detail in references [24,25]

(Table 2).

Some metrics show highly similar behavior (identical in

terms of ranking) with each other, which can be attributed

to relationships in their definitions. For example, the

Soergel distance is identical to the complement of the

Tanimoto coefficient and both are monotonic with each

other and with the Dice coefficient. The Manhattan and

Euclidean coefficients are also monotonic. However, the

relationships of these coefficients and their average are

not linear. For example Dice vs. Average of Dice, Soergel,

and Tanimoto coefficients provides a concave curve, while

Soergel vs. Average is convex and Tanimoto vs. Average

is slightly convex (see Additional file 1: Figure S8).

Therefore, their average is a good option for data fusion.

More detailed explanations are given by Willett in a

1998 article [32].

Molecular fingerprints

A large number of methods exist to map molecular

structures to bit strings (i.e. molecular fingerprints).

Their classification, definitions and properties are cov-

ered in detail in the works of e.g. Bender and coworkers

[5] or Cereto-Massagué and coworkers [7]. Based on the

findings of Bender and coworkers (see Introduction), we

first selected the ECFP4 fingerprint for our calculations.

However, a known characteristic of this fingerprint

(and of the most dictionary-based fingerprints) is that it

is quite sparse, i.e. relatively few bits are set to on (1).

This results in a significant number of repeated similarity

values in a dataset even as small as a hundred molecules.

In ECFP4 fingerprints, at best one in every ten-twenty bits

is on, meaning that there are on average 50–100 on bits in

a 1024-bit fingerprint (see Additional file 1: Figure S1). As

Table 1 Size classes of molecules and their definitions

Class Criteria Total count in the
Mcule database

Reference

Fragment MW≤ 250 166.458 [38]

logP ≤ 3.5

rotB ≤ 5

Leadlike 250≤MW ≤ 350 1.234.403 [39]

logP ≤ 3.5

rotB ≤ 7

Druglike 150≤MW ≤ 500 3.745.649 [40]

logP ≤ 5

rotB ≤ 7

PSA < 150

HBD≤ 5

HBA≤ 10
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for two molecules (fingerprints), consider that 100 bit

positions out of 1024 are “drawn” (set to on) twice: it

can easily be seen that this can be carried out even

without drawing a single common bit position, but ex-

treme cases aside, the number of common on bits will

likely take only a few possible values. Since the number

of common on bits is present in the definition of every

distance metric, the calculated similarity values will be

degenerate as a result (here, “degenerations” mean

repetitions: the same similarity values for different

molecules). Unfortunately, this behavior cannot be in-

fluenced by adjusting either the diameter or the length

of the fingerprint.

Since we did not want to impair the “resolution” of

the similarity rankings, we were obliged to choose an-

other type of fingerprint to study. (Another reason was

a limitation of the SRD calculation in case of repeated

observations (ties); namely at present the number of

molecules/objects cannot exceed 40 [33]). Our next

choice was the Chemaxon Chemical Fingerprint, a

hashed fingerprint introduced in Chemaxon’s prod-

ucts, such as Jchem [34]. A significant advantage of

this fingerprint over ECFPs is that it is “darker” (i.e.

there are more on bits on average) and this “darkness”

can even be tuned by adjusting a few parameters. The

exchange of the studied fingerprint eliminated the

mentioned problem almost completely.

“Target” search

The term target has two meanings: drug targets such

as pharmacologically relevant proteins; and target

(reference) compounds in a similarity calculation. In

this work, no protein targets were used; our goal

was to reveal the ranking behavior of well-known

and easily available similarity metrics on many

independent datasets (modelling many independent

scenarios of similarity searching), without any kind

of a priori knowledge about the molecules involved.

Hence active or inactive categories were not defined

for the examined molecules. Have we taken one or a

few specific scenarios of ligand-based virtual screen-

ing, we would have introduced some bias, as the

relative performance of the metrics can vary with

the reference compound. (See later Figure 3 and

Additional file 1: Figure S7 as an example). Therefore,

we have chosen to carry out a large number of exper-

iments (1000) with randomly chosen reference com-

pounds (and to statistically analyze the results). Due

to the large number of experiments, the mentioned

bias should be cancelled out to a large extent, if not

entirely. In this work “target” is a reference com-

pound that is randomly chosen for each of the 1000

runs. An sdf file with the target compounds of the

similarity calculations (in the order of the SRD runs)

is included as Additional file 2.

Table 2 Formulas for the various similarity and distance metrics

Distance metric Formula for continuous variablesa Formula for dichotomous variablesa

Manhattan distance DA; B ¼
X

n

j¼1

x jA−xjB
�

�

�

� DA,B = a + b − 2c

Euclidean distance DA; B ¼
X

n

j¼1

x jA−xjB
� �2

" #1
2=

DA;B ¼ aþ b−2c½ �
1

2=

Cosine coefficient SA;B ¼
X

n

j¼1

xjAxjB

" #

=
X

n

j¼1

x jA
� �2

X

n

j¼1

xjB
� �2

" #1
2=

SA;B ¼
c

ab½ �
1

2=

Dice coefficient SA;B ¼ 2
X

n

j¼1

xjAx jB

" #

=
X

n

j¼1

xjA
� �2

þ
X

n

j¼1

x jB
� �2

" #

SA,B = 2c/[a + b]

Tanimoto coefficient SA;B ¼

Xn

j¼1
x jAx jB

h i

Xn

j¼1
x jAð Þ

2
þ

Xn

j¼1
x jBð Þ

2
−

Xn

j¼1
x jAx jB

h i
SA,B = c/[a + b − c]

Soergel distanceb DA; B ¼
X

n

j¼1

xjA−x jB
�

�

�

�

" #

=
X

n

j¼1

max xjA; x jB
� �

" #

DA;B ¼ 1− c
aþb−c½ �

Substructure similarity See Ref [24]

Superstructure similarity See Ref [25]

aS denotes similarities, while D denotes distances (according to the more commonly used formula for the given metric). Note that distances and similarities can

be converted to one another using Equation 1. xjA means the j-th feature of molecule A. a is the number of on bits in molecule A, b is number of on bits in

molecule B, while c is the number of bits that are on in both molecules.
bThe Soergel distance is the complement of the Tanimoto coefficient.
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Sum of ranking differences

Sum of ranking differences is a novel and simple proced-

ure [26,27,33] to compare methods, models, analytical

techniques, etc. and it is entirely general. In the input

matrix the objects (in the present case molecules) are

arranged in the rows and the variables (models or

methods, in the present case similarity measures) are

arranged in the columns. The process of calculating the

sum of ranking differences can be seen in Figure 1.

The input matrix contains similarity measures (n = 8)

in the columns and molecules (m = 99) in the rows. A

reference column (golden standard, benchmark) is

added in the data fusion step (red). Then, all columns

are doubled (green) and the molecules in each column

are ranked by increasing magnitude (columns r1, r2, …,

rn). The differences (yellow) between the ranks assigned

by each similarity measure and by the known reference

method (rR = q1, q2, …, qm) are computed for each ob-

ject (molecule): e.g. for the first similarity measure: diff

(r11-q1), diff (r12-q2), …, diff (r1m-qm). In the last step,

the absolute values of the differences are summed up

for each similarity measure to give the final SRD values.

Such a way an SRD value is assigned to each similarity

measure. (A summarizing animation of the SRD process

is supplied as Additional file 3). Smaller SRD means

proximity to the reference, the smaller the better. If the

golden standard is not known, the average can be used

for data fusion, which is the same as SUM fusion [17],

because the number of columns (metrics) is the same

for each row (molecule). The SRD procedure involves

two validation steps. It is validated by a randomization

test and a bootstrap-like cross-validation. Leave-one-

out cross-validation is used if the number of objects is

smaller than 14 whereas a seven-fold cross-validation is

applied if the number of samples is higher than 13 [26].

Results and discussion
Input data generation

Our general objective in this study was to compare simi-

larity metrics on a dataset as large as possible (and

affordable). However, SRD has an intrinsic limitation re-

garding the number of objects: namely the calculation

of the Gaussian random probability distribution curves

becomes computationally intensive above sample sizes

of 100–200 objects (the largest dataset processed in a

reasonable amount of time so far is 1400 objects). For

this reason, we have decided to split the dataset into

smaller ones: a hundred molecules were drawn from the

Mcule database for each SRD run (out of which one

molecule was used as a reference), for a total of one

thousand runs. Similarities were calculated between the

remaining 99 molecules and the reference molecule,

according to each similarity metric (those metrics that

are originally defined as distances were converted to

Figure 1 Scheme of the procedure to calculate sum of ranking differences. The input matrix contains similarity measures (n = 8) in the columns
and molecules (m = 99) in the rows. A reference column (golden standard, here: average of the eight similarity measures) is added in the data fusion

step (red). Then, all columns are doubled (green) and the molecules in each column are ranked by increasing magnitude (columns r1, r2,… rn). The
differences (yellow columns) are calculated for each similarity measure and each molecule (i.e. each cell) between its rank (r11, r12 to rnm) and the rank
assigned by the known reference method (rR = q1, q2, … qm). In the last step, the absolute values of the differences are summed up for each measure

to give the final SRD values, which are to be compared. The smaller SRD means proximity to the reference, the smaller the better.
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similarities according to Equation 1). The one thousand

datasets were evenly distributed between the molecular

size classes defined in the Methods section, as well as

two selection methods: random draw vs. deliberately

selecting diverse molecules (as implemented in the

RDKit Diversity Picker tool in RDKit for KNIME [35]).

An “All” size class was also defined: in this case mole-

cules were drawn from the whole Mcule database, re-

gardless to size. It was ensured that no molecules were

ever drawn more than once. A summary of the prepared

datasets is reported in Table 3.

Statistical analysis

A specially developed sum of ranking differences routine

(implemented in a Microsoft EXCEL VBA macro) was

used for the evaluation of the dataset (1000*99 samples).

Although the distances were converted into similarities

(0–1), the measures still had different scales. Therefore,

interval scaling (between 0 and 1) of the original values

was applied as a data pretreatment method for the first

time. The SRD macro generated an output file for each

of the thousand datasets, which contained the scaled SRD

values for every similarity measure. Another output file

(SRDall) was generated at the same time, which contained a

table with all of the SRD values for every dataset and similar-

ity measure. The average was used as a “golden standard” in

each SRD analysis. The reason for this choice follows from a

simple assumption that all similarity measures express the

true (unknown) similarities with some errors (biases and

random errors, as well), so using the average, these errors

are cancelled out at least partially. Using row-average can

also be thought of as a consensus in accordance with the

maximum likelihood principle, which “yields a choice of the

estimator as the value for the parameter that makes the ob-

served data most probable” [36]. Here, the average has the

highest probability to happen in every case. For better un-

derstanding, Figure 2 presents the whole SRD process.

The steps above were repeated with standardization

and rank transformation as data pretreatment methods.

The scaling methods are given below:

xi;j interval scaledð Þ ¼
xi;j −min xi;j

� �

max xi;j
� �

−min xi;j
� � ð2Þ

xi;j standardizedð Þ ¼
xi;j − average xið Þ

standard deviation xið Þ
ð3Þ

Rank transformation has been carried out column-

wise: min(xi) = 1. max(xi) = 99.

SRD values are given on two scales. The first is the

original one and the second is the scaled one between 0

and 100 denoted by SRDnor. On Figure 3 one of the

thousand SRD results can be seen as an example. Here

the scaled SRD values are used, which makes the models

comparable. The equation of the scaling is:

SRDnor ¼ 100SRD=SRDmax; ð4Þ

where SRDmax = the maximum attainable SRD value

for the actual similarity measure.

Validation of the ranking has been carried out using a

randomization test and a seven-fold cross-validation. For

the former, a Gaussian random probability distribution

curve is plotted, which helps us to decide whether the

applied metric is better than or similar to the use of ran-

dom ranks. For the latter, the dataset was split into seven

subsets and then SRD values were calculated for each

subset. SRDs calculated on the seven 6/7-th portions

and the original SRD values define the uncertainty of the

SRD values for each method. Without cross-validation,

we would not know whether the colored lines on the

diagram are indistinguishable or not (whether the dis-

tances between lines are negligible or statistically signifi-

cant) .

For comparison an example is included in Additional

file 1: Figure S7 that the ordering of similarity metrics is

data set dependent. Figure S7 presents a dataset where

the ranking of the similarity measures is quite different

from the usual, i.e. Tanimoto and related metrics are not

always the best based on SRD calculations. The large

number of SRD calculations ensured that these random

Figure 2 Scheme of the data generation. The SRD procedure was
repeated 1000 times to eliminate the effect of random choices. Sum

of ranking differences was calculated for 1000 data sets and
gathered in an output file. The final output file contains a table with

all of the SRD values for each similarity measure (n) on every
dataset (m).

Table 3 Distribution of SRD runs in terms of molecule

size and selection method

No. of SRD run Size Selection Count

0-124 Fragment Random 125

125-249 Diverse 125

250-374 Leadlike Random 125

375-499 Diverse 125

500-624 Druglike Random 125

625-749 Diverse 125

750-874 All Random 125

875-999 Diverse 125
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effects were accounted for and the space of possible

reference compounds was thoroughly sampled. The dis-

tributions of the SRD values of the studied similarity

metrics are included in the supplementary material

(Additional file 1: Figure S5).

Each of the similarity measures is better than the use

of random numbers (located outside the unacceptable

region of the graph). The acceptable region is the first

part of the plot, between zero and the line labeled XX1,

which is the 5% error limit of the Gauss curve.

Box and whisker plots were made for the final dataset,

which contained all SRD values for every dataset and

similarity measure (SRDall). It clearly shows us the final

result of the comparison. The plots were made for each

of the three data pretreatment methods. Figure 4 shows

the box and whisker plot of the SRDall dataset in the

case of interval scaling as data pretreatment method.

The box and whisker plots for the other two data

pretreatment methods are included in Additional file 1:

Figures S2 and S3.

The main conclusions from the box and whisker plots

are that the Cosine, Dice, Tanimoto and Soergel similar-

ity metrics are the most appropriate methods; they are

the most reliable indices and stand closest to the average

values (they have the smallest SRD values). Their equiva-

lence follows from their definition and from the SRD

procedure, as expected. Euclidean and Manhattan met-

rics have the largest median of SRD values on the box

and whisker plots.

Since the Dice, Tanimoto and Soergel similarity met-

rics (and also, Manhattan and Euclidean) are closely

related and have been shown here to produce identical

rankings, one could argue that the reason they received

the lowest SRD values is that their identical rankings

weigh out the other metrics in the average values. To

rule out this possibility, confirmatory calculations were

undertaken. We have repeated the comparison for five

metrics (omitting the Dice, Soergel and Manhattan

similarities) to avoid the possibility of overweighting.

The results gave the same ranking of the metrics; with

only slight differences in the SRD values (see Additional

file 1: Figure S4).

Results of two-way ANOVA analysis

As SRD puts all influential factors on the same scale, a

factorial ANOVA was applied to distinguish between the

effects of factors. The effects of the following factors

were investigated: (i) size classes, levels (4): fragment,

leadlike, druglike, all, (ii) selection method of molecules,

levels (2): random and diverse, (iii) scaling options

(pretreatment methods), levels (3): interval scaling,

standardization, rank transformation, and (iv) similarity

indices, levels (8): Manhattan, Euclidean, Cosine, Dice,

Tanimoto, Soergel, Substructure, Superstructure. All fac-

tors are significantly different (data not shown). For this

case sum of ranking differences was used for every class

separately. It means that the dataset – which included

1000 samples and eight variables (similarity metrics) –

was built from parts, which contain 125 samples individu-

ally. (Table 3 clearly summarizes the distribution of SRD

runs in terms of molecule size and selection method).

Figure 3 Visualization of SRD ranking and grouping. Average was used as reference. Scaled SRD values (between 0 and 100) are plotted on the
x axis and left y axis. The right y axis shows the relative frequencies for the fitted Gauss curve on random numbers (black) (XX1 = 5% error limit,
med = median, XX19 = 95% limit). If an SRD value (similarity metric) overlaps with the Gaussian curve, it is not distinguishable from random ranking.
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Factorial ANOVA is a simple method to test the signifi-

cance between average values of groups. For this purpose

Statsoft STATISTICA 12.5 was applied [37]. The two fac-

tors included were the size (I1) and the selection method

(I2). ANOVA analysis was carried out for datasets with

different data pretreatment methods separately. For the

interval scaled dataset, factorial ANOVA with sigma-

restricted parameterization shows that both of the factors

are significant; thus, the classes of the size and the selec-

tion method have large influence in the decision of the

similarity metrics. The illustrative result of the test for

interval scaled dataset is plotted on Figure 5.

For the Dice, Soergel and Tanimoto metrics, SRD

values and their size dependence are identically equal

(the small differences can be attributed to numerical uncer-

tainties) and the same can be observed for the Euclidean

and Manhattan similarity metrics. Substructure and

Superstructure similarities have the largest variability

for the examined molecules. While the best similarity

metrics display virtually no size dependence, intriguing

observations can be made about the other metrics. For

example, Superstructure similarity tends to deviate more

and more from the average at increasing molecular sizes.

A similar trend can be observed for Euclidean/Manhattan,

while the opposite holds for Substructure similarity, but

only if the selection method is diversity picking.

Normal probability plots and normality tests were also

carried out for the variables (it is reported in Additional

file 1: Figure S5 and Table S1). Although the results

show that the variables are not normally distributed, the

very large dataset (one thousand samples) is sufficient in

itself to carry out tests (factorial ANOVA), which require

the assumption of normal distribution. Factorial ANOVA

was carried out similarly to the standardized and rank

scaled datasets, too. The two factors were also significant

in every case, which supports the results of the factorial

ANOVA for the interval scaled dataset. The plots were

comparable to the results of the interval scaled matrix and

no large differences were observed.

Results of three-way ANOVA

Factorial ANOVA with three factors was also carried out.

In this case the significance of different data pretreatment

methods was also tested; it was the third factor for the

ANOVA analysis. This version produced a more sophisti-

cated picture than three one-way ANOVAs for the scaling

methods separately, because here not just the significance

was tested, but the interactions with the other factors

(classes) as well. For this analysis sum of ranking differ-

ences was carried out for the entire dataset with different

data pretreatment methods (3 × 1000 SRD runs).

The result of factorial ANOVA with sigma-restricted

parameterization showed that two interactions were not

significant, namely the combination of the selection

method and the data scaling method, and the combination

of all of the three factors (see Additional file 1: Table S2).

This latter case means that the factor of different data pre-

treatment methods is not significant in the combination of

the other two factors. But it has to be noted that the factor

of the different data pretreatment methods is significant

Figure 4 Box and whisker plot of the SRD values for eight similarity (and distance) metrics (with range scaling as data pretreatment method) in

the SRDall dataset. The uncertainties (distribution) of SRD values reveal equivalent similarity metrics (e.g. Eucl and Manh). The high SRD values of
the Euclidean, Manhattan and Substructure similarities indicate that their ranking behavior is significantly different from the average of the eight
metrics (consensus), while Cosine, Dice, Soergel and Tanimoto similarities better represent the ranking based on the averages. The coefficient is 1

for non-outlier range. 1.5 coefficients is the limit for the outliers and over 1.5 coefficients the point is detected as an extreme value.

Bajusz et al. Journal of Cheminformatics  (2015) 7:20 Page 8 of 13



alone. Figure 6A and B show the changes of SRD values in

different combinations of the factors when the data scaling

methods are on the x axis.

It is clearly shown that there are only little changes

between the plots corresponding to the different data pre-

treatment methods. The SRD values are quite the same in

every situation, which is reassuring. The shape of the lines

is very similar, only a minor difference can be detected for

the rank scaled results. The level of SRD values (except for

Superstructure and Substructure) is somewhat higher

mostly in the case of diverse selection. The Manhattan and

the Soergel similarity metrics were omitted from the figure

for clarity, because the results of the Tanimoto index is

completely identical with that of the Soergel metric and the

same holds for the Manhattan and the Euclidean metrics.

Thus, the reason for the omission was solely the improve-

ment of the visibility of the other distance metrics.

Another important result can be seen in Figure 7

where the factors were plotted in different arrangements;

thus, a definite difference can be observed between the

pattern in I1 factor’s first class (fragment) and the other

three classes (plots for the other three classes are in-

cluded in Additional file 1: Figures S6a, S6b and S6c).

The SRD values in the case of standardization are

quite different compared to the others, whereas in the

other two cases there is almost no difference in the aver-

age SRD values of the classes.

The 3000-sample dataset for the three-way ANOVA

was prepared in two ways: (i) it was built from parts

which contain 125 samples individually (same as for

the two-way ANOVA) for each of the data pretreat-

ment methods (125 × 8 × 3), and (ii) it was built from

the entire datasets for each data pretreatment method

(1000 × 3). It can also be concluded, that the results of

the three-way ANOVA were not significantly different

in these two cases (fragmented (125) SRD and entire

SRD calculations).

Conclusion
Statistical analysis of the ranking performances and cor-

relations of eight similarity metrics was carried out with

sum of ranking differences (SRD) and analysis of variance

(ANOVA). Each similarity metric produced more reliable

rankings than random numbers. Cosine, Dice, Tanimoto

and Soergel similarities were identified as the best (equiva-

lent) similarity metrics, while the similarity measures de-

rived from Euclidean and Manhattan distances are far

from being optimal. Nevertheless, this deviation from the

other metrics makes them a good candidate for data fu-

sion. It is important to note that in this context “best”

means the metric that on its own produces the most simi-

lar rankings to those that the average of the studied eight

metrics produces. In other words, the information content

that is retrieved by taking all of the eight metrics into

Figure 5 An illustrative example of two-way ANOVA (sigma restricted parametrization). A general, but not exclusive trend is to observe higher

SRD values for the ranking of diversity picked molecules, which implies that the consensus of the discussed similarity metrics gets weaker as we
investigate more diverse compound sets. Influential factors are shown using weighted means. The line plots are shifted on the categorical x axis
horizontally for clarity. The vertical bars denote 0.95 confidence intervals.

Bajusz et al. Journal of Cheminformatics  (2015) 7:20 Page 9 of 13



Figure 6 (See legend on next page.)
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account is best represented by the mentioned four metrics.

While this approach does not provide us information about

the applicability of these similarity metrics in specific sce-

narios (such as identifying novel ligands for a given pro-

tein), it presents a much more general picture, where the

metrics are compared to each other based on the results of

a very large number of tasks (similarity calculations).

While our findings support previous observations about

the Tanimoto coefficient and its equivalents [14,16], a

more detailed and general picture is given regarding the

rankings of the studied similarity metrics. We have shown

that the Tanimoto-related (but not monotonic) Cosine

coefficient is an equally appropriate choice.

Two-way ANOVA showed us that the factor of molecu-

lar size and the factor of selection method are significant

separately and together as well in every case. It means that

the results of the SRD analysis can be influenced by these

two factors. Thus the outcome depends on the size of

the molecules and the method of selection. In particu-

lar, the rankings of Euclidean, Manhattan, Substructure

and Superstructure similarities have shown significant

dependences on molecule size.

Although the factor of the different data pretreatment

methods was significant at the 5% level, the significance

depends on the evaluated similarity (or distance) metric/

metrics. The difference between data pretreatment

methods is barely observable.

We plan to extend the comparison for similarity

metrics applied for non-dichotomous data and/or using

SRD calculations in case of repeated items (degenera-

cies). Another possible extension of this study would

involve the examination of less known similarity metrics.

(See figure on previous page.)
Figure 6 Effect of data pretreatment for the three-way ANOVA (sigma restricted parameterization). The changes of SRD values can be seen in

different combinations of the factors. The data scaling methods are on the x axis and the selection method was: (A) random draw; (B) diversity
picking. With random draw, Substructure similarities produce significantly higher SRD values for the ranking of fragment-like compounds than for

bigger molecules. Meanwhile, with diversity picked molecules, Euclidean (and also Manhattan) similarities exhibit a trend to produce higher SRD
values (i.e. deviate more from the consensus) as the size of the molecules increases. Weighted means were used for the creation of the plot. The
vertical bars denote 0.95 confidence intervals. (Manhattan and Soergel similarities were omitted for clarity).

Figure 7 Comparison of diverse and random picking (three-way ANOVA with sigma restricted parameterization) in the case of fragment-like

molecules. The SRD values in the case of standardization are quite different compared to the others. (This effect seems to be less pronounced for
intentionally diverse molecules). Weighted means were used for the creation of the plot. The vertical bars denote 0.95 confidence intervals.

(Manhattan and Soergel coefficients were omitted for clarity).
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