WHY IS THERE PHILOSOPHY OF MATHEMATICS AT ALL?

This truly philosophical book takes us back to fundamentals – the sheer experience of proof, and the enigmatic relation of mathematics to nature. It asks unexpected questions, such as 'What makes mathematics mathematics?', 'Where did proof come from and how did it evolve?', and 'How did the distinction between pure and applied mathematics come into being?' In a wide-ranging discussion that is both immersed in the past and unusually attuned to the competing philosophical ideas of contemporary mathematicians, it shows that proof and other forms of mathematical exploration continue to be living, evolving practices – responsive to new technologies, yet embedded in permanent (and astonishing) facts about human beings. It distinguishes several distinct types of application of mathematics, and shows how each leads to a different philosophical conundrum. Here is a remarkable body of new philosophical thinking about proofs, applications, and other mathematical activities.

IAN HACKING is a retired professor of the Collège de France, Chair of Philosophy and History of Scientific Concepts, and retired University Professor of Philosophy at the University of Toronto. His most recent books include *The Taming of Chance* (1990), *Rewriting the Soul* (1995), *The Social Construction of What?* (1999), *An Introduction to Probability and Inductive Logic* (2001), *Mad Travelers* (2002), and *The Emergence of Probability* (2006). Cambridge University Press 978-1-107-05017-4 - Why is there Philosophy of Mathematics at All? Ian Hacking Frontmatter More information Cambridge University Press 978-1-107-05017-4 - Why is there Philosophy of Mathematics at All? Ian Hacking Frontmatter More information

WHY IS THERE PHILOSOPHY OF MATHEMATICS AT ALL?

IAN HACKING

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107658158

© Ian Hacking, 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2014 3rd printing 2015

Printed in the United States of America by Sheridan Books, Inc.

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-05017-4 Hardback ISBN 978-1-107-65815-8 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-1-107-05017-4 - Why is there Philosophy of Mathematics at All? Ian Hacking Frontmatter More information

> In memory of the first reader of this book, 1960 Paul Whittle 1938–2009

For mathematics is after all an anthropological phenomenon. Wittgenstein (1978: 399)

Mathematical activity is human activity . . . But mathematical activity produces mathematics. Mathematics, this product of human activity, 'alienates itself' from the human activity which has been producing it. It becomes a living, growing organism.

(Lakatos 1976: 146)

The birth of mathematics can also be regarded as the discovery of a capacity of the human mind, or of human thought – hence its tremendous importance for philosophy: it is surely significant that, in the semilegendary intellectual tradition of the Greeks, Thales is named both as the earliest of the philosophers and the first prover of geometric theorems.

(Stein 1988: 238)

A square can be dissected into finitely many unequal squares, but a cube cannot be dissected into finitely many unequal cubes. *Proof of the latter:*

In a square dissection the smallest square is not at an edge (for obvious reasons). Suppose now a cube dissection does exist. The cubes standing on the bottom face induce a square dissection at that face, and the smallest of the cubes on that face stands on an internal square. The top face of this cube is enclosed by walls; cubes must stand on this top face; take the smallest – the process continues indefinitely.

(Littlewood 1953: 8)

Contents

Foreword

page xiii

Ι	A cartesian introduction			
		I	Proofs, applications, and other mathematical activities	I
		2	On jargon	2
		3	Descartes	3
	А	Ар	plication	4
		4	Arithmetic applied to geometry	4
		5	Descartes' Geometry	5
		6	An astonishing identity	6
		7	Unreasonable effectiveness	6
		8	The application of geometry to arithmetic	8
		9	The application of mathematics to mathematics	9
		IO	The same stuff?	II
		II	Over-determined?	12
		12	Unity behind diversity	13
		13	On mentioning honours – the Fields Medals	15
		14	Analogy – and André Weil 1940	16
		15	The Langlands programme	18
		16	Application, analogy, correspondence	20
	В	Pro	pof	21
		17	Two visions of proof	21
		18	A convention	21
		19	Eternal truths	22
		20	Mere eternity as against necessity	23
		21	Leibnizian proof	23
		22	Voevodsky's extreme	25
		23	Cartesian proof	26
		24	Descartes and Wittgenstein on proof	26
		25	The experience of cartesian proof: caveat emptor	28

1/1	1	1	
V 1	.1	T	

Contents

	26	Grothendieck's cartesian vision: making it all obvious	29
	27	Proofs and refutations	30
	28	On squaring squares and not cubing cubes	32
	29	From dissecting squares to electrical networks	34
	30	Intuition	35
	31	Descartes <i>against</i> foundations?	37
	32	The two ideals of proof	38
	33	Computer programmes: who checks whom?	40
2	What	makes mathematics mathematics?	41
	I	We take it for granted	4I
	2	Arsenic	42
	3	Some dictionaries	43
	4	What the dictionaries suggest	45
	5	A Japanese conversation	47
	6	A sullen anti-mathematical protest	48
	7	A miscellany	48
	8	An institutional answer	51
	9	A neuro-historical answer	52
	IO	The Peirces, father and son	53
	II	A programmatic answer: logicism	54
	12	A second programmatic answer: Bourbaki	55
	13	Only Wittgenstein seems to have been troubled	57
	14	Aside on method – on using Wittgenstein	59
	15	A semantic answer	60
	16	More miscellany	61
	17	Proof	62
	18	Experimental mathematics	63
	19	Thurston's answer to the question 'what makes?'	66
	20	On advance	67
	21	Hilbert and the Millennium	68
	22	Symmetry	71
	23	The Butterfly Model	72
	24	Could 'mathematics' be a 'fluke of history'?	73
	25	The Latin Model	74
	26	Inevitable or contingent?	75
	27	Play	76
	28	Mathematical games, ludic proof	77
3	Why	is there philosophy of mathematics?	79
	Ι	A perennial topic	79
	2	What is the philosophy of mathematics anyway?	80

3

		Contents	ix
	3	Kant: in or out?	81
	4	Ancient and Enlightenment	83
А	•	answer from the ancients: proof and exploration	83
	5	The perennial philosophical obsession	83
	6	The perennial philosophical obsession is totally anomalous	85
	7	Food for thought (<i>Matière à penser</i>)	86
	8	The Monster	87
	9	Exhaustive classification	88
	IO	Moonshine	89
	II	The longest proof by hand	89
	12	The experience of out-thereness	90
	13	Parables	91
	14	Glitter	91
	15	The neurobiological retort	92
	16	My own attitude	93
	17	Naturalism	94
	18	Plato!	96
В	An	answer from the Enlightenment: application	97
	19	Kant shouts	97
	20	The jargon	98
	21	Necessity	99
	22	Russell trashes necessity	100
	23	Necessity no longer in the portfolio	102
	24	Aside on Wittgenstein	103
	25	Kant's question	104
	26	Russell's version	105
	27	Russell dissolves the mystery	106
	28	Frege: number a second-order concept	107
	29	Kant's conundrum becomes a twentieth-century dilemma: (a) Vienna	108
	30	Kant's conundrum becomes a twentieth-century dilemma: (b) Quine	109
	31	Ayer, Quine, and Kant	IIO
	32	Logicizing philosophy of mathematics	III
	33	A nifty one-sentence summary (Putnam redux)	II2
	34	John Stuart Mill on the need for a sound philosophy of mathematics	113
Pı	coof	5	115
	I	The contingency of the philosophy of mathematics	115
А	Lit	Little contingencies	
	2	2 On inevitability and 'success'	
	3	Latin Model: infinity	117
	4	Butterfly Model: complex numbers	119
	5	Changing the setting	121

4

х

5

В	Pro	oof	122
	6	The discovery of proof	122
	7	Kant's tale	123
	8	The other legend: Pythagoras	126
	9	Unlocking the secrets of the universe	127
	IO	Plato, theoretical physicist	129
	II	Harmonics works	130
	12	Why there was uptake of demonstrative proof	131
	13	Plato, kidnapper	132
	14	Another suspect? Eleatic philosophy	133
	15	Logic (and rhetoric)	135
	16	Geometry and logic: esoteric and exoteric	136
	17	Civilization without proof	137
	18	Class bias	138
	19	Did the ideal of proof impede the growth of knowledge?	139
	20	What gold standard?	140
	21	Proof demoted	141
	22	A style of scientific reasoning	142
Aj	ppli	cations	I44
	I	Past and present	I44
А	Th	e emergence of a distinction	I44
	2	Plato on the difference between philosophical and practical	
		mathematics	I44
	3	Pure and mixed	146
	4	Newton	148
	5	Probability – swinging from branch to branch	149
	6	Rein and angewandt	150
	7	Pure Kant	151
	8	Pure Gauss	152
	9	The German nineteenth century, told in aphorisms	153
	IO	Applied <i>polytechniciens</i>	153
	II	Military history	156
	12	William Rowan Hamilton	158
	13	Cambridge pure mathematics	160
	14	Hardy, Russell, and Whitehead	161
	15	Wittgenstein and von Mises	162
	16	SIAM	163
В	B A very wobbly distinction		164
	17	Kinds of application	164
	18	Robust but not sharp	168

Contents

6

		Contents	xi	
	19	Philosophy and the <i>Apps</i>	169	
	20	Symmetry	171	
	21	The representational-deductive picture	172	
	22	Articulation	174	
	23	Moving from domain to domain	174	
	24	Rigidity	176	
	25	Maxwell and Buckminster Fuller	176	
	26	The maths of rigidity	179	
	27	Aerodynamics	181	
	28	Rivalry	182	
	29	The British institutional setting	184	
	30	The German institutional setting	186	
	31	Mechanics	187	
	32	Geometry, 'pure' and 'applied'	188	
	33	A general moral	188	
	34	Another style of scientific reasoning	189	
In	Pla	191		
	I	Hauntology	191	
	2	Platonism	191	
	3	Webster's	193	
	4	Born that way	193	
	5	Sources	194	
	6	Semantic ascent	195	
	7	Organization	196	
А	Ala	in Connes, Platonist	197	
	8	Off-duty and off-the-cuff	197	
	9	Connes' archaic mathematical reality	198	
	IO	Aside on incompleteness and platonism	201	
	II	Two attitudes, structuralist and Platonist	202	
	12	What numbers could not be	203	
	13	Pythagorean Connes	205	
В	Tiı	nothy Gowers, anti-Platonist	206	
	14	A very public mathematician	206	
	15	Does mathematics need a philosophy? No	207	
	16	On becoming an anti-Platonist	208	
	17	Does mathematics need a philosophy? Yes	209	
	18	Ontological commitment	211	
	19	Truth	212	
	20	Observable and abstract numbers	213	
	21	Gowers versus Connes	215	

xii

		22	The 'standard' semantical account	216
		23	The famous maxim	218
		24	Chomsky's doubts	220
		25	On referring	221
7	Сс	un	ter-platonisms	223
		I	Two more platonisms – and their opponents	223
	А	То	talizing platonism as opposed to intuitionism	224
		2	Paul Bernays (1888–1977)	224
		3	The setting	225
		4	Totalities	227
		5	Other totalities	228
		6	Arithmetical and geometrical totalities	230
		7	Then and now: different philosophical concerns	231
		8	Two more mathematicians, Kronecker and Dedekind	232
		9	Some things Dedekind said	233
		10	What was Kronecker protesting?	235
		п	The structuralisms of mathematicians and philosophers distinguished	236
	В	То	day's platonism/nominalism	238
		12	Disclaimer	238
		13	A brief history of nominalism now	238
		14	The nominalist programme	239
		15	Why deny?	241
		16	Russellian roots	242
		17	Ontological commitment	244
		18	Commitment	245
		19	The indispensability argument	246
		20	Presupposition	248
		21	Contemporary platonism in mathematics	250
		22	Intuition	252
		23	What's the point of platonism?	253
		24	Peirce: The only kind of thinking that has ever advanced human culture	254
		25	Where do I stand on today's platonism/nominalism?	256
		26	The last word	256
Di	sclos	sure	s	258
		nces		262
Inc				281

Contents

Foreword

This is a book of philosophical thoughts about proofs, applications, and other mathematical activities.

Philosophers tend to emphasize mathematical 'knowledge', but as G. H. Hardy said on the first page of his *Apology* (1940), 'the function of a mathematician is to *do* something, to prove new theorems, to add to mathematics'. I have emphasized the 'do'. Hardy was writing not only an *Apologia pro vita sua*, but also a mathematician's *Lament* that he was now too old to create much more mathematics. He also, notoriously, wanted to keep mathematics pure, whereas I believe that the uses, 'the applications', are as important as the theorems proved. Neither proof nor application is, however, as clear and distinct an idea as might be hoped.

To reflect on the doing of mathematics, on mathematics as activity, is not to practise the sociology of mathematics. Happily that is now a burgeoning field, from which one can learn much, but what follows is philosophizing, moved by old-fashioned questions – to which I add my title question, why *do* these questions arise perennially, from Plato to the present day?

This book began as the René Descartes Lectures at Tilburg University in the Netherlands, in early October, 2010. (I started writing out the talks on the summer solstice of that year.) The format was three lectures, each followed by comments from two different scholars. The original intention was that the lectures and comments would be published immediately.

I began to realize at the end of the week the extent to which the material needed to mature. The commentators generously agreed to keep their comments. So my first duty is to thank them deeply for their hard work. Hard work? Typically they received, late in the day, some 20,000 words per lecture, of which only 7,000 would be spoken, and they did not even know which ones.

For the first talk, 'Why Is There Philosophy of Mathematics?': Mary Leng and Hannes Leitgeb.

xiv

Foreword

For the second talk, 'Meaning and Necessity – and Proof': James Conant and Martin Kusch. For the third talk, 'Roots of Mathematical Reasoning': Marcus Giaquinto

Thank you all.

and Pierre Jacob.

I originally proposed 'Proof' as the series title. That was the title of a thesis, which, together with some work in modal logic, was awarded a PhD by Cambridge University in 1962. It was dominated by my reading of Wittgenstein's recently published *Remarks on the Foundations of Mathematics*, although much influenced by what was to become Imre Lakatos' *Proofs and Refutations*, which was being completed in Cambridge as a doctoral dissertation when I began mine.

I have published very little about the philosophy of mathematics, but it has always been at the back of my mind, so the Descartes Lectures were a chance to finish the job. The title 'Proof' would give no idea of what the talks would be about, so Stephan Hartmann, the organizer of the events (to whom many thanks), and I hit on 'Proof, Calculation, Intuition, and A Priori Knowledge'.

Very soon after the Descartes Lectures, in late October 2010, I gave three similar talks at the University of California, Berkeley, beginning with the Howison Lecture, 'Proof, Truth, Hands and Mind'. Here is how I explained the title, after indulgently admiring my choice of words of one syllable:

Why this title? First, because *proof* has been an essential part of Western mathematics ever since Plato. And Plato thought that mathematics was the sure guide to *truth*. I want also to think of how we do mathematics, in a material way that Plato would hardly have acknowledged. We think with our *hands*, our whole bodies. We communicate with one another not only by talking and writing but also by gesticulating. If I am thinking mathematically I may draw a diagram to take you through a series of thoughts, and in this way pass my thoughts in my *mind* over to yours.

After California I put this material aside while teaching on other topics at the University of Cape Town, and intensely experiencing all too little of that amazing land and its peoples. In January 2011 I did attend the annual meetings of the Philosophical Society of Southern Africa, and the corresponding Society for the Philosophy of Science, near Durban. There I presented, respectively, abridged forms of the first two Descartes/Howison Lectures (Hacking, 2011a, 2011b). I may mention also a contribution to a conference in Israel in honour of Mark Steiner, in December 2011, which began with

Foreword

Pythagoras and ended with P.A.M. Dirac (Hacking, 2012b). Then in November 2012 I did part of the third Descartes Lecture as the Henry Myers Lecture for the Royal Anthropological Institute, London.

In March and April of 2012 I gave six Gaos Lectures at the National Autonomous University of Mexico, at the invitation of Carlos Lópes Beltrán and Sergio Martinez, to whom again many thanks. The title was *The Mathematical Animal*, but in fact the first five lectures covered only the first Descartes Lecture. And so it has come to pass that this book is not the entire set of lectures given in Tilburg, but only the first.

The connection between the present book and my dissertation of 1962 will not be obvious, but *plus ça change*. My title here is, *Why Is There Philosophy of Mathematics At All*? I was astonished, in preparing the present book for the press, to reread the brief preface to my dissertation of 1962: 'We must return to simple instances to see what is surprising, to discover, in fact, why there are philosophies of mathematics at all.' And I may mention that my choice of topics comes from the first edition of Wittgenstein's *Remarks on the Foundations of Mathematics* (1956). The two significant nouns most often used in that edition (to which I prepared my own index) are *Beweis* and *Anwendung*, 'proof' and 'application'.

I thank the Social Science and Humanities Research Council of Canada for awarding me its annual Gold Medal for Research. The cash coming with the medal is rightly dedicated to further research, and much of it was used in preparing this book. I thank James Davies in Toronto and Kaave Lajevardi in Teheran for a lot of help in the home stretch. The final threads were tied up in March 2013 during a blissful time at the Stellenbosch Institute for Advanced Study.