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Abstract In contrast to the positive definite Helmholtz equation, the deceivingly

similar looking indefinite Helmholtz equation is difficult to solve using classical

iterative methods. Simply using a Krylov method is much less effective, especially

when the wave number in the Helmholtz operator becomes large, and also algebraic

preconditioners such as incomplete LU factorizations do not remedy the situation.

Even more powerful preconditioners such as classical domain decomposition and

multigrid methods fail to lead to a convergent method, and often behave differently

from their usual behavior for positive definite problems. For example increasing the

overlap in a classical Schwarz method degrades its performance, as does increasing

the number of smoothing steps in multigrid. The purpose of this review paper is to

explain why classical iterative methods fail to be effective for Helmholtz problems,

and to show different avenues that have been taken to address this difficulty.

1 Introduction

We consider in this paper the iterative solution of linear systems of equations arising

from the discretization of the indefinite Helmholtz equation,

L u :=−(∆ + k2)u = f , (1)

with suitable boundary conditions yielding a well-posed problem. For k > 0 solu-

tions of the Helmholtz equation, also known as the reduced wave equation, describe
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the variation in space of linear propagating waves with wave number k. The perfor-

mance of standard iterative methods is much worse for such problems than for the

deceivingly similar looking equation

−(∆ −η )u = f , η > 0, (2)

which describes stationary reaction-diffusion phenomena but is often also called

Helmholtz equation in certain communities. For example in meteorology, the early

seminal papers [51, 59] led an entire community to call equations of the form (2)

Helmholtz equations, see for example [14]. Even standard texts in applied mathe-

matics now sometimes use the term Helmholtz equation for both (1) and (2), see

for example [69]. The subject of this paper is exclusively the indefinite Helmholtz

equation (1), which is much harder to solve with classical iterative methods than

equation (2), see also the recent review [20].

Discretizations of the indefinite Helmholtz equation (1) using, e.g., finite dif-

ferences or a finite element or spectral element method and appropriate boundary

conditions result in a linear system of equations

Au = f, (3)

which, for k sufficiently large, possesses an indefinite coefficient matrix A.

Often an approximation of the Sommerfeld radiation condition, which in d space

dimensions reads ∂ru− iku = o(r(1−d)/2) as the radial variable r tends to infinity,

is imposed on part of the boundary, specifying that wave motion should be out-

going along physically open boundaries. The Sommerfeld condition prescribes the

asymptotic behavior of the solution, and its representation on finite boundaries leads

to nonlocal operators. For this reason localized approximations of the Sommerfeld

condition are used, the simplest of which is the Robin condition ∂nu− iku = 0. As

a result, the linear system (3) has a complex-symmetric, but non-Hermitian coef-

ficient matrix as well as a complex-valued solution. The iterative solution of the

discrete Helmholtz problem (3) is difficult, even for constant wave number k, and

we will illustrate this in the first part of this paper, for Krylov methods, precon-

ditioned Krylov methods, domain decomposition methods and multigrid. We then

try to explain where these difficulties come from, and show what types of remedies

have been developed over the last two decades in the literature. We will conclude

the paper with some more recent ideas.

2 Problems of Classical Iterative Methods

2.1 Krylov Subspace Methods

Krylov subspace methods seek an approximate solution of the linear system (3) in

the Krylov space
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Km(A, f) = span{f,Af,A2f, . . . ,Am−1f}= span{q0,q1,q2, . . . ,qm−1}, (4)

where q j denotes the j-th Arnoldi vector of Km, i.e. the vectors obtained by or-

thonormalization of the vectors f, Af, A2f, . . . defining the Krylov space. We have

made the common choice of a zero initial guess for the solution, as is recommended

in the absence of any additional information, see for example [53]. We show in

Figure 1 how the wave number k fundamentally influences the solution of the

Helmholtz equation. We have set homogeneous Dirichlet conditions on all bound-
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Fig. 1 Solution of Laplace’s equation on the left, with a point source on the boundary, and on the

right the solution of the Helmholtz equation, with the same boundary conditions.

aries, except on the left, where the Robin condition ∂nu− iku = 0 was imposed, and

we used a point source in the upper right corner, i.e., a Dirac delta distribution con-

centrated at this point, as the source term. In the case of Laplace’s equation (k = 0)

the solution is large only near the point source in the corner, whereas for k = 25,

the solution is large throughout the domain. The Krylov space constructed in (4),

however, is very similar for both problems: due to the local connectivity (we used a

five-point finite difference discretization for the Laplacian), the vector f is zero ev-

erywhere, except for the grid point associated with the upper right corner point, and

thus the Arnoldi vector q0 is just a canonical basis vector (1,0, . . . ,0)T . The next

vector in the Krylov space, Af, is then non-zero only for the points connected with

the first point, and the corresponding Arnoldi vector q1 will have only two non-zero

entries, and so on. In the case of Laplace’s equation we see that the first Arnoldi

vectors are precisely non-zero where the solution is large, and thus it can be well

approximated in the Krylov space. By contrast, in the indefinite Helmholtz case,

where the solution is of the same size throughout the domain, these vectors do not

have an appropriate support to approximate the solution. We show in Figure 2 how

this influences the convergence of GMRES. While the residual decreases well in

the Laplace case over the first 2× n iterations, where n is the number of grid points

in one direction, convergence stagnates in the Helmholtz case. For a more precise

quantitative analysis of this phenomenon, see [36]. Similar effects are also observed

in the advection dominated case of advection diffusion equations, see [24, 53]. It
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Fig. 2 Evolution of the residual for GMRES, on the left for the case of Laplace’s equation, k = 0,

and on the right for the Helmholtz equation, k = 25.

is therefore important to have a preconditioner, a Krylov method alone is not an

effective iterative solver.

2.2 Algebraic Preconditioners Based on Factorization

The idea of preconditioning is as follows: instead of solving the original discretized

system Au = f, we solve the preconditioned system

M−1Au = M−1f, (5)

where M is the so-called preconditioner. Preconditioners often arise from a station-

ary iterative method

Muk+1 = Nuk + f (6)

derived from a matrix splitting A = M−N with M nonsingular. It is well known that

this method converges asymptotically rapidly, if the spectral radius of the iteration

matrix M−1N is small. This implies that the preconditioned matrix in (5),

M−1A = M−1(M−N) = I−M−1N

has a spectrum clustered around 1 in the complex plane, which leads to fast asymp-

totic convergence also for a Krylov method applied to the preconditioned system

(5). Clearly, the best preconditioner would be A−1, since this makes the spectral

radius of M−1N vanish since then M−1N=A−10 = 0, and all the eigenvalues of the

preconditioned system M−1A = I equal 1. But then one could directly solve the

system without iteration.

The idea of factorization preconditioners is to use an approximation of A−1 by

computing an approximate LU factorization of the matrix A, A ≈ LU , and then in

each iteration step of (5), a forward and a backward substitution need to be per-

formed. Two popular algebraic variants are the ILU(0) and ILU(tol) precondition-

ers, see [60]. For ILU(0), one computes an approximate LU factorization, retaining
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entries in the LU factors only if the corresponding entry in the underlying matrix A

is non-zero. In the ILU(tol) variant, elements are kept, provided they are bigger than

the tolerance tol. We compare in Table 1 the performance of this type of precon-

ditioner when applied to the Helmholtz equation for growing wave number k. We

solve an open cavity problem as in the previous example in Section 2.1, but now with

a point source in the center. For this experiment, we keep the number of grid points

per wavelength constant, i.e. kh = 10, which means that the grid is refined propor-

tionally with increasing wave number. We observe that the ILU preconditioners are

QMR ILU(’0’) ILU(1e-2)

k it Mflops it Mflops it Mflops

5 197 120.1 60 60.4 22 28.3

10 737 1858.2 370 1489.3 80 421.4

15 1775 10185.2 > 2000 > 18133.2 220 2615.1

20 > 2000 > 20335.1 — — > 2000 > 42320.1

Table 1 Iteration counts for QMR with and without preconditoner, applied to an indefinite

Helmholtz equation with increasing wave number.

quite effective for small wave numbers, but their performance deteriorates when k

becomes larger: the situation with ILU(’0’) is worse than without preconditioning,

and even ILU(tol) with a small drop tolerance does not permit the solution of the

problem. Here the Krylov subspace solver used was QMR [30], but similar results

are observed when using GMRES and other Krylov methods, see [38].

2.3 Domain Decomposition Methods

The oldest and simplest domain decomposition method is due to Schwarz [62]. He

invented his alternating method in order to prove the Dirichlet principle, on which

Riemann had based his theory of analytic functions of a complex variable (See [39]

for a historical overview, and also [32] for an overview over the different continuous

and discrete variants of the Schwarz method). The idea of the alternating Schwarz

method is illustrated in Figure 3. One simply solves the original partial differential

Ω1 Ω2Γ1Γ2

∂Ω

Fig. 3 Original drawing of a domain decomposition by Schwarz on the left, and on the right using

the notation in the text

.
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equation alternatingly in overlapping subdomains, and uses as interface condition

the trace of the previously computed solution in the neighboring subdomain. For

the case of the Helmholtz equation and the two-subdomain decomposition in Figure

3, the algorithm is

−(∆ + k2)un+1
1 = 0 in Ω1, −(∆ + k2)un+1

2 = 0 in Ω2,

un+1
1 = un

2 on Γ1, un+1
2 = un+1

1 on Γ2.
(7)

We show in Table 2 numerical experiments for growing wave number k for the case

of a unit square cavity, open both on the left and on the right, using two subdo-

mains obtained by partitioning the cavity in the middle. We used the alternating

k 10π 20π 40π 80π 160π 10π 20π 40π 80π 160π
Overlap = h Overlap fixed

Iterative div div div div div div div div div div

Preconditioner 20 33 45 69 110 16 23 43 86 155

Table 2 Performance of a classical Schwarz domain decomposition method for a discretized

Helmholtz equation

Schwarz method both as an iterative solver, as in (6), and as a preconditioner, as in

(5), for GMRES. We see that the alternating Schwarz method is not convergent for

the indefinite Helmholtz equation. Used as a preconditioner, we obtain a convergent

method, but iteration numbers grow with increasing wave number k. For diffusive

problems the alternating Schwarz method converges better when the overlap is in-

creased, which is also intuitively understandable. This is, however, not the case for

the Helmholtz equation, as we see comparing the case with overlap h, the mesh

size, and with fixed overlap, equal to 2h on the coarsest grid, and then 4h, 8h etc

when the mesh is refined: at the beginning, for small wave numbers, overlap seems

to help, but later, bigger overlap is detrimental to the performance of the Schwarz

preconditioner when applied to the Helmholtz equation.

2.4 Fictitious Domain Methods

While domain decomposition methods arrive at more manageable subproblems by

dividing a given problem region into smaller subregions, fictitious domain methods

are based on imbedding the former in a larger domain for which a more efficient

solver may be available. The first such techniques [46, 61, 11, 58], also known as

domain imbedding or capacitance matrix methods, were developed to extend the

efficiency of fast Poisson solvers based on the Fast Fourier Transform or cyclic re-

duction also to problems for which these methods are not directly applicable, as

they require some form of separation of variables. In [22] (see also [23]) this idea

was applied to exterior boundary value problems for the Helmholtz equation in two

dimensions, and it was shown how the Sommerfeld radiation condition can be in-
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corporated into a fast Poisson solver. Large-scale scattering calculations using this

approach can be found in [45].

Computationally, fictitious-domain methods represent the original discrete prob-

lem as a low-rank modification of a larger problem amenable to fast methods. The

fast solver plays the role of a discrete Green’s function much in the same way as

its continuous counterpart is used in the integral equation method for solving the

Helmholtz equation using layer potentials [13]. In fact, fictitious domain methods

require the solution of an auxiliary system of equations which is a discretization of

an integral operator on the boundary of the problem (scattering) domain. If a suit-

able formulation is chosen these operators are often compact perturbations of the

identity, which can be exploited to obtain mesh-independent convergence for itera-

tive solution methods. The dependence on the wave number, however, is typically

linear. Convergence independent of the wave number and mesh size would require

more efficient preconditioning schemes for the discrete integral operator, which are

currently not available. Recent developments on the spectral analysis of such oper-

ators necessary for the design of effective preconditioners can be found in [6].

2.5 Multigrid Methods

Two fundamental observations led to the invention of multigrid methods:

• When applied to the Poisson equation, classical stationary iterative methods such

as Gauss-Seidel or damped Jacobi iteration effectively remove high-frequency

components of the error, but are very ineffective for low-frequency components.

Stiefel points this out very vividly in his 1952 paper [64] on precursors of the

conjugate gradient method, remarking that, after a few iterations of one such

basic iterative method, in which the residual is reduced significantly, subsequent

iteration steps decrease the residual only by very little, as if the approximation

were confined to a “cage” 1.

• The remaining low-frequency components in the error can be well represented

on a coarser grid,2 as Federenko points out in his 1961 paper presenting the first

complete multigrid method [29]:

We shall speak of the eigenfunctions as “good” and “bad”; the good ones include those

that are smooth on the net and have few changes of sign in the domain; the bad ones

often change sign and oscillate rapidly [...] After a fairly small number of iterations, the

error will consist of “good” eigenfunctions [...] We shall use the following method to

annihilate the “good” components of the error. We introduce into the domain an auxiliary

net, the step of which is q times greater than the step of the original net.

1 “Das Auftreten von Käfigen ist eine allgemeine Erscheinung bei Relaxationsverfahren und sehr

unerwünscht. Es bewirkt, dass eine Relaxation am Anfang flott vorwärts geht, aber dann immer

weniger ausgiebig wird . . . ”
2 The idea of beginning the iteration on a coarse grid with a subsequent “advance to a finer net”,

not unlike the modern full multigrid approach, was in use already in the early days of “relaxation

methods”, as evidenced, e.g., in the book of Southwell [63, Section 52] from 1946.
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The simplest multigrid scheme to which these developments led is the classical ‘V-

cycle’, which, applied to the system Au = f, reads:

function u =Multigrid(A, f ,u0);
if isSmall(A) then u = A\ f else

u =DampedJacobi(ν ,A, f ,u0);
r =Restrict( f −Au);
e =Multigrid(Ac,r,0);
u = u+Interpolate(e);
u =DampedJacobi(ν ,A, f ,u);

end;

Here u0 denotes the initial approximation and Ac the coarse-grid representation of

A.

We show in Table 3 the performance of this multigrid algorithm when applied

to a discretized Helmholtz equation, in our example a closed cavity without res-

onance for the discretized problem3. We observe that the multigrid method fails

k 2.5π 5π 10π 20π 2.5π 5π 10π 20π 2.5π 5π 10π 20π
ν = 2 ν = 5 ν = 10

Iterative 7 div div div 7 stag div div 8 div div div

Preconditioner 6 12 41 127 5 13 41 223 5 10 14 87

Table 3 Performance of a classical geometric multigrid method with optimally damped Jacobi

smoother applied to a discretized Helmholtz equation. ν denotes the number of smoothing steps.

to converge as a stand-alone iterative solver except for a very small wave number.

When multigrid is used as a preconditioner, we obtain a convergent method, as in the

case of the Schwarz domain decomposition method, but again the iteration numbers

grow substantially when the wave number increases. We used again about 10 points

per wavelength in these experiments. Often one increases the number of smoothing

steps in the multigrid method to improve performance, and we see in Table 3 that,

for small wave numbers, this seems to help the preconditioned version, but for large

wave numbers, adding more smoothing steps can both improve and diminish per-

formance. Again, we observe that standard multigrid methods are not suitable for

solving the Helmholtz equation.

3 In a closed cavity, i.e., with homogeneous Dirichlet conditions imposed on all sides, it is impor-

tant to ensure that k2 is not an eigenvalue of the discrete Laplacian, since otherwise one obtains a

singular matrix. In the case of a multigrid solver then, one must be careful that k2 is not an eigen-

value of the discrete Laplacian on each of the grids used in the multigrid hierarchy, which we did

for this experiment (see also subsection 3.4)
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3 Iterative Methods for Helmholtz Problems

We now describe several iterative methods and preconditioners which have been

developed especially for solving discrete Helmholtz problems. In each case we first

give an explanation of why the classical iterative method or preconditioner fails, and

then show possible remedies.

3.1 Analytic Incomplete LU

The incomplete LU (ILU) preconditioners are based on the fact that the linear sys-

tem (3) could be solved by a direct factorization, the so-called LU factorization

A = LU, L lower triangular, U upper triangular. (8)

The solution of the linear system Au = LUu = f is then obtained by solving

Lv = f by forward substitution,

Uu = v by backward substitution.

If the matrix A is a discretization of the Helmholtz operator −(∆ + k2) in two di-

mensions, and we use the lexicographic ordering4 of the unknowns indicated in

Figure 4, we can interpret the forward and backward substitutions geometrically:

x

y

u1

un

Fig. 4 Ordering of the unknowns in the discretization of the Helmholtz operator

the forward substitution process Lv = f determines first the variables in the leftmost

column of the domain, see Figure 4, then in the second leftmost, and so on, until

the last column on the right. The process is sequential, and could be interpreted as

a time-stepping in the positive x-direction, solving an evolutionary problem. The

backward substitution process Uu = v, on the other hand, starts with the variables

in the rightmost column in Figure 4, and then computes the second rightmost col-

umn, and so on, until the first column on the left is determined. Again the process is

4 This presupposes a tensor-product grid structure.
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sequential, and could be interpreted as a time-stepping, but this time in the negative

x-direction.

From the explanation of the convergence of Krylov methods without precon-

ditioning given in Section 2, we see that efficient transport of information in the

preconditioner is important for Helmholtz problems. We have, however, also seen

that the classical ILU preconditioners do not seem to bring about this transport ef-

fectively enough: even the rather accurate approximate ILU(1e-2) factorization does

not suffice.

In order to find what the evolution problems described by the LU factorization

could correspond to for the underlying Helmholtz equation, it was sought in [38] to

determine a factorization of the Helmholtz operator in the x direction,

−(∆ + k2) =−(∂x +Λ1)(∂x−Λ2), (9)

where Λ1 and Λ2 are (non-local) operators to be determined such that (9) holds.

Given such a factorization at the continuous level one can solve −(∆ + k2)u =
−(∂x +Λ1)(∂x−Λ2)u = f by solving two evolution problems:

−(∂x +Λ1)v = f evolution problem in the forward x direction,

(∂x−Λ2)u = v evolution problem in the backward x direction.

Taking a Fourier transform of the Helmholtz operator (ignoring boundary condi-

tions) in the y-direction with Fourier variable ξ , we obtain

Fy(−(∆ + k2)) =−∂xx + ξ 2− k2 =−(∂x +
√

ξ 2− k2)(∂x−
√

ξ 2− k2), (10)

and thus we have the continuous analytic factorization of the Helmholtz operator

−(∆ + k2) =−(∂x +Λ1)(∂x−Λ2), (11)

where Λ1 = Λ2 = F−1
y (

√

ξ 2− k2). Note that Λ j, j = 1,2, are non local operators

in y due to the square root in their symbol
√

ξ 2− k2.

The discrete analogue of this factorization at the continuous level is the block

LDLT factorization of the discrete Helmholtz matrix A. In the case of a five point

finite difference discretization, this matrix has the block structure

A =
1

h2









A1 −I

−I A2

. . .

. . .
. . .









, A j =









4− kh2 −1

−1 4− kh2
. . .

. . .
. . .









.

A direct calculation shows that the block LDLT factorization of A is given by
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L =
1

h













I

−T−1
1 I

−T−1
2

. . .

. . .
. . .













, D =







T1

T2

. . .






,

where the matrices Tj satisfy the recurrence relation

Tj+1 = A j+1−T−1
j , T1 = A1, (12)

as is easily verified by multipling the matrices. We observe that in this exact fac-

torization the matrices Tj are no longer sparse, since the recurrence relation (12)

which determines them involves an inverse. This fill-in at the discrete level corre-

sponds to the non-local nature of the operators Λ j. Using a local approximation of

the matrices Tj with tridiagonal structure gives only an approximate LDLT factor-

ization of A, which we call AILU(’0’) (Analytic Incomplete LU). In order to obtain

a good approximation, the relation to the continuous factorization was used in [38],

and the spectral radius of the corresponding iteration matrix was minimized. The

performance of this preconditioner, which is now tuned for the Helmholtz nature of

the problem, is shown in Table 4, for the same open cavity problem as before. We

QMR ILU(’0’) ILU(1e-2) AILU(’0’)

k it Mflops it Mflops it Mflops it Mflops

5 197 120.1 60 60.4 22 28.3 23 28.3

10 737 1858.2 370 1489.3 80 421.4 36 176.2

15 1775 10185.2 2000 18133.2 220 2615.1 43 475.9

20 2000 20335.1 — — 2000 42320.1 64 1260.2

30 – – – – – – 90 3984.1

40 – – – – – – 135 10625.0

50 – – – – – – 285 24000.4

Table 4 Performance comparison of the specialized AILU(’0’) preconditioner, compared to the

other ILU variants.

clearly see that this approximate factorization contains much more of the physics of

the underlying Helmholtz equation, and leads to a better preconditioner. Nonethe-

less, the iteration counts are still seen to increase with growing wave number k.

The AILU preconditioner goes back to the analytic factorization idea, see [56]

and references therein. It is very much related to the Frequency Filtering Decom-

position, as proposed by Wittum in [67, 68] and analyzed for symmetric positive

problems in [65], and for non-symmetric problems in [66]. There was substantial re-

search activity for these kinds of preconditioners around the turn of the century, see

[42], [12], [37], [1], and for Helmholtz problems this is one of the best incomplete

factorization preconditioners available. For more recent work, see [2], [57], and for

Helmholtz problems in particular [17] and [18], where this type of preconditioner

is called a ’sweeping preconditioner’, and an optimal approximation is proposed in
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the sense that iteration numbers no longer depend on the wave number k, see also

[19].

3.2 Domain Decomposition Methods for Helmholtz Problems

In the late 1980s researchers realized that classical domain decomposition methods

were not effective for Helmholtz problems, and the search for specialized methods

began. In his PhD thesis [15], Bruno Després summarizes this situation precisely:

L’objectif de ce travail est, après construction d’une méthode de décomposition de domaine

adaptée au problème de Helmholtz, d’en démontrer la convergence5 .

The fundamental new ingredient for such an algorithm turned out to be the trans-

mission condition between subdomains, as in the non-overlapping variant of the

Schwarz algorithm proposed by Lions [54]. The algorithm proposed by Bruno De-

sprés reads

−(∆ + k2)un+1
j = f , in Ω j

(∂n j
− ik)un+1

j = (∂n j
− ik)un

l , on interface Γjl ,
(13)

and, on comparing with the classical alternating Schwarz algorithm in (7), we see

that now a Robin transmission condition is used at the interfaces. The algorithm was

considered by Després for many subdomains, but only without overlap, so that its

convergence can be proved using energy estimates.

To obtain further insight into why the transmission conditions are important, we

show in Figure 5 on the vertical axis the convergence factor of the algorithm for the

simple model problem of a square decomposed into two rectangles, plotted against

the index ξ of the Fourier modes. In this case, we can use Fourier series in the di-

rection of the interface to explicitly compute how each Fourier mode converges, see

for example [35]. We see on the left for the classical alternating Schwarz method

that low frequency modes are not converging at all, their convergence factor equals

one. These modes correspond to the oscillatory, or propagating modes in the solu-

tion of the Helmholtz equation, as are clearly visible, e.g., in the example in Figure

1 on the right. High-frequency components, however, converge well in the classical

alternating Schwarz method. These modes correspond to evanescent modes, usually

only well visible for diffusive problems, as in Figure 1 on the left. The situation for

the non-overlapping method of Després on the right is reversed: the new transmis-

sion conditions lead to a rapidly converging method for the propagating modes in

the low-frequency part of the spectrum, but now high frequency components are not

converging.

Després wanted to prove convergence of the algorithm, and the technique of en-

ergy estimates generally works only for the non-overlapping variants of the algo-

5 The goal of this work is to design a special domain decomposition method for Helmholtz prob-

lems, and to prove that it converges



Helmholtz Problems and Iterative Methods 13

Fig. 5 Comparison of how each Fourier mode ξ in the error converges, on the left for the clas-

sical alternating Schwarz method with overlap, and on the right for the variant designed for the

Helmholtz equation, without overlap. The vertical axis denotes the convergence factor of a Fourier

mode.

rithm. But Figure 5 suggests that one could use the overlap for the high-frequency

modes, and the transmission condition for the low-frequency modes, in order to ob-

tain a method effective for all modes in a Helmholtz problem. In addition, it might

be possible to choose an even better transmission condition, as indicated toward the

end in Lions’ work [54], and also by Hagström et al. in [44]. All these observations

and further developments led at the turn of the century to the invention of the new

class of optimized Schwarz methods [34], with specialized variants for Helmholtz

problems [35, 33]. For an overview for symmetric coercive problems, see [31].

Using optimized transmission conditions of zeroth order, which means choosing

the best complex constant in place of ik in the Robin condition, we obtain for the

same model problem as in Figure 5 the contraction factors shown in Figure 6 on the

left. We can see that all modes, except for the resonance mode6, now converge well.

40302010
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Fig. 6 Comparison of how each Fourier mode ξ in the error converges, on the left for an optimized

Schwarz method of order zero (OO0), and on the right for a second order optimized Schwarz

method (OO2), both with overlap
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On the right in the same figure, we show a second-order optimized Schwarz method,

in which one also uses the Laplace-Beltrami operator at the interface to obtain an

even more effective transmission condition. Using this operator in no way increases

the sparsity pattern of the subdomain solver, since second-order derivatives are al-

ready present in the underlying discretization of the Laplacian.

A general convergence analysis of optimized Schwarz methods for Helmholtz

problems currently only exists for the non-overlapping case, using energy estimates.

This approach, however, does not allow us to obtain convergence factor estimates. In

addition, to prove convergence for the general overlapping case is an open problem.

For the model situation of two subdomains however, one can quantify precisely the

dependence of the convergence factor on the wave number k and the mesh parameter

h. We show in Table 5 the resulting convergence factors from [33]. We see that for

k fixed kγh const

Overlap 0 1−O(h
1
4 ) 1−O(k

1−2γ
8 )

Overlap CLh 1−O(h
1
5 )

{

1−O(k−
1
8 ) 1≤ γ≤ 9

8

1−O(k
1−2γ

10 ) γ > 9
8

Overlap const 1− const 1−O(k−
1
8 )

Table 5 Asymptotic convergence factors obtained for a model problem

a fixed wave number k and constant overlap, independent of the mesh size h, the

algorithm converges with a contraction factor independent of h. In the important

case where k scales with h as kγh in order to avoid the pollution effect, see [47, 48],

we see that the contraction factor only depends very weakly on the growing wave

number: for example if the overlap is held constant, all Fourier modes of the error

contract at least with a factor 1−O(k−
1
8 ).

In Table 6 we show a numerical experiment for a square cavity open on two

sides and the non-overlapping optimized Schwarz method in order to illustrate the

asymptotic results from Table 5. We used a fixed wave number k on the left, and a

growing wave number k on the right, while again keeping ten points per wavelength.

We show in the leftmost column the stand-alone iterative variant of the algorithm

Iterative Krylov Krylov

h Optimized Deprés Optimized k Deprés Optimized

1/50 322 26 14 10π 24 13

1/100 70 34 17 20π 33 18

1/200 75 44 20 40π 43 20

1/400 91 57 23 80π 53 21

1/800 112 72 27 160π 83 32

Table 6 Numerical experiment for a two-subdomain decomposition

6 We denote by resonance mode that value of the Fourier parameter for which the transformed

Helmholtz operator becomes singular.
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in order to illustrate the sensitivity of the algorithm with respect to the peak of the

convergence factor at the resonance frequency. Since the discretization modifies the

continuous spectrum, a discretization with insufficient resolution may have eigen-

values close to the resonance frequency, which are not taken into account by the

continuous optimization based on Fourier analysis, which in turn can result in an

arbitrarily large iteration count, as we see for example for h = 1
50

. Such problems,

however, disappear once the mesh is sufficiently refined, or when Krylov accelera-

tion is added, as one can observe in Table 6. This issue is therefore not of practical

concern. We also see that it clearly pays to use optimized parameters, as the itera-

tion count is substantially lower than with the first choice of ik in the transmission

conditions.

We finally show two numerical experiments, in order to illustrate that optimized

Schwarz methods for Helmholtz equations also work well in more practical situa-

tions. We first show the acoustic pressure in two spatial dimensions for the approach

Fig. 7 Airbus A340 in approach over a city, domain decomposition on the left, and result of one

simulation on the right

of an Airbus A340 over the silhouette of a city, computed with a decomposition into

16 subdomains, as shown in Figure 7 on the left. In this case, using a Robin transmis-

sion condition with ik as parameter required 172 iterations, whereas the optimized

Schwarz method needed only 58 iterations to converge to the same tolerance. For

more details, see [35]. The second example is the interior of a Twingo car from

Renault, shown in Figure 8. Here, the Robin transmission condition with ik as pa-

rameter required 105 iterations, and the optimized Schwarz method 34. For further

details, see [33].

There is a second type of domain decomposition methods for Helmholtz prob-

lems from the FETI family of methods (Finite Element Tearing and Interconnect,

see [28]). These methods are based on a dual Schur complement formulation, which

means that interior variables in the subdomains are eliminated, assuming that Neu-

mann traces are continuous across interfaces, and then a substructured system is

obtained by requiring that Dirichlet traces along interfaces match. A primal Schur

formulation would do the opposite: eliminate interior unknowns of subomains, as-

suming that Dirichlet traces are continuous across interfaces, and then impose con-

tinuity of the Neumann traces along interfaces in order to obtain a substructured

formulation. These methods usually require an additional preconditioner in order to

obtain convergence rates independent of (or only weakly dependent on) the mesh
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parameter h. An optimal choice is to use the primal Schur complement method for

the dual Schur complement formulation, and vice versa. In order to scale with the

number of subdomains, also a coarse grid is needed. For the case of Laplace’s equa-

tion, the classical coarse grid is to use a constant per subdomain, since if FETI is

used to solve Laplace’s equation, interior subdomain problems containing Neumann

conditions all around have precisely the constant as a kernel. This idea transformed

an inconvenience of the original FETI idea, namely that interior subdomains are

singular, into a benefit: a natural coarse grid.

In order to adapt this class of methods to Helmholtz problems, the first variant

was the FETI-H method (for FETI-Helmholtz), see [27]. Instead of using Neumann

transmission conditions in the dual Schur complement formulation, Robin condi-

tions ∂n− ik are used, but then still Dirichlet traces are matched in order to obtain a

substructured formulation. This approach is thus very much related to an optimized

Schwarz method without overlap; however, only one type of Robin conditions can

be imposed, since the other one is Dirichlet. This means that always on one side of

the interface, a Robin condition with the good sign is used, whereas on the other

side, a Robin condition with the bad sign is imposed. For checkerboard type par-

titions, one can ensure that subdomains have only Robin conditions with constant

sign all around. Otherwise, an algorithm was proposed to generate a choice of sign

which guarantees that subdomain problems are not singular. The original formula-

tion has no additional preconditioner, but a coarse grid in form of plane waves.

The second algorithm in the FETI class specialized for Helmholtz problems is

FETI-DPH, see [26]. This is a FETI-DP formulation, which means that some inter-

face unknowns are kept as primal variables, where continuity is enforced, and which

serve at the same time as coarse space components. These are usually cross points,

and in FETI-DPH additional primal constraints are enforced at the interfaces, using

planar waves. Furthermore, a Dirichlet preconditioner is used on top, like in the clas-

sical FETI formulation. A convergence analysis exists for this algorithm, see [25],

but it needs the assumption that subdomains are small enough. A systematic com-

Fig. 8 Simulation of the noise in the passenger cabin of a Twingo car from Renault: the pressure

range on the right goes from 37.02 to 54.8



Helmholtz Problems and Iterative Methods 17

parison of all currently existing domain decomposition algorithms for Helmholtz

problems is in preparation, see [40].

3.3 Multigrid for Helmholtz Problems

We will see in this section that neither of the two fundamental observations made by

Stiefel and Federenko (cf. Section 2.5) hold for the case of the Helmholtz equation.

In an early theoretical paper about multigrid methods [4], Bakhvalov first advertises

the method also for indefinite problems:

For instance it is used in the case of the equation ∆u+λ u = f with large positive λ (x1,x2).
Previously no methods of solving this equation with good asymptotics for the number of

operations were known

but then later in the paper he discovers potential problems:

In the case of the equation ∆u+λ u = f with large positive λ we do not exclude the possi-

bility that the evaluation of (3.21) may be attained in order. Then the increase in the number

m in comparison with that calculated can lead to a deterioration in the discrepancy of the

approximation.

Three decades later Brandt and Livshits [8] take on the difficult Helmholtz case

again, and they try to explain the origin of the difficulties of the multigrid algorithm:

On the fine grids, where [the characteristic components] are accurately approximated by the

discrete equations, they are invisible to any local relaxation, since their errors can have very

small residuals. On the other hand, on coarser grids such components cannot be approxi-

mated, because the grid does not resolve their oscillations.

Similarly, Lee, Manteuffel, McCormick and Ruge [50] explain the problem as fol-

lows:

Helmholtz problems tax multigrid methods by admitting certain highly oscillatory error

components that yield relatively small residuals. Because these components are oscillatory,

standard coarse grids cannot represent them well, so coarsening cannot eliminate them ef-

fectively. Because they yield small residuals, standard relaxation methods cannot effectively

reduce them.

In order to more precisely illustrate the problems of the multigrid algorithm when

applied to the Helmholtz equation, we consider now the Helmholtz equation in two

dimensions on the unit square,

−(∆ + k2)u = f , in Ω := (0,1)× (0,1). (14)

We show two numerical experiments following the common strategy (cf. [7], [10,

Chapter 4]) that, in order to investigate the behavior of multigrid methods, one

should replace one of the two components (smoother or coarse grid correction) by

a component which one knows to be effective (even if it is not feasible to use this

component in practice), to test the other one. In a first experiment, we use a Fourier
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Fig. 9 Problem of the coarse-grid correction when multigrid is used for the Helmholtz equation.

Top row: solution we want to compute. Following two rows: error before presmoothing, error after

presmoothing, coarse-grid correction that needs to be subtracted, error after coarse-grid correction,

for two consecutive iterations

smoother in order to explicitly remove the high-frequency components of the error,

and try to compute the solution shown in Figure 9, on top, which corresponds to the

choice of parameters f = − 1
20

, k =
√

19.7 and fine-grid parameter h = 1
32

. We use

a random initial guess u0, and a two-grid cycle. The result is shown in Figure 9.

We clearly observe the following in this experiment: while the error on the coarse

grid is well resolved, the correction calculated on the coarse grid is 100% incorrect,

it has the wrong sign! Hence the problem does not seem to be that certain (high)

frequency components in the error are left to the coarse grid and cannot be ap-

proximated accurately there: the mesh here is largely fine enough to represent the

component left. However, the correction calculated is incorrect: it is the operator it-

self which is not well approximated. This had already been discovered in an earlier

paper by Brandt and Ta’asan [9] on slightly indefinite problems:

Usual multigrid for indefinite problems is sometimes found to be very inefficient. A strong

limitation exists on the coarsest grid to be used in the process. The limitation is not so much

a result of the indefiniteness itself, but of the nearness to singularity, that is, the existence

of nearly zero eigenvalues. These eigenvalues are badly approximated (e.g. they may even

have a different sign) on coarse grids, hence the corresponding eigenfunctions, which are

usually smooth ones, cannot efficiently converge.

For our second numerical experiment, we now use a damped Jacobi smoother

and compute the exact coarse-grid correction by computing it on the fine grid, then

restricting it to the coarse grid and prolongating it again back to the fine grid to

ensure that the coarse-grid correction is working properly (this would obviously

not make sense in a real multigrid code, but allows us to illustrate the reason why
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Fig. 10 Problem of the smoother when multigrid is used for the Helmholtz equation. Top row:

solution we want to calculate, and the initial error. Following three rows: error after presmoothing,

coarse-grid correction that needs to be subtracted, error after coarse-grid correction, error after

postsmoothing, for three consecutive iterations. One can clearly see how the smoother amplifies

the error.

the smoother fails). We try to compute the solution shown in Figure 10, in the top

left graph, which corresponds to the parameters f = −1000, k = 20 and fine mesh

size h = 1
32

, and we use again a random initial guess u0 and a two-grid cycle. Its

behavior is shown in in the remaining graphs of Figure 10. We clearly see that, even

though the coarse-grid correction is very effective, the smoother is responsible for

a growing low-frequency mode, and the two-grid method does not converge. We

explain these two observations in the next section with a detailed two-grid analysis.

3.4 Two-Grid Analysis for the 1D Model Problem

To explain the difficulties of multigrid applied to the Helmholtz equation, we con-

sider the simplest possible case of the one-dimensional problem

−u′′− k2u = f in Ω = (0,1), u(0) = u(1) = 0, (15)
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with constant wave number k and perform a spectral analysis, much along the lines

of [43, Chapter 2] and [10, Chapter 5].

We assume that k2 is not an eigenvalue of the Dirichlet-Laplacian for this domain

and therefore the continuous problem possesses a unique solution, as do sufficiently

accurate discrete approximations. When multigrid is applied to cavity problems like

(15) one must always be careful that all coarse-grid problems are nonsingular. This

is, however, no longer an issue when damping is present, either in the form of an

absorbing medium or radiation boundary conditions.

Using the standard three-point centered finite-difference approximation of the

second derivative on a uniform mesh with N interior grid points and mesh width

h = 1/(N + 1), (15) is approximated by the linear system of equations Au = f for

the function values u(x j)≈ u j, j = 1, . . . ,N, at the grid points x j = jh, where

A =
1

h2
tridiag(−1,2− k2h2,−1) ∈ R

N×N . (16)

The matrix A is symmetric and has the complete set of orthogonal eigenvectors

v j = [sin jℓπh]Nℓ=1, j = 1, . . . ,N. (17)

When it is necessary to rescale these eigenvectors to have unit Euclidean norm this

is achieved by the factor
√

2h (for all j). The associated eigenvalues are given by

λ j =
2(1− cos jπh)

h2
− k2 =

4

h2
sin2 jπh

2
− k2, j = 1, . . . ,N.

The form of the eigenvectors (17) reveals that these become more oscillatory with

increasing index j.

When N is odd, which we shall always assume for the pure Dirichlet problem, we

set n := (N− 1)/2 and refer to the eigenpairs associated with the indices 1≤ j ≤ n

as the smooth part Ism of the spectrum and the remainder as the oscillatory part Iosc.

Note that the eigenvalue with index j = (N+1)/2= n+1 lies exactly in the middle,

with an associated eigenvector of wavelength 4h.

3.4.1 Smoothing

The (damped) Jacobi smoother is based on the splitting A = 1
ωD− ( 1

ω D−A) of the

matrix A in (16), where D = diag(A) and ω is the damping parameter, resulting in

the iteration

um+1 = um +ωD−1(f−Aum) (18)

with associated error propagation operator

Sω = I−ωD−1A. (19)



Helmholtz Problems and Iterative Methods 21

Noting that D = (2/h2− k2)I, we conclude that A and D are simultaneously diago-

nalizable, which gives for Sω the eigenvalues

σ j = σ j(ω) = 1−ω
(

1− 2cos jπh

2− k2h2

)

=: 1−ω
λ j

δ
, j = 1, . . . ,N, (20)

where we have introduced δ = δ(k,h) := (2−k2h2)/h2 to denote the diagonal entry

of D, which is constant for this model problem.

In multigrid methods the smoothing parameter ω is chosen to maximize damping

on the oscillatory part Iosc of the spectrum. For the Laplace operator (k = 0) the

eigenvalues of D−1A are given by λ j/δ = 1− cos( jπh), j = 1, . . . ,N, resulting in,

up to order h2, the spectral interval [0,2], with Iosc = [1,2]. Maximal damping on

Iosc thus translates to the requirement of equioscillation, i.e.,

1−ω=−(1− 2ω), obtained for ω = ω0 := 2
3
. (21)

For this optimal value of ω each eigenmode belonging to the oscillatory modes

span{vh
n+1, . . . ,v

h
N} is reduced by at least a factor of σn+1(ω0) = 1−ω0 =

1
3

in each

smoothing step, independently of the mesh size h. Figure 11 displays the spectrum

Λ (Sω) of Sω for the discrete 1D-Laplacian on the unit interval with mesh width
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Fig. 11 Eigenvalues of the undamped (ω = 1) and optimally damped (ω = ω0) Jacobi smoother

plotted against those of the associated diagonally scaled 1D-Laplacian −∆h, h= 1/50, divided into

smooth and oscillatory parts Ism and Iosc . The dashed red lines indicate the spectral radius of Sω
restricted to the space of oscillatory eigenfunctions.

h = 1/50 for the values ω = 0 (undamped) and the optimal value ω = ω0 = 2/3,

plotted against the eigenvalues of D−1A, where we have scaled A in order to fix

the spectral interval independently of h. The smooth and oscillatory parts of the

spectrum Ism and Iosc are highlighted, and it can be seen that the eigenvalues of
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Sω lie on a straight line and that the spectral radius of Sω is minimized on Iosc for

ω = ω0.

For the 1D Helmholtz operator (k > 0) the eigenvalues of D−1A are

λ j

δ
= 1− 2cos jπh

2− k2h2
, j = 1, . . . ,N,

and therefore, up to O(h2), these range between the extremal values

λ1

δ
=
−k2h2

2− k2h2
, and

λN

δ
=

4− k2h2

2− k2h2
.

Assuming the midpoint (λ1 + λN)/2 is still positive, maximal smoothing of the os-

cillatory modes is again obtained by equioscillation, which fixes ω by requiring

1−ω
λN

δ
=−

(

1−ω
λ1 + λN

2δ

)

, i.e., ω = ωk :=
2− k2h2

3− k2h2
. (22)
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Fig. 12 Same as Figure 11, here for the Helmholtz operator. Eigenvalues of Jacobi smoother for

ω = ωk , ω = ω1 and ω = ω0 against those of the associated diagonally scaled 1D Helmholtz

operator −∆h− k2, h = 1/50 with wavelength-to-mesh ratio λ /h = 10.

Figure 12 shows the analogous quantities of Figure 11 for the Helmholtz equa-

tion with wave number k = 10π. In contrast with the Laplacian case, the spectrum

of A now extends into the negative real axis. By consequence, any choice of the

relaxation parameter ω will result in amplification of some modes, as we have seen

in our example in Figure 10. In the case shown, these are precisely the eigenmodes

of A associated with negative eigenvalues. If this constitutes only a small portion of

Λ (A), then the coarse grid correction, the second component of multigrid methods

which eliminates smooth error components, can be expected to compensate for this
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amplification. It is clear, however, that the amplification will both grow unaccept-

ably strong and extend over too large a portion of the spectrum for diminishing wave

resolution, i.e., for kh large.

Therefore, fundamentally different smoothing iterations are needed for Helmholtz

problems. For this reason Brandt and Ta’asan [9] proposed using the Kazmarcz re-

laxation, which is essentially Gauss-Seidel iteration applied to the normal equations.

This smoother has the advantage of not amplifying any modes, but at the cost of very

weak smoothing. Elman, Ernst and O’Leary [16] proposed using Krylov subspace

methods as smoothers. The difficulty here is that different numbers of smoothing

steps are necessary at different grid levels, and their optimal determination is chal-

lenging.

3.4.2 Coarse-Grid Correction

Besides the finite difference discretization on the mesh

Ω h := {x j = jh : j = 0, . . . ,N + 1}

we consider the 1D model problem (15) discretized on a coarser grid with only n

interior mesh points

ΩH := {x j = jH : j = 0, . . . ,n+ 1}

with twice the mesh width H = 2h, where N = 2n+ 1 denotes the number of fine-

grid interior points. We transfer grid functions uH = [uH
1 , . . . ,u

H
n ] (we omit the zero

boundary values) from ΩH to the fine grid Ω h using linear interpolation, which

defines the linear mapping

IH
h : ΩH →Ω h, uH 7→ IH

h uH

defined by

[Ih
HuH ] j =

{

[uH ] j/2 if j is even,

1
2

(

[uH ]( j−1)/2 +[uH ]( j+1)/2

)

if j is odd,
j = 0, . . . ,N + 1,

(23)

with matrix representation
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Ih
H =

1

2



























1

2

1 1

2

1

. . . 1

2

1



























∈ R
N×n

with respect to the standard unit coordinate bases in R
n and R

N , respectively.

Following [43], we analyze the mapping properties of the linear interpolation

operator Ih
H on the coarse-grid eigenvectors

vH
j = [sin( jℓπH)]nℓ=1, j = 1, . . . ,n

of the discrete 1D Dirichlet-Laplacian by way of elementary trigonometric manipu-

lations.

Proposition 1. The coarse-grid eigenvectors are mapped by the interpolation oper-

ator Ih
H according to

Ih
HvH

j = c2
jv

h
j − s2

jv
h
N+1− j, j = 1, . . . ,n,

where we define

c j := cos
jπh

2
, s j := sin

jπh

2
, j = 1, . . . ,n. (24)

In particular, vh
n+1 is not in the range of interpolation.
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Fig. 13 Coefficients c2
j and s2

j of the eigenvectors of the discrete 1D Dirichlet-Laplacian under the

linear interpolation operator for N = 31, i.e., n = 15.

The coarse-grid modes vH
j are thus mapped to a linear combination of their fine-

grid counterparts vh
j and a complementary mode vh

j′ with index j′ := N+1− j. Note
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the relations

c j′ = s j s j′ = c j, j = 1, . . . ,n,

between complementary s j and c j. Interpolating coarse-grid functions therefore al-

ways activates high-frequency modes on the fine grid, with a factor that is less than

one but grows with j (cf. Figure 13).

To transfer fine-grid functions to the coarse grid we employ the full weighting

restriction operator

IH
h : Ω h→ΩH , uh 7→ IH

h uh

defined by

[

IH
h uh

]

j
=

1

4

(

[uh]2 j−1 + 2[uh]2 j +[uh]2 j+1

)

, j = 1, . . . ,n. (25)

The associated matrix representation is given by IH
h = 1

2
[Ih

H ]
⊤. The restriction oper-

ator is thus seen to be the adjoint of the interpolation operator if one introduces on

R
n and R

N the Euclidean inner product weighted by the mesh size H and h, respec-

tively. Denoting by N (·) and R(·) the null-space and range of a matrix, the basic

relation

R
N = R(Ih

H)⊕N ([Ih
H ]
⊤) = R(Ih

H)⊕N (IH
h ) (26)

reveals that the range of interpolation and the null-space of the restriction are com-

plementary linear subspaces of RN , which are also orthogonal with respect to the

Euclidean inner product. Since the columns of Ih
H are seen to be linearly indepen-

dent, the interpolation operator has full rank, which together with (26) implies

dimR(Ih
H) = n, dimN (IH

h ) = N− n = n+ 1.

Elementary trigonometric relations also yield the following characterization of IH
h .

Proposition 2. The fine-grid eigenvectors are mapped by the restriction operator IH
h

according to

IH
h vh

j = c2
jv

H
j , j = 1, . . . ,n, (27a)

IH
h vh

N+1− j =−s2
jv

H
j , j = 1, . . . ,n, (27b)

IH
h vh

n+1 = 0. (27c)

The coarse-grid correction of an approximation uh to the solution of (15) on

the fine grid Ω h is obtained by solving the error equation Aheh = b−Ahuh = rh

on the coarse grid. To this end, the residual is first restricted to the coarse grid

and a coarse-grid representation AH of the differential operator is used to obtain the

approximation A−1
H IH

h rh of the error A−1
h rh on ΩH . The update is then obtained after

interpolating this error approximation to Ω h as

uh← uh + Ih
HA−1

H IH
h (b−Ahuh) (28)
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with associated error propagation operator

C := I− Ih
HA−1

H IH
h Ah. (29)

In view of Propositions 1 and 2 the coarse-grid correction operator C is seen to

possess the invariant subspaces

span{vh
n+1} and span{vh

j ,v
h
j′}, j′ = N + 1− j, j = 1, . . . ,n. (30)

Denoting the eigenvalues of the discrete 1D Helmholtz operators on Ω h and ΩH by

λ h
j =

4

h2
sin2 jπh

2
− k2, j = 1, . . . ,N

and

λ H
j =

4

H2
sin2 jπH

2
− k2, j = 1, . . . ,n,

respectively, the action of the coarse-grid correction operator on these invariant sub-

spaces is given by

C [vh
j vh

j′ ] = [vh
j vh

j′ ]C j, j = 1, . . . ,n,

where

C j =

[

1 0

0 1

]

−
[

c2
j

−s2
j

]

1

λ H
j

[

c2
j −s2

j

]

[

λ h
j 0

0 λ h
j′

]

=







1− c4
j

λ h
j

λ H
j

c2
js

2
j

λ h
j′

λ H
j

c2
js

2
j

λ h
j

λ H
j

1− s4
j

λ h
j′

λ H
j






(31)

in addition to Cvh
n+1 = vh

n+1.

For k = 0 we observe as in [43]

λ h
j

λ H
j

=
4s2

j

(2s jc j)2
=

1

c2
j

as well as
λ h

j′

λ H
j

=
4c2

j

(2s jc j)2
=

1

s2
j

, j = 1, . . . ,n, (32)

and therefore

C j =

[

1− c2
j c2

j

s2
j 1− s2

j

]

=

[

s2
j c2

j

s2
j c2

j

]

, j = 1, . . . ,n.

A matrix of the form X =

[

ξ η
ξ η

]

has the eigenvalues and spectral norm

Λ (X) = {0,ξ +η}, (33a)

‖X‖= ‖XX⊤‖1/2 =
√

ξ 2 +η 2

∥

∥

∥

∥

[

1 1

1 1

]∥

∥

∥

∥

1/2

=
√

ξ 2 +η 2 ·
√

2. (33b)
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For C j we thus obtain in the case of the Laplacian

ρ(C j) = s2
j + c2

j = 1, ‖C j‖=
√

2(s4
j + c4

j), j = 1, . . . ,n.

From s2
j ∈ [0, 1

2
] for j = 1, . . . ,n we infer the bound

‖C j‖ ≤ max
0≤t≤ 1

2

√

2[t2 +(1− t)2] =
√

2, j = 1, . . . ,n.

In the Helmholtz case k > 0 the spectral analysis of the coarse grid correction op-

erator C j becomes more tedious and no simple closed-form expression exists for

the spectral radius and norm of the 2× 2 blocks C j. We therefore resort to compu-

tation and consider the case of a fine mesh with N = 31 interior points. The left of

Figure 14 shows a stem plot of the eigenvalues of the 2×2 blocks of C for the Lapla-

cian, which consist of ones and zeros, as C is an orthogonal projection in this case,

see (33a). On the right of Figure 14 we see the analogous plot for k = 6.3π. Note

that the unit eigenvalues remain, but that the second eigenvalue of each pair is no

longer zero. In particular, mode number 13 is amplified by a factor of nearly -4. This

mode is well outside the oscillatory part of the spectrum, so that smoothing cannot

be expected to offset such an error amplification. In the example we have shown in
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Fig. 14 Eigenvalues of the coarse-grid correction operator with respect to a fine mesh with h =
1/32 for k = 0 (left) and k = 6.3π (right).

Figure 9, we had chosen the parameters precisely such that the corresponding mode

was multiplied by the factor -1, which led to the correct shape of the coarse grid

correction, but with the wrong sign.

A simple device for obtaining a more effective coarse-grid correction for Helmholtz

operators results from taking into account the dispersion properties of the discretiza-

tion scheme. For our uniform centered finite-difference discretization of the 1D

Helmholtz operator with constant k

L u≈ 1

h2

(

−u j−1 + 2u j− u j+1

)

− k2u j,
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plane-wave solutions eikhx j of the discrete homogeneous Helmholtz equation pos-

sess a discrete wave number kh characterized by

kh

k
=

1

kh
arccos

(

1− k2h2

2

)

> 1.

As a result, the discrete solution exhibits a phase lead with respect to the true solu-

tion, which grows with h. In the same way, coarse grid approximations in a multigrid

hierarchy will be out of phase with fine-grid approximations. This suggests ‘slow-

ing down’ the waves on coarse grids in order that the coarse-grid correction again

be in phase with the fine-grid approximation. For our example, this is achieved by

using a modified wave number k̃ in the coarse-grid Helmholtz operator defined by

the requirement

k̃H = k, which is achieved by k̃ =

√

2(1− cos(kh))

h2
.

An even better adjustment of the coarse-grid correction results from matching the

coarse-grid discrete wave number kH to the fine-grid discrete wave number kh by

choosing the modified wave number k̃ on the coarse grid to satisfy

k̃H = kh which is achieved by k̃ = k

√

1− k2h2/4. (34)

Choosing a modified wave number according to (34) is also equivalent to avoiding

a possible ‘singularity’ in the term λ h
j /λ H

j in (31) by forcing the vanishing of λ H
j as

a continuous function of j to occur in the same location as for λ h
j .

Figure 15 shows the eigenvalues of the coarse-grid correction operator depicted

on the right of Figure 14 with the modified wave number (34) used on the coarse

grid. The strong amplification of mode number 13 is seen to be much less severe,

all non-unit eigenvalues now being less than one in modulus.

Such a dispersion analysis can be carried out for all standard discretization

schemes, and it is found that higher order schemes have much lower phase error (cf.,

e.g., [3]), making them a favorable choice also from the point of view of multigrid

solvers. In higher dimensions higher order methods also possess nearly isotropic

dispersion relations, a necessary requirement for (scalar) dispersion correction.

3.4.3 Two-Grid Operator

Two-grid iteration combines one or more smoothing steps with coarse-grid correc-

tion. If ν1 and ν2 denote the number of presmoothing and postsmoothing steps car-

ried out before and after after coarse-grid correction, the error propagation operator

of the resulting two-grid operator is obtained as T = Sν2CSν1 . Choosing damped Ja-

cobi iteration with relaxation factor ω as the smoothing operator, the results on the

spectral analysis of the damped Jacobi smoother and coarse-grid correction allow
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Fig. 15 Eigenvalues of the coarse-grid operator with respect to a fine mesh with h = 1/32 for

k = 6.3π using the modified wave number k̃ given in (34) in the coarse-grid Helmholtz operator.

us to decompose the analysis of the two-grid operator into the subspaces

span{v1,vN},span{v2,vN−1}, . . . ,span{vn,vn+2},span{vn+1}

of n pairs of complementary modes and the remaining ‘middle mode’ vn+1. The

action of T on these one- and two-dimensional subspaces is represented by the block

diagonal matrix

T = diag(T1, . . . ,Tn,Tn+1)

with

Tj =

[

σ j 0

0 σ j′

]ν2







1− c4
j

λ h
j

λ H
j

c2
js

2
j

λ h
j′

λ H
j

c2
js

2
j

λ h
j

λ H
j

1− s4
j

λ h
j′

λ H
j







[

σ j 0

0 σ j′

]ν1

j = 1, . . . ,n, (35)

and

Tn+1 = (1−ω)ν1+ν2 ,

the latter resulting from σn+1 = 1−ω (cf. (20)).

We begin again with the case k = 0, in which, due to (32), the 2× 2 blocks in

(35) simplify to (see also [43])

Tj =

[

σ j 0

0 σ j′

]ν2
[

s2
j c2

j

s2
j c2

j

][

σ j 0

0 σ j′

]ν1

with σ j = 1− 2ωs2
j, σ j′ = 1− 2ωc2

j.

Fixing ν1 = ν and ν2 = 0 (pre-smoothing only) and ω = ω0 (cf. (21)), this becomes

Tj =

[

s2
j σν

j c2
jσν

j′

s2
j σν

j c2
jσν

j′

]

, j = 1, . . . ,n, Tn+1 =

(

1

3

)ν
,

where
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σ j =
1

3

(

3− 4s2
j

)

, σ j′ =
1

3

(

4s2
j − 1

)

, j = 1, . . . ,n.

Using (33a) we obtain for the spectral radius

ρ(Tj) = s2
jσ

ν
j + c2

jσ
ν
j′ , j = 1, . . . ,n, ρ(Tn+1) = 3−ν .

Noting that c2
j = 1− s2

j and s2
j ∈ [0, 1

2
] for all j, we obtain the upper bound

ρ(Tj)≤ Rν := max
0≤t≤ 1

2

Rν (t), Rν (t) := t

(

3− 4t

3

)ν
+(1− t)

(

4t− 1

3

)ν

for j = 1, . . . ,n. Since Rν (
1
2
) =

(

1
3

)ν
this bound holds also for Tn+1. A common

upper bound for the spectral norms ‖Tj‖ is obtained in an analogous way using

(33b) as

‖Tj‖≤Nν := max
0≤t≤ 1

2

Nν (t), Nν (t) :=

√

√

√

√2

[

t2

(

3− 4t

3

)2ν
+(1− t)2

(

4t− 1

3

)2ν
]

,

which holds for all j = 1 . . . ,n+ 1 due to Nν (
1
2
) =

(

1
3

)ν
.

ν\ρ(T ) k = 0 k = 1.3π k = 4.3π k = 6.3π
1 0.3333 0.3364 0.4093 0.8857

2 0.1111 0.1170 0.2391 1.8530

3 0.0787 0.0779 0.2623 1.6455

4 0.0617 0.0613 0.2481 1.6349

5 0.0501 0.0493 0.2561 1.5832

10 0.0263 0.0256 0.2668 1.3797

ν\ρ(T ) k = 1.3π k = 4.3π k = 6.3π
1 0.3365 0.5050 0.6669

2 0.1173 0.1648 0.1999

3 0.0779 0.1012 0.1542

4 0.0614 0.0568 0.1761

5 0.0493 0.0591 0.2012

10 0.0257 0.0790 0.3916

Table 7 Spectral radius of the two-grid operator for the Helmholtz equation with h = 1/32 for

varying wave number k and (pre) smoothing step number ν . Left: standard coarse-grid operator,

right: with modified wave number on coarse grid.

Table 7 (left) gives the spectral radius of the two-grid operator for the Helmholtz

equation with ν steps of presmoothing using damped Jacobi for a range of wave

numbers k. We observe that the iteration is divergent for k = 6.3π, which corre-

sponds to a resolution of roughly 10 points per wavelength. Moreover, while addi-

tional smoothing steps resulted in a faster convergence rate for k close to zero, this

is no longer the case for higher wave numbers. Table (7) (right) gives the spectral

radius of the same two-grid operator using the modified wave number according

to (34) on the coarse grid. We observe that, even for the unstable damped Jacobi

smoother, this results in a convergent two-grid method in this example. A more

complete analysis of the potential and limitations of this approach is the subject of

a forthcoming paper.
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3.5 The Shifted Laplacian Preconditioner

An idea proposed in [21], going back to [5], which has received a lot of attention

over the last few years, see for example the references in [41], is to precondition the

Helmholtz equation (1) using a Helmholtz operator with a rescaled complex wave

number,

Ls :=−(∆ +(α + iβ)k2), (36)

i.e., where damping has been added. The main idea here is that if the imaginary

shift β is large enough, standard multigrid methods are known to work again, and,

if the shift is not too large and α ≈ 1, the shifted operator should still be a good pre-

conditioner for the original Helmholtz operator, where α = 1 and β = 0. We show

here quantitatively these two contradicting requirements for the one-dimensional

case on the unit interval with homogeneous Dirichlet boundary conditions and a

finite difference discretization. In that case, both the Helmholtz operator and the

shifted Helmholtz preconditioner can be diagonalized using a Fourier sine series, as

we have seen in subsection 3.4, and we obtain for the corresponding symbols (or

eigenvalues)

L̂
h =

2

h2
(1−cos jπh)−k2, L̂

h
s =

2

h2
(1−cos jπh)−(α + iβ)k2, j = 1, . . . ,N.

Hence the preconditioned operator (L h
s )
−1L h has the symbol

L̂ h

L̂ h
s

=
−2+ 2cos jπh+ h2k2

−2+ 2cos jπh+ h2k2(α + iβ)
.

The spectrum of the preconditioned operator therefore lies on a circle in the complex

plane, which passes through (0,0), and if α = 1, the center is at ( 1
2
,0) and the radius

equals 1
2
, as one can see using a direct calculation. Examples are shown in Figure

16. Since the circle passes through (0,0) when the numerator of the symbol of the

preconditioned operator vanishes, i.e., when

2cos jπh+ h2k2 = 2, (37)

the spectrum of the preconditioned operator is potentially unfavorable for a Krylov

method, as one can see in Figure 16 on the right. For α = 1 and β small, we have

L̂ h

L̂ h
s

= 1− i
k2h2

−2+ 2cos jπh+ k2h2
β +O(β2),

which shows that the spectrum is clustered on an arc of the circle around (1,0), as

illustrated in Figure 16 on the left, provided β≪min j=1,...,n |−2+2cos jπh+h2k2|.
How small must we therefore choose β ? A direct calculation shows that we must

choose β < 1
k

in order to obtain a spectrum clustered about (1,0). We show in Figure

17 an illustration of this fact: from equation (37), we can compute a critical j where
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Fig. 16 Spectrum of the Helmholtz operator preconditioned with the shifted Laplacian precondi-

tioner with α = 0 and β = 0.01 on the left, and β = 1 on the right. The spectrum clustered around

the point (1,0) on the left is favorable for a Krylov method, while the spectrum on the right is not,

due to the eigenvalues close to zero

the spectrum vanishes,

jc =
1

πh
(π− arccos(−1+

1

2
k2h2)).

The spectrum being restricted to integer j, we can plot

d :=−2+ 2cos jcπh+ k2h2,

in order to get an impression of the size of this quantity. We see in Figure 17 that

Fig. 17 Illustration of how small β has to be chosen in the shifted Helmholtz preconditioner in

order to remain an effective preconditioner for the Helmholtz equation. Note the log scale on the

y-axis

the minimum distance d (oscillatory curve in red) behaves like 1/k (smooth curve
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shown in green), and thus β needs to be chosen smaller than 1/k for a given problem

if one wants to obtain a spectrum of the preconditioned operator close to (1,0).
Now, is it possible to solve the shifted Helmholtz equation effectively with multi-

grid for this choice of β ? In order to investigate this, we use the two-grid analysis

from subsection 3.4, now applied to the shifted Laplace problem. We show in Figure

18 the spectral radius of the two grid iteration operator for each frequency pair in

(30), for k = 10,100,1000 using ten points per wavelength on the fine grid, choosing

in each case β = 1/k. This numerical experiment shows clearly that, unfortunately,

Fig. 18 Spectral radius of the two grid iteration operator for all frequency pairs. On the left for

k = 10, in the middle for k = 100 and on the right for k = 1000, with the shift β = 1/k in order

to guarantee a spectrum away from (0,0) of the Helmholtz operator preconditioned by the shifted

Laplace preconditioner

for the multigrid method to converge when applied to the shifted Laplace operator,

β can not be chosen to satisfy β < 1/k, since already for β = 1/k the contraction

factor ρ of multigrid grows like ρ ∼ k (note the different scaling on the axes in

Figure 18) and thus the method is not convergent. One can furthermore show that β
must be a constant, independent of k, in order to obtain a contraction factor ρ < 1

and a convergent multigrid algorithm. These results suggest a linear dependence on

the wave number k of such a method, which is also observed numerically, see for

example [20].

3.6 Wave-Ray Multigrid

In [8] Brandt and Livshits proposed a variant of multigrid especially tailored to

the Helmholtz equation by exploiting the structure of the error components which

standard multigrid methods fail to eliminate. These are the so-called characteristic

components, which are discrete representations of functions of the form

u(x,y) = v(x,y)eik1x+ik2y, k2
1 + k2

2 = k2. (38)

Such factorizations are common in geometrical optics (see, e.g. [49, 52]), and from

there the terminology ray function for the amplitude term v(x,y) and phase for the
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exponent k1x+ k2y is adopted. Characteristic components of the error are nearly

invisible to standard smoothing techniques since they have very small residuals on

grids which resolve these oscillations. On coarser grids they are contaminated by

phase errors and ultimately by approximation errors.

The ray functions, however, are smooth, and satisfy a convection-diffusion-type

PDE, called the ray equation, which is obtained by inserting (38) into the Helmholtz

equation. In their wave-ray multigrid method, Brandt and Livshits add so-called ray

cycles to the standard multigrid scheme, in which the ray functions of principal com-

ponents are approximated by performing smoothing with respect to the ray equation

on auxiliary grids which they call ray grids.

We describe the basic idea for the simple 1D model problem (15) with constant

wave number k as first described in Livshits’ Ph.D. thesis [55]. Multidimensional

generalizations such as described in [8] introduce a considerable number of techni-

cal and algorithmic complications. In 1D principal error components have the form

v(x) = a(x)eikx + b(x)e−ikx,

which, when inserted into the homogeneous Helmholtz equation, yields the equation

(

a′′(x)+ 2ika′(x)
)

eikx +
(

b′′(x)− 2ikb′(x)
)

e−ikx = 0

which we separate into

L+a = a′′+ 2ika′ = 0, L−b = b′′− 2ikb′ = 0.

The wave-ray method employs a standard multigrid scheme, say, a V-cycle, to first

eliminate the non-characteristic components from the error eh, such that the associ-

ated residual rh = Aheh is approximately of the form

rh
j = (rh

a) je
ikx j +(rh

b) je
−ikx j ,

with smooth ray grid functions rh
a and rh

b . By a process called separation the two

components of the residual are first isolated, resulting in the right hand sides of the

two ray equations

Lh
+ah = f h

+, Lh
−bh = f h

b ,

which are each solved on separate grids and then used to construct a correction of

the current approximation.

Details of the separation technique, the treatment of multidirectional rays neces-

sary for higher space dimensions, suitable cycling schedules as well as the incorpo-

ration of radiation boundary conditions can be found in [55, 8].
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4 Conclusions

Solving the indefinite Helmholtz equation by iterative methods is a difficult task. In

all classical methods, the special oscillatory and non-local structure of the associated

Green’s function leads to severe convergence problems. Specialized methods exist

for all well known classes of iterative methods, like preconditioned Krylov methods

by incomplete factorizations, domain decomposition and multigrid, but they need

additional components tailored for the indefinite Helmholtz problem, which can

become very sophisticated and difficult to implement, especially if one wants to

achieve a performance independent of the wave number k.
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