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Why Match? Investigating Matched
Case-Control Study Designs with Causal

Effect Estimation

Sherri Rose and Mark J. van der Laan

Abstract

Matched case-control study designs are commonly implemented in the field of
public health. While matching is intended to eliminate confounding, the main po-
tential benefit of matching in case-control studies is a gain in efficiency. Methods
for analyzing matched case-control studies have focused on utilizing conditional
logistic regression models that provide conditional and not causal estimates of
the odds ratio. This article investigates the use of case-control weighted targeted
maximum likelihood estimation to obtain marginal causal effects in matched case-
control study designs. We compare the use of case-control weighted targeted
maximum likelihood estimation in matched and unmatched designs in an effort
to explore which design yields the most information about the marginal causal
effect. The procedures require knowledge of certain prevalence probabilities and
were previously described by van der Laan (2008). In many practical situations
where a causal effect is the parameter of interest, researchers may be better served
using an unmatched design.



1 Introduction

Individually matched case-control study designs are frequently found in pub-
lic health and medical literature, and conditional logistic regression is the
tool most commonly used to analyze these studies. Matching is intended to
eliminate confounding, however, the main potential benefit of matching in
case-control studies is a gain in efficiency. Therefore, when are these study
designs truly beneficial? Given all the potential drawbacks, including extra
cost, added time for enrollment, and increased bias, the use of matching in
case-control study designs warrants careful evaluation. Discussion of the ad-
vantages and disadvantages of matching in the literature goes back more than
40 years. This paper will not address matching in cohort studies, and will con-
centrate solely on case-control studies. However, matching in cohort studies
was briefly addressed in van der Laan (2008), and applying our methods to
cohort studies is an area of future research.

We focus on individual matching in case-control studies where the re-
searcher is interested in estimating the marginal causal effect, and certain
prevalence probabilities are known. Our procedure, first presented in van der
Laan (2008), “targets” the parameter of interest rather than the distribu-
tion of interest, and is thus aptly named case-control weighted targeted max-
imum likelihood estimation. In order to eliminate the bias caused by the
matched case-control sampling design, this technique relies on knowledge of
the true prevalence probability q0 ≡ P ∗0 (Y = 1), and an additional value

q̄0(M) ≡ q0
P ∗

0 (Y=0|M)

P ∗
0 (Y=1|M)

, where M is the matching variable. For unmatched de-

signs, knowledge of only q0 is required. However, knowledge of both q0 and
q̄0(M) may be increasingly realistic in practical scenarios, particularly nested
case-control studies where these values are ascertained from the full cohort
study.

The case-control weighting scheme maps estimation methods developed for
prospective sampling into methods for case-control sampling, and it produces
efficient estimators when its prospective sample counterpart is efficient. Thus,
both the matched and unmatched procedures are double robust and locally
efficient: they perform well as long as P ∗0 (Y | A,W ) or P ∗0 (A | W ) is correctly
specified, are consistent if either of these models are correctly specified, and
efficient if both are correctly specified. (Here A is the exposure of interest
and W is a vector of covariates.) We will compare the use of case-control
weighted targeted maximum likelihood estimation in matched and unmatched
case-control study designs as we explore which design yields the most infor-
mation about the marginal causal effect.
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2 Why Match? A Literature Review

There is a large collection of literature devoted to the topic of individual match-
ing in case-control study designs. This overview attempts to capture the most
important consideratons, and it is by no means exhaustive.

2.1 Individual Matching in Case-Control Studies

In an individually matched case-control study, the population of interest is
identified, and cases are randomly sampled or selected based on particular
inclusion criteria. Although, as Rothman and Greenland (1998) note, the def-
inition of a case may implicitly define the population of interest for cases and
controls. Each of these cases is then matched to one or more controls based
on a variable (or variables) believed to be a confounder. Much of the literature
on individual matching in case-control studies, particularly earlier texts, de-
scribes these designs as a way to reduce confounding in the sampling design.
Reference to this is made in: Miettinen (1970), Breslow et al. (1978), Breslow
and Day (1980), Kupper et al. (1981), Schlesselman (1982), Collett (1991), and
Costanza (1995), among others. However, several authors (Breslow and Day,
1980; Kupper et al., 1981; Schlesselman, 1982; Rothman and Greenland, 1998;
Vandenbroucke et al., 2007) point out that the goal of matching is to increase
the study’s efficiency by forcing the case and control samples to have similar
distributions across confounding variables. Rothman and Greenland (1998) go
on to say that while matching is intended to control confounding, it cannot do
this in case-control study designs, and can, in fact, introduce bias. Costanza
(1995) agreed, stating that matching on confounders in case-control studies
does nothing to remove the confounding, but frequently introduces negative
confounding.

So, while some literature cites the purpose of matching as improving va-
lidity, later publications (Kupper et al., 1981; Rothman and Greenland, 1998)
demonstrated that matching has a greater impact on efficiency over validity.
Matched sampling leads to a balanced number of cases and controls across the
levels of the selected matching variables. This balance can reduce the variance
in the parameters of interest, which improves statistical efficiency. A study
with a randomly selected control group may yield some strata with an imbal-
ance of cases and controls. It is important to add, however, that matching
in case-control studies can lead to gains or losses in efficiency (Kupper et al.,
1981; Rothman and Greenland, 1998). This will be discussed further in later
sections.

Breslow and Day (1980) note that matched case-control studies attempt to
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increase the informativeness of each of the subjects in the study. However, one
should also note that matched studies discard not only a pool of unmatched
controls, but the information in each exposure-concordant case-control pair.
Additionally, matching has a substantial impact on the study sample, most
notably, it creates a sample of controls that is not representative of exposure
in the population or the population as a whole. The effect of the matching
variable can no longer be studied directly, and the exposure frequency in the
control sample will be shifted towards that of the cases (Rothman and Green-
land, 1998). Matching in case-control studies also does not completely control
for the variable or variables used for matching, in general. This means that
researchers who implement matched designs must perform matched or strati-
fied analyses (Seigel and Greenhouse, 1973; Schlesselman, 1982; Holland and
Rubin, 1988; Rothman and Greenland, 1998; Rubin, 2006). If an unmatched
analysis is performed on matched data, the validity of the case-control com-
parison may be decreased (Schlesselman, 1982).

2.2 Variable Selection

We revisit an earlier point made in this overview of individually matched
case-control studies: matching variables are chosen a priori on the belief that
they confound the relationship between exposure and disease. If controls are
matched to cases based on a variable that is not a true confounder, this can
impact efficiency. For example, if the matching variable is not associated with
disease but is associated with the exposure, this will increase the variance of
the estimator compared to an unmatched design. Here, the matching leads
to larger numbers of exposure-concordant case-control pairs, which are not in-
formative in the analysis, leading to the increase in variance. If the matching
variable is only associated with disease, there is often a loss of efficiency as
well (Schlesselman, 1982). If the matching variable is along the causal pathway
between disease and exposure then matching will contribute bias that cannot
be removed in the analysis (Vandenbroucke et al., 2007). Matching on a vari-
able associated with exposure and not disease or a variable along the causal
pathway are considered types of overmatching. Variables for matching should
therefore be selected very carefully, and only those that are known to be as-
sociated with both exposure and disease should be considered. The number
of matching variables should also be reduced to as few as possible. As the
number of matching variables grows, the cases and controls will become in-
creasingly similar with respect to the exposure of interest, and the study may
produce a spurious result or provide no information (Breslow and Day, 1980).
Additionally, when matching on more than one variable, matching variables
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should not be strongly correlated with each other (Schlesselman, 1982).

2.3 More on Efficiency

Kupper et al. (1981) performed a variety of simulations to demonstrate the
impact of matching on efficiency. They found that in situations where con-
founding was present, the confidence intervals for matched studies were smaller
than unmatched studies unless the odds ratio and the exposure of interest were
large. However, the confidence intervals for the samples with randomly selected
controls were always shorter when the number of controls was at least twice
that of the cases. This is an important result, as efficiency is often touted as
the benefit of an individually matched case-control study design. Simulations
aside, Cochran (1953) is often cited as the theoretical paper that demonstrates
the efficiency of matched designs. However, as noted by McKinlay (1977),
Cochran’s result can be misleading. Comparisons between matched and un-
matched study designs are often made with equal sample sizes and no other
method of covariate adjustment (e.g. regression). In a matched design, con-
trols may be discarded if they do not match a particular case on the variable or
variables of interest. Multiple controls may be discarded per case, depending
on the variables of interest (Freedman, 1950; Cochran and Chambers, 1965;
McKinlay, 1977). In a typical randomly selected case-control study, these con-
trols would be included. In many cases, if the discarded controls were available
to be rejected in the matched study, they would be available for an unmatched
design in the same investigation (Billewicz, 1965; McKinlay, 1977). Therefore,
it may be more appropriate to compare the efficiencies of matched case-control
studies of size n to randomly selected case-control studies of size n+number of
discarded controls. Additionally, these randomly selected case-control studies
should employ a method of analysis to reduce bias and variance. Therefore,
the result from Kupper et al. (1981) is especially poignant, as all randomly se-
lected case-control studies that had a size of at least 2n had shorter confidence
intervals than their matched counterparts of size n.

2.4 Trends

Gefeller et al. (1998) performed a literature review of case-control studies pub-
lished between 1955 and 1994 in three main epidemiology journals: Ameri-
can Journal of Epidemiology, International Journal of Epidemiology, and the
Journal of Epidemiology and Community Health. They found that, among
these journals, there was a decreasing trend in the percentage of individually
matched case-control studies published (71.7% in the years preceding 1981,
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65.5% in 1985, 46.9% in 1989, and 46.4% in 1994), and an increasing percent-
age of frequency matched studies (5.0% in the years preceding 1981, 9.1% in
1985, 16.3% in 1989, and 26.2% in 1994). Interestingly, the percentage of case-
control studies using no matching stayed relatively constant with no obvious
trend (averaging 29.3%, and ranging from 23.2% to 36.7%). Unfortunately,
they found substantial evidence that individually matched studies were being
performed without the appropriate matched analysis: only 74% of studies from
1994 used conditional logistic regression if logistic regression was the chosen
method of analysis. A later analysis of medical literature in Medline, Rah-
man (2003), indicated that 5.3% of individually matched case-control studies
used an unconditional logistic regression for those selecting logistic regression
models. The review in Gefeller et al. (1998) indicates that unmatched case-
control studies, at least in epidemiology, are in the minority. This should be
questioned given the overwhelming agreement in the literature that matching
is not frequently justified for case-control study designs.

2.5 Literature Review Discussion

The consensus in the literature indicates that there are very few circumstances
where individual matching is indeed warranted. Case-control studies with a
very small number of cases may benefit from individual matching, as a ran-
domly selected control group from even a well-defined population of inter-
est may be uninformative on many variables of interest (Schlesselman, 1982;
Costanza, 1995). Individual matching moves from beneficial to required when
variables such as sibship are included in the study (Rothman and Greenland,
1998; Costanza, 1995). Matching is also cited as necessary by many authors
when the investigators expect the distribution of the matching variable to dif-
fer drastically between the cases and the controls. It may be this reason that
draws many investigators towards a matched design, perhaps without appro-
priate consideration of the disadvantages or definition of the population of
interest.

Methodologists in the literature stress that it is often possible for con-
founders to be adjusted for in the analysis instead of matched on in case-control
designs (Schlesselman, 1982; Vandenbroucke et al., 2007). The development of
effective methods to control confounding in analyses may have contributed to
the drop in individually matched designs, but they are still quite common. It is
therefore important to continue to disseminate the implications of individually
matched case-control study designs to researchers, as Rothman and Greenland
(1998) note that “people match on a variable (e.g. sex) simply because it is
the ‘expected thing to do’ and they might lose credibility for not matching.”
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When researchers make design and analysis decisions based on these types of
considerations, their research may suffer.

Our contributions to the vast literature on individual matching for case-
control studies will be unique. We focus on scenarios where the researcher is
interested in estimating a marginal causal effect, a parameter that cannot be
estimated with conditional logistic regression, and certain prevalence proba-
bilities are known. Thus, we will compare the use of case-control weighted
targeted maximum likelihood estimation in matched and unmatched designs
in an effort to explore which design yields the most information about the
marginal causal effect.

3 Existing Methods

Model-based methods for the analysis of matched case-control studies are plen-
tiful in recent literature (Breslow et al., 1978; Holford et al., 1978; Breslow and
Day, 1980; Greenland, 1981; Schlesselman, 1982; Holland and Rubin, 1988;
Benichou and Wacholder, 1994; Rothman and Greenland, 1998; Greenland,
2004). And, while it is not the only method of analysis for individually
matched case-control studies, the predominant method of analysis is condi-
tional logistic regression. This method provides a conditional estimate of the
odds ratio of being diseased given the exposure of interest and baseline co-
variates. Conditional logistic regression will be discussed in more detail in
the subsection below. Greenland (1981) and Holland and Rubin (1988) dis-
cuss another model-based method: the use of log-linear models to estimate
the marginal odds ratio. Additionally, Rothman and Greenland (1998) and
Greenland (2004) demonstrate the use of standardization in case-control stud-
ies, which estimate marginal effects with population or person-time averaging.
Holland and Rubin (1988) note that the traditional two-way table and its
extensions generally provide no causal insight for matched case-control stud-
ies. However, these methods are all distinctly different from the method we
illustrate in this paper, discussed by van der Laan (2008), as our method is
a nonparametric double robust locally efficient procedure that provides an
estimate of the marginal causal odds ratio.

3.1 Conditional Logistic Regression

The logistic regression model for matched case-control studies differs from un-
matched studies in that it allows the intercept to vary among the matched
units of cases and controls. The matching variable is not included in the
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model (Breslow et al., 1978; Holford et al., 1978; Breslow and Day, 1980; Sch-
lesselman, 1982). If the parameter of interest is the coefficient in front of the
exposure A, the use of a matched study design and a conditional logistic re-
gression analysis can yield increases in efficiency, compared to an unmatched
design with a logistic regression analysis. It is important to note that in order
to estimate an effect of exposure A with conditional logistic regression, the
case and control must be discordant on A. Additionally, if information for a
variable is missing for a case (or control), the corresponding control (or case)
information is discarded (Breslow and Day, 1980; Schlesselman, 1982). These
two limitations do not occur in the new case-control weighted targeted max-
imum likelihood estimation methodology for causal effect parameters. More
importantly, if a marginal causal effect is the parameter of interest, conditional
logistic regression cannot be used as it can only estimate the conditional odds
ratio.

4 Case-Control Weighted Targeted Maximum

Likelihood Estimation

4.1 Background

We define O∗ = (W,A, Y ) ∼ P ∗0 as the experimental unit and corresponding
distribution P ∗0 of interest. P ∗0 represents the population from which all cases
and controls will be sampled. Here O∗ consists of baseline covariates W , an
exposure variable A (referred to as the “treatment” variable in prospective
studies), and a binary outcome Y , which defines case or control status. If
we are interested in marginal causal effect parameters, we can define ψ∗0 =
Ψ∗(P ∗0 ) ∈ IRd of P ∗0 ∈ M∗ as the causal effect parameter and define the risk
difference, relative risk, odds ratio as follows for binary exposure A ∈ {0, 1}:

ψ∗0,RD ≡ E∗0{E∗0(Y | A = 1,W )− E∗0(Y | A = 0,W )}
= E∗0(Y1)− E∗0(Y0)

= P ∗0 (Y1 = 1)− P ∗0 (Y0 = 1), (1)

ψ∗0,RR =
E∗0E

∗
0(Y | A = 1,W )

E∗0E
∗
0(Y | A = 0,W )

=
E∗0(Y1)

E∗0(Y0)
=
P ∗0 (Y1 = 1)

P ∗0 (Y0 = 1)
, (2)

and,

ψ∗0,OR =
P ∗0 (Y1 = 1)P ∗0 (Y0 = 0)

P ∗0 (Y1 = 0)P ∗0 (Y0 = 1)
. (3)

Hosted by The Berkeley Electronic Press



These causal versions of the effect parameters require the specification of the
counterfactual outcomes Y0 and Y1 for binary A and (W,A, Y = YA) as a
time-ordered missing data structure on the full data structure (W,Y0, Y1). One
must also make the randomization assumption: {A ⊥ Y0, Y1 | W}. Since these
parameters are always well defined parameters of the distribution of the data,
they can thereby be viewed as W -adjusted variable importance parameters.
Then there is no need to make these assumptions. We refer to van der Laan
(2006) for the details of this framework.

However, the observed data structure in matched case-control sampling is
defined by:

O = ((M1,W1, A1), (M
j
0 = M1,W

j
0 , A

j
0 : j = 1, . . . , J)) ∼ P0, with

(M1,W1, A1) ∼ (M,W,A | Y = 1) for cases, and

(M j
0 ,W

j
0 , A

j
0) ∼ (M,W,A | Y = 0,M = M1) for controls.

Here M ⊂ W , and M is a categorical matching variable. The sampling dis-
tribution of the data structure O is described as above with P0. Thus, the
matched case-control data set contains n independent and identically dis-
tributed observations O1, . . . , On with sampling distribution P0. The clus-
ter containing one case and the J controls is the experimental unit, and the
marginal distribution of the cluster is specified by the population distribution
P ∗0 . The model M∗, which possibly includes knowledge of q0 or q̄0(M), then
implies models for the marginal distribution of cases (M1,W1, A1) and controls
(M1,W

j
2 , A

j
2), j = 1, . . . , J .

Independent case-control sampling is described as sampling nC cases from
the conditional distribution of (W,A), given Y = 1, and sampling nCo controls
from (W,A), given Y = 0. The value of J used to weight each control is
then nCo/nC. We refer to independent case-control sampling as Case-Control
Design I, and matched case-control sampling as Case-Control Design II.

4.2 Methodology Summary

If one wishes to estimate marginal causal effects for Case-Control Design II,
which correspond with the traditional parameters of interest in randomized
trials, there is now a nonparametric double robust locally efficient procedure
available. It performs well as long as P ∗0 (Y | A,W ) or P ∗0 (A | W ) is correctly
specified, is consistent if either of these models are correctly specified, and
efficient if both are correctly specified. The theoretical framework for case-
control weighted targeted maximum likelihood estimation has been discussed
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in detail in van der Laan (2008), and step-by-step implementation for Case-
Control Design I appears in Rose and van der Laan (2008). For the targeted
maximum likelihood framework designed for prospective sampling, see van der
Laan (2006), and for its implementation, see Bembom et al. (2007).

Case-control weighted targeted maximum likelihood estimation for Case-
Control Design II incorporates estimates of P ∗0 (Y | A,W ), P ∗0 (A | W ), and
knowledge of q0 and q̄0(M), where q̄0(M) is defined as:

q̄0(M) ≡ q0
P ∗0 (Y = 0 |M)

P ∗0 (Y = 1 |M)
= q0

q0(0 |M)

q0(1 |M)
.

The case-control weighted targeted maximum likelihood estimation procedure
for Case-Control Design II uses P ∗0 (A | W ) to update an initial estimate of
P ∗0 (Y | A,W ).

4.3 Implementation

Case-control weighted targeted maximum likelihood estimation for Case-Control
Designs I and II can be implemented using existing software (including SAS,
STATA, and R). The implementation of case-control weighted targeted maxi-
mum likelihood for Case-Control Design II is also very similar to the imple-
mentation for Case-Control Design I. Key differences will be stressed here, but
for more detail, we refer to Rose and van der Laan (2008).

Weighting. Weights q0 and q̄0(M) 1
J

are assigned to the cases and corre-
sponding J controls, respectively. This differs from Case-Control Design I in
that (1 − q0) 1

J
is used to weight controls in Case Control Design I instead of

q̄0(M) 1
J

. In van der Laan (2008) it is suggested that in cases where q̄0(M) is
not known, 1− q0 can be used to approximate q̄0(M).

Estimating Q∗0(A,W ). Estimate P ∗0 (Y | A,W ) ≡ Q∗0(A,W ) using the ap-
propriate weights. This estimate is denoted Q̂∗(A,W ). Two methods for
estimating Q̂∗(A,W ) include intercept adjusted logistic regression and case-
control weighted logistic regression. Intercept adjusted logistic regression adds
the intercept log q0/(1− q0) to a logistic regression model. This yields the true
logistic regression function P ∗0 (Y = 1 | A,W ). If intercept adjusted logis-
tic regression is used to obtain Q̂∗(A,W ), cases are weighted 1 and controls
are weighted with q̄0(M) 1

J
. This is the only step and method where assigned

weights are not q0 and q̄0(M) 1
J

. In Rose and van der Laan (2008), we discussed
disadvantages associated with using intercept adjusted logistic regression, and
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thus our simulations will focus on the use of case-control weighted logistic
regression for estimating Q∗0(A,W ).

Case-control weighted logistic regression uses the assigned weights and
performs maximum likelihood estimation for prospective sampling (ignoring
the case-control sampling design). Consider a nonparametric model for the
marginal distribution of the covariates, and a model {Q∗θ : θ} for Q∗0(A,W ).
Then the case-control weighted maximum likelihood estimator for Q∗0(A,W )
in Case-Control Design II is given by:

θ̂ = arg max
θ

n∑
i=1

q0 log Q̂∗θ(M1i,W1i, A1i)+q̄0(M1)
1

J

J∑
j=1

log(1−Q̂∗θ(M1i,W
j
2i, A

j
2i)).

If Q̂∗(A,W ) is obtained using case-control weighted logistic regression, it is
weighted with q0 and q̄0(M) 1

J
. For further discussion see van der Laan (2008)

and Rose and van der Laan (2008).

Estimating g∗0(A | W ). Estimate P ∗0 (A | W ) ≡ g∗0(A | W ) using assigned
weights. This estimate is denoted ĝ∗(A | W ), and may be obtained using
case-control weighted logisitic regression, for example.

Calculating h(A,W ). Calculate the “clever covariate” for each subject based
on g∗0(A | W ). The covariate takes the form:

h(A,W ) ≡
(

I(A = 1)

ĝ∗(A = 1 | W )
− I(A = 0)

ĝ∗(A = 0 | W )

)

for the risk difference. Two covariates are used for estimation of other param-
eters, such as the odds ratio:

h0(A,W ) ≡
(
− I(A = 0)

ĝ∗(A = 0 | W )

)
and h1(A,W ) ≡

(
I(A = 1)

ĝ∗(A = 1 | W )

)

For further discussion see van der Laan and Rubin (2006) and Moore and
van der Laan (2007).

Updating Q̂∗(A,W ). Update Q̂∗(A,W ) by performing an additional weighted
regression with h(A,W ) as a supplementary covariate. The other coefficients
in the initial fit Q̂∗(A,W ) are held fixed, and the intercept is suppressed in
order to estimate the case-control weighted estimator of ε, the coefficient in
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front of h(A,W ), which we denote as ε̂1. The regression estimate Q̂∗(A,W ) is
then updated and given by Q̂∗1(A,W ):

Q̂∗1(A,W ) = Q̂∗(A,W ) + ε̂1h(A,W ).

This step is iterated until convergence, although convergence is often achieved
in one step.

Estimating Causal Parameters. Using q0, q̄0(M1), and Q̂∗1(A,W ), esti-
mate causal parameters of interest (risk difference, relative risk, and odds
ratio, defined in formulas (1), (2), and (3)) by averaging over the case-control
weighted distribution ofW . This mapping is performed by evaluating Q̂∗1(A,W )
at A = 1 and A = 0 and applying weights q0 to cases and q̄0(M1)

1
J

to the con-
trols. This forms case-control weighted estimates of E∗0(Y1) = P ∗0 (Y1 = 1) and
E∗0(Y0) = P ∗0 (Y0 = 1). The causal parameters of interest can then be calcu-
lated from these estimates. For example, the relative risk E∗0(Y1)/E

∗
0(Y0) is

estimated by:

ψ̂RR =
1
n

∑n
i=1 q0Q̂

∗
1,q0

(M1,W1i, 1) + q̄0(M1)
1
J

∑
j Q̂
∗
1,q0

(M1,W
j
2i, 1)

1
n

∑n
i=1 q0Q̂

∗
1,q0(M1,W1i, 0) + q̄0(M1)

1
J

∑
j Q̂
∗
1,q0(M1,W

j
2i, 0)

.

Calculating Standard Errors. Calculating standard errors, p-values, and
confidence intervals for case-control weighted targeted maximum likelihood
estimates requires the use of the case-control weighted influence curve. This
methodology is discussed in detail in van der Laan (2008). We also refer to
van der Laan and Robins (2002) for careful discussions of gradients and in-
fluence curve theory. The case-control weighted influence curve for matched
case-control study designs is the influence curve for prospective targeted max-
imum likelihood with case-control weighting. We refer to van der Laan and
Rubin (2006) and Moore and van der Laan (2007) for this methodology. A
complete understanding of the derivation of infuence curves is not required to
implement the case-control targeted maximum likelihood estimation procedure
for Case-Control Design II.

For illustration, we present the unweighted influence curve for the risk
difference of a prospective study ψ∗0,RD = P ∗0 (Y1 = 1) − P ∗0 (Y0 = 1), which is
estimated by:

D̂RD(ψ∗, g∗, Q∗)(O) =
I(A = 1)

ĝ∗(1 | W )
(Y − Q̂∗(1,W ))

− I(A = 0)

ĝ∗(0 | W )
(Y − Q̂∗(0,W ))
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+Q̂∗(1,W )− Q̂∗(0,W )− ψ̂.

The case-control weighted double robust efficient influence curve for the risk
difference ψ∗0,RD = P ∗0 (Y1 = 1) − P ∗0 (Y0 = 1) in a matched case-control study
design is then:

D̂RD,q0(ψ
∗, g∗, Q∗)(O) = q0D̂

∗(g∗, Q∗)(M1,W1, A1, 1)

+q̄0(M1)
1

J

J∑
j=1

D̂∗(g∗, Q∗)(M1,W
j
2 , A

j
2, 0)− ψ∗,

The asymptotic variance of
√
n(ψ̂ − ψ∗0) using the estimate of the efficient

influence curve Dq0(ψ
∗, g∗, Q∗)(O) can be estimated by:

σ̂2 =
1

n

n∑
i=1

D2
q0

(ψ∗, g∗, Q∗)(O).

A 95% Wald-type confidence interval can then be constructed using the causal

parameter estimate ψ̂: ψ̂±z0.975
σ̂√
n
, as well as a p-value for ψ̂: 2[1−Φ(| ψ̂

σ̂/
√
n
|)].

5 Simulation Studies

5.1 Simulation 1

Our first simulation study was designed to illustrate the differences between
independent case-control sampling (Case-Control Design I) and matched case-
control sampling (Case-Control Design II) using the case-control weighting
scheme for targeted maximum likelihood estimation proposed by van der Laan
(2008). It was also designed to represent “ideal” situations where control
information is not discarded (e.g. data collection is expensive, and covari-
ate information is only collected when a control is a match). This simula-
tion also demonstrates the use of weights q0 and (1 − q0)

1
J

with matched
data, to represent situations where q̄0(M) is not known. The population con-
tained N = 35, 000 individuals, where we simulated a 9-dimensional covariate
W = (Wi : i = 1, . . . , 9), a binary exposure (or “treatment”) A, and an indica-
tor Y , which was 1 for cases and 0 for controls. These variables were generated
according to the following rules:

P ∗0 (Wi = 1) = 0.5
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g∗0(A | W ) = 1
1+exp(−(W1+W2+W3−2W4−2W5+2W6−4W7−4W8+4W9))

Q∗0(A,W ) = 1
1+exp(−(1.5A+W1−2W2−4W3−W4−2W5−4W6+W7−2W8−4W9))

.

It can be seen in both g∗0(A | W ) and Q∗0(A,W ) that the covariates were
generated with varied levels of association with A and Y . This was done to
investigate the role of weak, medium, and strong association between a match-
ing variable Wi and A and Y . The corresponding associations can be seen in
Figure 1. For example, W1 was weakly associated with both A and Y . One
might recall that matching is potentially beneficial only when the matching
variable is a true confounder; associated with both A and Y .

Figure 1: Simulated Covariates
Y

Association Weak Medium Strong
Weak W1 W2 W3

A Medium W4 W5 W6

Strong W7 W8 W9

Another illustration of the varied association levels can be seen in Figure 2.
Here, we display the probability an individual in the population was a case
given Wi = 1, all the non-matching covariates (Z), and A. Likewise, proba-
bilities for Wi = 0 are also shown. For example, let’s say matching variable
W2 is age with 1 representing ‘young’ (< 50 years) and 0 representing ‘old’
(≥ 50 years). In this population, it was not very likely (0.013) that someone
who is young will become a case, while someone who is old has a much higher
chance of becoming a case (0.047), given Z and A. Therefore, W2, W5, and
W8 represent situations where the distribution of Wi among cases and controls
is very different. The covariates W3, W6, and W9 represent situations where
this difference is even more extreme.

The simulated population had a prevalence probability q0 = 0.030, and
exactly 1045 cases. The true value of the odds ratio was given by OR = 2.302,
with P ∗0 (Y1 = 1) = 0.055 and P ∗0 (Y0 = 1) = 0.025. We sampled the population
using a varying number of cases nC = (200, 500, 1000) for both Case-Control
Designs I and II, and for each sample size we ran 1000 simulations. For each
simulation, the same sampled cases were used for Case Control Designs I and
II. Controls were matched to cases on one variable (Wi) in Case-Control De-
sign II for both 1:1 and 1:2 designs. The same number of controls were used in
both Case-Control Designs I and II. Causal effect parameters were estimated
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Figure 2: Simulated Covariates: Probabilities. Z represents the remain-
ing eight non-matching covariates.

Wi P ∗0 (Y = 1|Wi = 1, Z, A) P ∗0 (Y = 1|Wi = 0, Z, A)
W1 0.039 0.021
W2 0.013 0.049

W3 0.003 0.060
W4 0.021 0.040
W5 0.013 0.047

W6 0.003 0.061
W7 0.040 0.023
W8 0.013 0.046

W9 0.004 0.066

using case-control weighted targeted maximum likelihood estimation (CCW
T-MLE) for Case-Control Designs I and II with case-control weighted logistic
regression for Q̂∗(A,W ) discussed in Section 4.3. The initial fit for the esti-
mate of Q∗0(A,W ) was correctly specified as:

Q̂∗(A,W ) = 1
1+exp(−(α̂0+α̂1A+α̂2W1+α̂3W2+...+α̂9W8+α̂10W9))

.

The initial fit for the exposure mechanism, which was the correct fit, was
defined by:

ĝ∗(A | W ) = 1
1+exp(η̂0+η̂1W1+η̂2W2+η̂3W3+η̂4W4+η̂5W5+η̂6W6+η̂7W7+η̂8W8+η̂9W9)

.

Case-Control Designs I and II performed similarly with respect to bias
for the nine covariates. When examining efficiency, there were consistent in-
creases in efficiency when the association between Wi and Y was high (W3,
W6, and W9), when comparing Case-Control Design II to Case-Control De-
sign I. Results when association with Wi and Y was medium (W2, W5, and
W8) were not entirely consistent, although covariates W5 and W8 did show
increases in efficiency for Case-Control Design II for all or nearly all sample
sizes. These results were in line with the consensus found in our literature
search: that matching may produce gains in efficiency when the distribution
of the matching variable differs drastically between the cases and the controls.

Simulation 1 also demonstrates the use of weights q0 and (1 − q0) 1
J

with
matched data, for situations where q̄0(M) is unknown for Case-Control Design
II. This weighting scheme provided a reasonable approximation, yielding larger
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Table 1: Simulation 1 – Efficiency. II MSE is Mean Squared Error for Case-
Control Design II with weights (1 − q0) 1

J
for CCW T-MLE, II RE is relative

efficiency of Case-Control Design II CCW T-MLE with q̄0(M) weights, I RE
is relative efficiency of Case-Control Design I CCW T-MLE, all REs are in
comparison to II MSE, and nC is Number of Cases.

1:1 Matching 1:2 Matching
nC 200 500 1000 200 500 1000

II MSE 2.83 0.83 0.33 1.05 0.35 0.16
W1 II RE 1.06 1.08 1.10 1.07 1.10 1.13

I RE 1.15 1.14 1.13 1.04 1.06 1.12
II MSE 3.02 0.77 0.38 1.22 0.45 0.18

W2 II RE 1.15 1.10 1.15 1.14 1.13 1.21
I RE 1.16 1.03 1.34 1.14 1.38 1.33

II MSE 4.67 1.40 0.60 2.07 0.71 0.41
W3 II RE 2.40 2.38 2.56 2.22 2.48 3.09

I RE 1.91 1.85 2.07 2.01 2.17 3.21
II MSE 2.27 0.65 0.31 1.06 0.33 0.14

W4 II RE 1.03 1.02 1.02 1.01 1.02 1.01
I RE 0.80 1.08 1.13 1.01 0.97 0.94

II MSE 2.60 0.75 0.33 1.20 0.37 0.18
W5 II RE 1.24 1.23 1.18 1.23 1.23 1.26

I RE 1.01 0.99 1.11 1.11 1.04 1.31
II MSE 5.25 1.44 0.64 2.17 0.70 0.38

W6 II RE 2.30 2.37 2.68 2.37 2.56 3.23
I RE 1.71 2.27 2.10 2.23 2.22 2.74

II MSE 2.63 0.70 0.31 1.10 0.33 0.16
W7 II RE 1.03 1.01 1.02 1.02 1.02 1.02

I RE 1.15 0.97 1.05 1.00 1.03 1.27
II MSE 2.40 0.79 0.31 1.07 0.35 0.17

W8 II RE 1.20 1.30 1.43 1.25 1.41 1.54
I RE 0.93 1.14 1.08 1.11 1.11 1.30

II MSE 4.35 1.37 0.58 1.63 0.58 0.33
W9 II RE 2.46 2.35 2.39 2.30 2.39 2.70

I RE 1.76 2.13 1.90 1.45 1.83 2.49
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Figure 3: Simulation 1 – Bias for 1:1 Matching. CCD I is CCW T-MLE
for Case-Control Design I, CCD II is CCW T-MLE for Case-Control Design
II with q̄0(M) weighting, and CCD II (w) is CCW T-MLE for Case-Control
Design II with (1− q0) weighting.
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Figure 4: Simulation 1 – Bias for 1:2 Matching. CCD I is CCW T-MLE
for Case-Control Design I, CCD II is CCW T-MLE for Case-Control Design
II with q̄0(M) weighting, and CCD II (w) is CCW T-MLE for Case-Control
Design II with (1− q0) weighting.
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standard errors, but similar levels of bias for covariates with a weak association
with Y . As association with Y increased, the estimate of the odds ratio became
more biased. Mean squared errors and relative efficiencies for the odds ratio
can be seen in Table 1. Bias results for the odds ratio can be seen in Figures
3 and 4.

5.2 Simulation 2

Our second simulation study was designed to address less ideal, and perhaps
more common, situations where control information is discarded. Controls
were sampled from the population of controls in Simulation 1 until a match
on covariate Wi was found for each case. Non-matches were returned to the
population of controls. The number of total controls sampled to find sufficient
matches was recorded for each simulation. This was the number of randomly
sampled controls that was used for the corresponding Case-Control Design
I simulation. The mean number of controls sampled to achieve 1:1 and 1:2
matching at each sample size is noted in Table 2 as nCo. For example, in
order to obtain 200 controls matched on covariate W1 in a 1:1 design, an
average of 404 controls had to be sampled from the population. Thus, an
average of 404 controls were used in the corresponding Case-Control Design I.

Case-control weighted targeted maximum likelihood estimation was per-
formed for Case-Control Designs I and II. Case-Control Design I outperformed
Case-Control Design II with respect to efficiency and bias for all sample sizes
and both 1:1 and 1:2 matching. This was not surprising given the mean num-
ber of controls in each of the control samples for Case-Control Design I (on
average, about two times the number of controls in each control sample for
Case-Control Design II). Additionally, as association between Wi and Y in-
creased, there was a trend that the number of controls necessary for complete
matching also increased. A similar trend between A and Wi was not apparent.
When returning to the bias results, one can see that they do not vary greatly
with association between Wi and A or Y . Mean squared errors and relative
efficiencies for the odds ratio can be seen in Table 2. Bias results are displayed
in Figure 5.
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Table 2: Simulation 2 – Efficiency. II MSE is Mean Squared Error for
Case-Control Design II CCW T-MLE, I RE is Relative Efficiency of Case
Control Design I CCW T-MLE Compared to Case-Control Design II MSE,
nC is Number of Cases, nCo is Mean Number of Controls for Case-Control
Design I.

1:1 Matching 1:2 Matching
nC 200 500 1000 200 500 1000
nCo 404 1006 2010 804 2011 4026

W1 II MSE 2.90 0.76 0.28 1.00 0.27 0.14
I RE 2.89 2.24 2.14 2.12 1.70 2.16
nCo 404 1009 2016 808 2016 4031

W2 II MSE 2.91 0.77 0.30 1.15 0.36 0.16
I RE 2.91 2.72 2.13 2.32 2.21 2.49
nCo 406 1016 2033 812 2034 4065

W3 II MSE 1.99 0.48 0.22 0.84 0.28 0.11
I RE 1.82 1.43 1.65 1.81 1.78 1.85
nCo 403 1006 2010 806 2012 4023

W4 II MSE 2.47 0.67 0.29 1.09 0.28 0.13
I RE 2.38 2.09 2.20 2.29 1.91 2.03
nCo 406 1010 2019 810 2019 4040

W5 II MSE 2.41 0.63 0.25 0.92 0.29 0.12
I RE 2.24 2.00 1.92 1.95 1.89 2.10
nCo 411 1025 2046 819 2045 4094

W6 II MSE 2.08 0.64 0.23 0.88 0.27 0.13
I RE 2.13 1.99 1.69 1.92 1.70 2.23
nCo 402 1001 2000 801 1999 4000

W7 II MSE 2.71 0.72 0.30 1.09 0.34 0.15
I RE 2.54 2.42 2.18 2.19 2.25 2.18
nCo 407 1014 2028 811 2027 4055

W8 II MSE 2.28 0.56 0.23 0.97 0.25 0.11
I RE 2.35 1.76 1.71 1.99 1.59 1.68
nCo 413 1030 2059 824 2061 4121

W9 II MSE 1.97 0.54 0.22 0.80 0.26 0.12
I RE 1.91 1.77 1.69 1.62 1.69 1.84
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Figure 5: Simulation 2 – Bias. CCD I is CCW T-MLE for Case-Control
Design I and CCD II is CCW T-MLE for Case-Control Design II.
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6 Discussion

The main benefit of a matched case-control study design is a potential in-
crease in efficiency. However, an increase in efficiency is not automatic. If one
decides to implement a matched case-control study design, matching variable
selection is crucial. Numerous publications in our literature review indicated
that matching on non-confounding variables is not beneficial, including Kup-
per et al. (1981): “The futility of matching in [non-confounding situations]
is clear...matching on [the variable] will have absolutely no effect on the dis-
tribution of the exposure variable in the diseased and nondiseased groups.”
Therefore, increases in efficiency with a matched design depend heavily on the
selection of a confounding variable as a matching variable. In practice, it may
be difficult to ascertain the strength of the association between the matching
variable, the exposure of interest, and the outcome. Our simulations for causal
effect estimation confirmed the consensus in the existing literature: that in sit-
uations where the distribution of the matching covariate is drastically different
between the case and control populations, matching may provide an increase
in efficiency. Our simulations indicated that P ∗0 (Y = 1 | Wi = 1, Z, A), for
matching variable Wi and covariate vector Z, may need to be very small for
an increase in efficiency using a matched design. These results were true, how-
ever, only for our simulations where no control subjects were discarded ; it is
very common for matched study designs to discard controls (Freedman, 1950;
Cochran and Chambers, 1965; Billewicz, 1965; McKinlay, 1977).

This paper focused on the issue of individual matching in case-control stud-
ies where the researcher is interested in estimating the marginal causal effect
and certain prevalence probabilities are known. Thus, we compared the use
of case-control weighted targeted maximum likelihood estimation in matched
and unmatched designs. We showed that in practical situations (e.g. when
controls are discarded), an unmatched design is likely to be a more efficient,
less biased study design choice. Since we also have a nonparametric double
robust locally efficient procedure for the estimation of causal parameters in
unmatched case-control study designs using q0, it may be preferred to causal
parameter estimation in matched designs. However, if controls will not be
discarded, there is a priori information about the matching variable(s), or the
circumstances only allow for a matched design, our double robust locally effi-
cient procedure for the estimation of causal parameters in matched case-control
study designs can then be used, as demonstrated in this paper. This design
relies on the additional knowledge of q̄0(M). Our simulations also indicated
that when q̄0(M) is unknown, 1− q0 may provide a reasonable approximation,
although this should be examined further.
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