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Abstract 
In game-playing programs relying on the minimax 
principle, deeper searches generally produce better 
evaluations. Theoretical analyses, however, suggest 
that in many cases minimaxing amplifies the noise 
introduced by the heuristic function used to 
evaluate the leaves of the game tree, leading to 
what is known as pathological behavior, where 
deeper searches produce worse evaluations. In 
most of the previous research, positions were 
evaluated as losses or wins. Dependence between 
the values of positions close to each other was 
identified as the property of realistic game trees 
that eliminates the pathology and explains why 
minimax is successful in practice. In this paper we 
present an alternative explanation that does not rely 
on value dependence. We show that if real numbers 
are used for position values, position values tend to 
be further apart at lower levels of the game tree, 
which leads to a larger proportion of more extreme 
positions, where error is less probable. Decreased 
probability of error in searches to greater depths is 
sufficient to eliminate the pathology and no 
additional properties of game trees are required. 

1 Introduction 
Most game-playing programs are based on the minimax 
principle. Such programs choose the best move by searching 
the game tree to a chosen depth, heuristically evaluating the 
leaves and then propagating their values to the root using 
the minimax principle. It is generally agreed that deeper 
searches produce better evaluations at the root. However, 
first attempts to explain this mathematically yielded the 
paradoxical result that minimaxing amplifies the error of the 
heuristic evaluations and that consequently deeper searches 
produce worse evaluations [Nau, 1979; Beal, 1980]. This 
phenomenon is called the minimax pathology [Nau, 1979].  

It was evident that the setting of these mathematical 
analyses omitted some property of real games that 
eliminates the pathology. Several explanation were 
proposed, but eventually most researchers came to the 
conclusion that the property they were looking for is the 
similarity of positions close to each other [Bratko and 

Gams, 1982; Beal, 1982; Nau, 1982; Scheucher and Kaindl, 
1998; Luštrek, 2004]. 

In most research on the minimax pathology, true position 
values were losses or wins. This seems reasonable, since in 
games like chess, positions can indeed only be lost or won 
(or drawn). In practice, however, a game playing program 
needs an evaluation function that makes it possible to 
maintain a direction of play, gradually moving toward a 
win, not just maintaining a won position without achieving 
the final goal. This requires a multivalued or even real-
valued evaluation function. 

We introduce a minimax model using real-valued 
evaluation function and a way to interpret real values as 
losses and wins. This leads to a new, simpler explanation of 
the pathology. Namely, node values at lower levels of the 
game tree are more dispersed. If the error of the evaluation 
function, represented by normally distributed noise, is 
independent of the depth of search, it turns out that the error 
in terms of loss/win evaluations decreases with the depth of 
search, because larger dispersion means a larger proportion 
of more extreme positions where error is less likely. This is 
different from what the previous analyses assumed and is 
sufficient to eliminate the pathology. 

The paper is organized as follows. Section 2 presents the 
minimax pathology and gives an overview of the attempts to 
explain it. Section 3 introduces a minimax model based on 
real-number position values. Section 4 shows why the 
model from section 3 is not pathological, while seemingly 
similar models used in previous research were. Section 5 
explains whether minimax in general can be expected to 
behave non-pathologically. Section 6 concludes the paper 
and points out where further research is needed. 

2 The Pathology and Related Work 
The minimax pathology was discovered independently by 
Nau [1979] and Beal [1980]. Beal’s basic minimax model 
made several assumptions: 
1. game tree has a uniform branching factor; 
2. nodes of the tree can have two values: loss and win; 
3. node values are distributed so that at each level of the tree 

the proportion of losses for the side to move is the same; 
4. node values within each level of the tree are independent 

of each other; 



5. the error of heuristic evaluation at a node at the lowest 
level of search, being the probability of mistaking a loss 
for a win or vice versa, is independent of the depth of 
search and the true value of the node. 
We proceed to present Beal’s basic model, although our 

analysis is mostly based on later work. Negamax 
representation is used in this section, i.e. node values are 
viewed as lost or won from the perspective of the side to 
move. Let b be the branching factor of the tree, d the depth 
of search and ki the probability of a node at i-th level being 
lost. Levels are numbered downwards: from 0 for root to d 
for the lowest level of search. 

A node can only be lost if all of its descendants are won 
(for the opponent), so the relation between the values of k at 
consecutive levels is governed by equation (1). 

ki = (1 – ki+1)b (1) 
Assumption 3 requires ki = ki+1, which results in ki = cb for 

all i; for example, c2 = 0.3820. 
Two types of evaluation error are possible: a loss can be 

mistaken for a win (false win) or a win for a loss (false 
loss). Let pi and qi be the probabilities of the respective 
types of error at i-th level. They are calculated according to 
equations (2) and (3). 
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It turns out that if the same pd = qd are used in searches to 
all depths, the error in the root, defined as p0 k0 + q0 (1 – k0), 
increases with d. “This result is disappointing,” concluded 
Beal, since it was exactly the opposite of what he set out to 
show. His model must have been flawed in some way. 

In the years following the discovery of the pathology, 
several researchers attempted to find the flaw in Beal’s basic 
model by attacking its assumptions (1. through 5. at the 
beginning of this section). 
1. Michon [1983] observed that the pathology depends on 

the probability distribution of branching factor: game 
trees with uniform branching factor tend to be 
pathological, while game trees with, for example, 
geometrically distributed branching factor do not. It is not 
known whether real games have any of the non-
pathological distributions, though. 

2. Bratko and Gams [1982] were the first to experiment with 
multivalued evaluations. They assigned no particular 
meaning to different values, which resulted in behavior 
similar to the one with two values, i.e. pathological. 
Pearl’s results were similar [1983]. Scheucher and Kaindl 
[1998] and Luštrek [2004] also used multiple and even 
real values, but only to establish realistic relations among 
node values and the magnitude of error, so even though 
their models were not pathological, they did not attribute 
the absence of pathology to real values. Sadikov et al. 
[2003] used multiple values in their analysis of king and 
rook versus king chess endgame. They explained the 
pathology, but their explanation involves multiple values 

only indirectly and it is not known whether it applies to 
cases other than the endgame they studied. 

3. Having node values distributed so that ki = cb for all i not 
only simplifies calculations, it is generally agreed to be 
necessary [Bratko and Gams, 1982; Beal, 1982; Nau, 
1982]. If k0 ≠ cb is chosen, ki starts to oscillate between 
values close to 0 and 1 for relatively small i, meaning that 
we are dealing with games that are almost certainly won 
for one side and as such not interesting. 

4. Most researchers [Bratko and Gams, 1982; Beal, 1982; 
Nau, 1982; Scheucher and Kaindl, 1998; Luštrek, 2004] 
agreed that similarity of positions close to each other 
eliminates the pathology, although they arrived at this 
conclusion in different ways. Pearl [1983] claimed that 
early terminations are the culprit, but these can also be 
interpreted as a form of node-value dependence. 

5. Pearl [1983] showed that in order to overcome the 
pathology, the error of the evaluation function must 
decrease exponentially with the depth of search. It is 
generally believed that the quality of the evaluation 
cannot vary enough to account for the absence of 
pathology. Scheucher and Kaindl [1998] did use depth-
dependent error. And although such error made increased 
depth of search more beneficial, node-value dependence 
was required to altogether eliminate the pathology. 
The conclusion one can make based on the existing 

literature on the minimax pathology is that the pathology is 
usually not observed in real games because their position 
values are not independent of each other. This conclusion is 
reinforced by the fact that multiple authors have arrived at it 
in different ways. 

3 A Minimax Model Based on Real Values 
Even though all the explanations for the absence of 
pathology in minimax provided in the previous section are 
valid, at least under the assumptions their authors made, are 
these assumptions really necessary and realistic? We argue 
that real numbers should be used for position values, in 
which case another, more basic explanation is sufficient. 

Both game-playing programs and humans use 
multivalued position evaluations. There is little doubt this is 
necessary in games where the final outcome is multivalued 
(Othello, tarok etc.). In games where the outcome can only 
be a loss, a win and perhaps a draw (chess, checkers etc.), 
multiple values might seem to be useful only as a way to 
express the uncertainty of a program or human. However, 
even given unlimited resources to determine the value of a 
position, in a losing position, the best one can do against a 
fallible and not fully known opponent is evaluate the 
position in terms of the probability of loss. In a winning 
position, even a perfect two-valued evaluation function 
could maintain a won position indefinitely without actually 
winning (or until termination due to 50-move rule in chess). 
In essence, multivalued evaluation function is necessary to 
differentiate between multiple winning (or losing, if only 
such are available) moves. Scheucher and Kaindl [1998] 
demonstrated on chess that a two-valued evaluation function 
performs poorly compared to a multivalued one. 



We propose a minimax model similar to Beal’s basic 
model, except that it uses real numbers for position values: 

 

1. game tree has a uniform branching factor; 
2. nodes of the tree have real values; 
3. if the real node values are converted to losses and wins, 

they are distributed so that at each level of the tree the 
proportion of losses for the side to move is the same; 

4. node values within each level of the tree are independent 
of each other; 

5. the error of heuristic evaluation at a node at the lowest 
level of search, being normally distributed noise, is 
independent of the depth of search and the true value of 
the node. 
Game trees built according to our model are assigned 

independent uniformly distributed values from [0, 1] 
interval to the leaves at level dmax. These are true values; 
true values of internal nodes are obtained by backing up the 
true leaf values using the minimax rule. When searching to 
depth d, heuristic values at level d are generated by 
corrupting the true values with normally distributed noise 
representing the error of the heuristic evaluation function; 
heuristic values of nodes at levels < d are obtained by 
backing up the corrupted values at level d using the 
minimax rule. 

Two types of error can be observed at the root of a game 
tree: position error, which is the absolute difference 
between the true and the heuristic value of the root, and 
move error, which is the probability of choosing a wrong 
move because of position error at the root’s descendants. 
However, neither type of error corresponds directly to the 
error in two-value models used in most of the previous 
research: two-value error is defined as the probability of 
mistaking a loss at the root for a win or vice versa. 

In order to measure two-value error, real values must be 
converted to losses and wins. This can be accomplished by 
establishing a threshold t: the values below it are considered 
losses and the values above it wins. According to Beal’s 
assumption 3, if negamax representation is used, ki = cb for 
all i. We do not use negamax representation in our model, so 
ki alternates between cb and 1 – cb. Since true values of the 
leaves are distributed uniformly in [0, 1] interval, kd = cb is 
achieved by setting t = cb. Even though real-value 
minimaxing is used, ki behaves as desired for i > 0. This 
happens for two reasons. First, leaf values in our real-value 
model, converted to two values, correspond exactly to leaf 
values in Beal’s basic model. The probability of a loss at a 
leaf with value X is P (X < t), which for uniform distribution 
in [0, 1] interval and t = cb equals cb. In Beal’s basic model, 
the probability of a loss at each leaf is kd, which also equals 
cb. Second, real- and two-value minimaxing are equivalent 
in the sense that performing minimax on losses and wins 
from level i to j < i gives the same results at level j as 
performing minimax on the underlying real values from 
level i to j and converting them to losses and wins at level j. 
This is illustrated in Figure 1; losses are marked with “–“ 
and wins with “+”. 

Figure 1: Equivalence of real- and two-value minimaxing.

We conducted Monte Carlo experiments with game trees 
generated according to our model. Only the results for b = 2 
and dmax = 10 are presented in this paper; the results for 
larger branching factors and depths are similar. The results 
are averaged over 10,000 game trees. For each tree, there 
were 10 repetitions with randomly generated noisy values 
for each d. Figure 1 shows position, move and two-value 
error at the root of the game tree with respect to the depth of 
search; standard deviation of noise is 0.1. 
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Figure 2: Error at the root with respect to the depth of search.

As can be seen in Figure 2, all three types of error 
decrease with the depth of search (with the exception of 
even/odd level fluctuations of two-value error). Note that 
these observed behaviors are different from Beal’s original 
results [1980], which were pathological. 

Even though our primary concern is comparison with 
Beal’s basic model, we checked whether the absence of 
pathology occurs only under the described settings or is it 
more general. We tried uniform distribution of error and 
normal distribution of node values as well as different forms 
of dependence among node values. None of the experiments 
yielded pathology except for some rare cases where slightly 
pathological behavior was caused by very large static error. 
There was no pathology in terms of position error, but move 
and two-value error did in some cases behave pathologically 
when their static values were close to 0.5. However, since 
0.5 is the point where evaluations become completely 
random, this seems to be of little practical importance. 



Figure 5 shows two-value error at the root when two-
value error at the lowest level is always 0.1; results for 
Beal’s basic model are shown for comparison. 

4 Why is Our Model Not Pathological? 
Considering that our model is very similar to Beal’s, why 

is it not pathological? To answer this question, we must 
examine two-value error at the lowest level of search. Beal’s 
assumption 5 states that it should be constant with search 
depth, but in our model, real-value position error is set to be 
constant instead (which is achieved by using normally 
distributed noise with the same standard deviation at all 
levels). Two-value error at the lowest level of search is 
shown in Figure 3; standard deviation of noise is 0.1. 
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Figure 5: Two-value error at the root with respect to the depth of 
search when two-value error at the lowest level of search 
is always 0.1. 

As can be seen in Figure 5, the results for binarized real-
value model and the results for Beal’s basic model match 
quite well. The matching is not perfect because in the real-
value model, the probability of a false win at the lowest 
level of search is higher than the probability of a false loss. 
This happens because false wins occur in [0, t) interval, 
while false losses occur in (t, 0] interval. Since t = c2, the 
former is smaller, therefore node values are on average 
closer to the threshold, and hence two-value error is more 
likely. The ratio of probability of a false win : probability of 
a false loss is (1 – t) : t. If the overall probability of two-
value error is to remain 0.1, the appropriate settings in 
Beal’s model are pd = 0.05 / t and qd = 0.05 / (1- t). Under 
these settings, the models match perfectly. 

Figure 3: Two-value error at the lowest level of search with 
respect to the depth of search. 

As can be seen in Figure 3, two-value error at the lowest 
level of search decreases with the depth of search. This is 
different from Beal’s assumption 5. However, to eliminate 
the pathology, Pearl [1983] observed that if the error is 
small, it should decrease by a factor of 1.528 every two 
levels, i.e. exponentially with the depth of search, while in 
Figure 3, it decreases roughly linearly. For Pearl’s 
observation to be true, the error should be quite small, 
though. For example, if the error at depth 10 is 0.1 (the 
value chosen by Bratko and Gams [1982] and close to the 
values we experimented with), Pearl’s approximation gives 
two-value error 0.8326 at depth 0, while the exact error is 
0.3932. We chose not to work with smaller errors in this 
paper because move and two-value error are probabilities 
computed from frequencies and when they are very small, 
very large samples are required to obtain meaningful results. 

5 Minimax Pathology in General 
What remains to be considered is whether constant 

position error or constant two-value error at the lowest level 
of search is more realistic. There is no pathology in the 
former case, while the latter case corresponds to Beal’s 
basic model and is pathological. Game-playing programs 
use real (or at least multiple) values in their evaluation 
functions. Position error is the most direct representation of 
the fallibility of these functions and there is no reason to 
believe that it should increase with the depth of search as 
shown in Figure 4. But can we expect two-value error to 
behave as shown in Figure 3? We will show here that the 
answer is “yes”. Game-playing programs are generally not 
concerned with two-value error; if they were, one can easily 
imagine that it would be large in uncertain positions whose 
values are close to the threshold and small in clearly lost or 
won positions far from the threshold. If both sides are to 
have comparable chances to win at the root, the value at the 
root should be close to the threshold. Each level downwards 
from the root is one move away from the root position. 
Position values usually change gradually, so with each 
move, position values can be more different from the root 
value. Therefore the average distance of a position value 
from the threshold at lower levels can indeed be expected to 

If noise introduced at the lowest level of search is 
adjusted so that two-value error at the lowest level of search 
is always 0.1, position error at the lowest level of search 
increases with the depth of search as shown in Figure 4. 
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Figure 4: Position error at the lowest level of search with respect 

to the depth of search when two-value error at the lowest 
level of search is always 0.1. 



be larger than at higher levels, as was also stated by 
Scheucher and Kaindl [1998]. This is illustrated in Figure 6; 
darker area represents higher probability of two-value error. 

 

In game trees with independent node values, the effect of 
position error on two-value error can be analyzed 
mathematically. For simplicity, we will only consider b = 2 
and limit node values to [0, 1] interval. 

Due to space limitation, we will only examine false 
losses. Consider the probability of a false loss at a node with 
true value X and heuristic value X – e, where e is the node’s 
position error. False loss means that X > t and the heuristic 
value is on the other side of the threshold, i.e. X – e < t. The 
probability for such a mistake to happen at a node whose 
true real value is distributed according to distribution 
function F (x) is calculated according to equation (4). 

)()()()( tFetFetXtPteXtXP −+=+<<=<−∧> (4) 
Consider now the probability of a false loss at different 

levels in a game tree. Let Fi (x) be the distribution function 
of node values at i-th level of the game tree. If i – 2 is a max 
level, Fi–2 (x) is calculated from Fi–1 (x) according to 
equation (5). 

2
1

2
122 )()()()( xFxXPxXPxF iiii −−−− =<=<=  (5) 

If i – 1 is a min level, Fi–1 (x) is calculated from Fi (x) 
according to equation (6). 
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In order to calculate Fi–2 (x) from Fi (x) in one step, (5) 
and (6) are joined into equation (7). 
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We will show that the probability of a static false-loss 
error at higher levels is usually greater than at lower levels, 
which is expressed by inequality (8). 

P (false loss at level i – 2) > P (false loss at level i) 
Fi–2 (t + e) – Fi–2 (t) > Fi (t + e) – Fi (t) 

(8) 

Inequality (8) means that the difference between the 
values of distribution function at points t + e and t is greater 
at higher levels – in other words, that the distribution 
function is steeper at higher levels. Let us take as an 

example our model from section 3: dmax = 10 and leaf values 
are distributed uniformly, therefore F10 (x) = x. Equation (7) 
can be used to calculate F8 (x) = 4 x2 – 4 x3 + x4. Figure 7 
shows F8 (x) and F10 (x) in our model.  

 Figure 6: Distance of nodes values from the threshold and its 
relation to two-value error. Figure 7: Distribution functions of node values at levels 8 and 10 

in our model from section 3. 

As can be seen in Figure 7, F8 (x) is steeper that F10 (x) 
between x = a and x = b. To determine where Fi–2 (x) is 
steeper than Fi (x) independently of Fi (x), inequality (9) 
must be solved; note that Fi (x) is written as Fi. 

i

i

i

i

dF
dF

dF
dF

>−2  

8 Fi – 12 Fi
2 + 4 Fi

3 > 1 
(9) 

The expression dFi–2 / dFi as a function of Fi is shown in 
Figure 8. 

 
Figure 8: dFi–2 / dFi as a function of Fi.

With the help of Figure 8 we can solve inequality (9): 
0.1624 < Fi < 0.7304. Values a and b in Figure 7 are 
therefore a = F10

–1 (0.1624) and b = F10
–1 (0.7304); since 

F10 (x) = x, this means a = 0.1624 and b = 0.7304. So 
whenever the values of Fi (t + e) and Fi (t) are in the interval 
between 0.1624 and 0.7304, false-loss error at level i – 2 is 
greater than false-loss error at level i for any distribution 
function Fi (x). Since Fi (t) = ki, if ki is to be the same for all 
i, most reasonable distribution functions should satisfy the 
condition 0.1624 < Fi (t) < 0.7304. 

We now see that two-value error at higher levels is 
smaller than at lower levels. But is it smaller enough? If pi 
and qi when searching to depth dmax were computed for all i, 
these values could be used for pd and qd when searching to 
depths d < dmax. Under these conditions, two-value error at 
the root would be the same for searches to all depths – 
minimax would be neither pathological nor beneficial. If we 
can prove that given position error e causes greater two-
value error at level i – 2 if it is introduced at level i – 2 



(denoted P1) than if it is introduced at level i and then 
backed-up to level i – 2 (denoted P2), we will also have 
proven that two-value error as a result of depth-independent 
position error decreases from the leaves towards the root 
sufficiently to make minimax non-pathological. P1 and P2 
are calculated using equations (4) and (7) in different order, 
resulting in equations (10) and (11). 
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We solved inequality P1 > P2 on [0, 1] interval using 
Mathematica software, resulting in (12). 
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The upper limit for Fi (t + e) from inequality (12) is 
shown in Figure 9. 

 

As can be seen in Figure 9, minimax will behave 
pathologically only when F (t + e) is close to 1 (shaded 
area). Since F (t) is generally not expected to be close to 1, 
this means a large position error. This is consistent with our 
observations from section 3 where there was no pathology 
except in some cases when static error was very large. 

6 Conclusion 
To analyze the pathology, we designed a minimax model 
with real-number position values. The model did not behave 
pathologically under a wide range of settings, as long as 
normally (or uniformly) distributed noise used to model the 
error of heuristic evaluations was independent of the depth 
of search. However, under these settings, two-value error 
was not independent of the depth of search, which is 
contrary to what was assumed in most of the previous 
research. Due to minimax relations among the true values, 
both types of error cannot be independent of the depth of 
search simultaneously, because at greater depths, position 
values are on average farther away from the threshold 
separating losses from wins; therefore at greater depths, the 
same position error causes smaller two-value error. In real 
games, this is caused by position values starting close to the 
threshold at the root and dispersing gradually as we advance 
downwards through the game tree. We showed 

mathematically that in game trees with independent node 
values, two-value error at higher levels is also smaller than 
at lower levels. Furthermore, we showed that the reduction 
of the error is in most cases sufficient to eliminate the 
pathology. The pathology sometimes persists, particularly 
when the error is very large, but such cases are probably 
rare. Establishing which cases exactly are these is left for 
further work. 

In summary, the explanation for the minimax pathology, 
or the absence of it, presented in this paper, is a necessary 
consequence of a real-value minimax model, and does not 
require any other assumption. Even if one were to claim that 
in a purely theoretical sense, real values are inappropriate, 
they are certainly necessary in practice. And the minimax 
pathology is considered pathological because it is at odds 
with what is observed in practice. 
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