University of Texas at El Paso
ScholarWorks@UTEP

Why Mixture of Probability Distributions

Andrzej Pownuk

The University of Texas at EI Paso, ampownuk@utep.edu
Vladik Kreinovich
The University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep
Part of the Computer Sciences Commons, and the Mathematics Commons
Comments:
Technical Report: UTEP-CS-17-15
To appear in International Journal of Intelligent Technologies and Applied Statistics IJITAS

Recommended Citation

Pownuk, Andrzej and Kreinovich, Vladik, "Why Mixture of Probability Distributions" (2017). Departmental Technical Reports (CS). 1103.
https://scholarworks.utep.edu/cs_techrep/1103

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of ScholarWorks@UTEP. For more information, please contact Iweber@utep.edu.

Why Mixture of Probability Distributions?

Andrzej Pownuk and Vladik Kreinovich
Computational Scie nce Program
University of Texas at El Paso
El Paso, Texas 79968, USA
ampownuk@utep.edu, vladik@utep.edu

Abstract

If we have two random variables ξ_{1} and ξ_{2}, then we can form their mixture if we take ξ_{1} with some probability w and ξ_{2} with the remaining probability $1-w$. The probability density function (pdf) $\rho(x)$ of the mixture is a convex combination of the pdfs of the original variables: $\rho(x)=w \cdot \rho_{1}(x)+(1-w) \cdot \rho_{2}(x)$. A natural question is: can we use other functions $f\left(\rho_{1}, \rho_{2}\right)$ to combine the pdfs, i.e., to produce a new pdf $\rho(x)=f\left(\rho_{1}(x), \rho_{2}(x)\right)$? In this paper, we prove that the only combination operations that always lead to a pdf are the operations

$$
f\left(\rho_{1}, \rho_{2}\right)=w \cdot \rho_{1}+(1-w) \cdot \rho_{2}
$$

corresponding to mixture.

1 Formulation of the Problem

What is mixture. If we have two random variables ξ_{1} and ξ_{2}, then, for each probability $w \in[0,1]$, we can form a mixture ξ of these variables by selecting ξ_{1} with probability w and ξ_{2} with the remaining probability $1-w$; see, e.g., [1].

In particular, if we know the probability density function (pdf) $\rho_{1}(x)$ corresponding to the first random variable and the probability density function $\rho_{2}(x)$ corresponding to the second random variable, then the probability density function $\rho(x)$ corresponding to their mixture has the usual form

$$
\begin{equation*}
\rho(x)=w \cdot \rho_{1}(x)+(1-w) \cdot \rho_{2}(x) . \tag{1}
\end{equation*}
$$

A natural question. A natural question is: are there other combination operations $f\left(\rho_{1}, \rho_{2}\right)$ that always transform two probability distributions $\rho_{1}(x)$ and $\rho_{2}(x)$ into a new probability distribution

$$
\begin{equation*}
\rho(x)=f\left(\rho_{1}(x), \rho_{2}(x)\right) . \tag{2}
\end{equation*}
$$

Our result. Our result is that the only possible transformation (2) that always generates a probability distribution is the mixture (1), for which

$$
\begin{equation*}
f\left(\rho_{1}, \rho_{2}\right)=w \cdot \rho_{1}+(1-w) \cdot \rho_{2} \tag{3}
\end{equation*}
$$

for some $w \in[0,1]$.

2 Main Result

Definition 1. We say that a function $f\left(\rho_{1}, \rho_{2}\right)$ that maps pairs of non-negative real numbers into a non-negative real number is a probability combination operation if for every two probability density functions $\rho_{1}(x)$ and $\rho_{2}(x)$ defined on the same set X, the function $\rho(x)=f\left(\rho_{1}(x), \rho_{2}(x)\right)$ is also a probability density function, i.e., $\int \rho(x) d x=1$.

Proposition. A function $f\left(\rho_{1}, \rho_{2}\right)$ is a probability combination operation if and only if it has the form $f\left(\rho_{1}, \rho_{2}\right)=w \cdot \rho_{1}+(1-w) \cdot \rho_{2}$ for some $w \in[0,1]$.

Proof.
1°. Let us first prove that $f(0,0)=1$.
Indeed, let us take $X=\mathbb{R}$, and the following pdfs:

- $\rho_{1}(x)=\rho_{2}(x)=1$ for $x \in[0,1]$ and
- $\rho_{1}(x)=\rho_{2}(x)=0$ for all other values x.

Then, the combined function $\rho(x)=f\left(\rho_{1}(x), \rho_{2}(x)\right)$ has the following form:

- $\rho(x)=f(1,1)$ when $x \in[0,1]$ and
- $\rho(x)=f(0,0)$ for $x \notin[0,1]$.

Let us use the condition $\int \rho(x) d x=1$ to prove that $f(0,0)=0$.
We can prove it by contradiction. If we had $f(0,0) \neq 0$, i.e., if we had $f(0,0)>0$, then we would have

$$
\int \rho(x) d x=f(1,1) \cdot 1+f(0,0) \cdot \infty=\infty \neq 1
$$

Thus, we should have $f(0,0)=0$.
2°. Let us now prove that $f\left(0, \rho_{2}\right)=k_{2} \cdot \rho_{2}$ for some $k_{2} \geq 0$.
Let us take the following function $\rho_{1}(x)$:

- $\rho_{1}(x)=1$ for $x \in[-1,0]$ and
- $\rho_{1}(x)=0$ for all other x.

Let us now pick any number $\rho_{2}>0$ and define the following pdf $\rho_{2}(x)$:

- $\rho_{2}(x)=\rho_{2}$ for $x \in\left[0,1 / \rho_{2}\right]$ and
- $\rho_{2}(x)=0$ for all other x.

In this case, the combined function $\rho(x)$ has the following form:

- $\rho(x)=f(1,0)$ for $x \in[-1,0]$;
- $\rho(x)=f\left(0, \rho_{2}\right)$ for $x \in\left[0,1 / \rho_{2}\right]$, and
- $\rho(x)=f(0,0)=0$ for all other x.

Thus, the condition $\int \rho(x) d x=1$ takes the form

$$
f(1,0)+f\left(0, \rho_{2}\right) \cdot\left(1 / \rho_{2}\right)=1,
$$

hence $f\left(0, \rho_{2}\right) \cdot\left(1 / \rho_{2}\right)=1-f(1,0)$ and therefore, $f\left(0, \rho_{2}\right)=k_{2} \cdot \rho_{2}$, where we denoted $k_{2} \stackrel{\text { def }}{=} 1-f(1,0)$.
3°. Similarly, we can prove that $f\left(\rho_{1}, 0\right)=k_{1} \cdot \rho_{1}$ for some $k_{1} \geq 0$.
4°. Let us now prove that for all ρ_{1} and ρ_{2}, we have $f\left(\rho_{1}, \rho_{2}\right)=k_{1} \cdot \rho_{1}+k_{2} \cdot \rho_{2}$.

We already know, from Parts 1,2 and 3 of this proof, that the desired equality holds when one of the values ρ_{i} is equal to 0 .

Let us now take any values $\rho_{1}>0$ and $\rho_{2}>0$. Let us then pick a positive value $\Delta \leq 1 / \max \left(\rho_{1}, \rho_{2}\right)$ and define the following pdfs. The first pdf $\rho_{1}(x)$ is defined by the following formulas:

- $\rho_{1}(x)=\rho_{1}$ for $x \in[0, \Delta]$,
- $\rho_{1}(x)=1$ for $x \in\left[-\left(1-\Delta \cdot \rho_{1}\right), 0\right]$, and
- $\rho_{1}(x)=0$ for all other x.

The second pdf $\rho_{2}(x)$ is defined by the following formula:

- $\rho_{2}(x)=\rho_{2}$ for $x \in[0, \Delta]$,
- $\rho_{2}(x)=1$ for $x \in\left[\Delta, \Delta+\left(1-\Delta \cdot \rho_{2}\right)\right]$, and
- $\rho_{2}(x)=0$ for all other x.

Then, the combined function $\rho(x)=f\left(\rho_{1}(x), \rho_{2}(x)\right)$ has the following form

- $\rho(x)=f(1,0)=k_{1}$ for $x \in\left[-\left(1-\Delta \cdot \rho_{1}\right), 0\right]$,
- $\rho(x)=f\left(\rho_{1}, \rho_{2}\right)$ for $x \in[0, \Delta]$,
- $\rho(x)=f(0,1)=k_{2}$ for $x \in\left[\Delta, \Delta+\left(1-\Delta \cdot \rho_{2}\right)\right]$, and
- $\rho(x)=f(0,0)=0$ for all other x.

For this combined function $\rho(x)$, the condition that $\int \rho(x) d x=1$ takes the form

$$
\begin{equation*}
k_{1} \cdot\left(1-\Delta \cdot \rho_{1}\right)+f\left(\rho_{1}, \rho_{2}\right) \cdot \Delta+k_{2} \cdot\left(1-\Delta \cdot \rho_{2}\right)=1 \tag{4}
\end{equation*}
$$

Let us now consider a different pair of pdfs, $\rho_{1}^{\prime}(x)$ and $\rho_{2}^{\prime}(x)$. The first $\operatorname{pdf} \rho_{1}^{\prime}(x)$ is defined by the following formulas:

- $\rho_{1}^{\prime}(x)=2 \rho_{1}$ for $x \in[0, \Delta / 2]$,
- $\rho_{1}^{\prime}(x)=1$ for $x \in\left[-\left(1-\Delta \cdot \rho_{1}\right), 0\right]$, and
- $\rho_{1}^{\prime}(x)=0$ for all other x.

The second pdf $\rho_{2}^{\prime}(x)$ is defined by the following formula:

- $\rho_{2}^{\prime}(x)=2 \rho_{2}$ for $x \in[\Delta / 2, \Delta]$,
- $\rho_{2}^{\prime}(x)=1$ for $x \in\left[\Delta, \Delta+\left(1-\Delta \cdot \rho_{2}\right)\right]$, and
- $\rho_{2}^{\prime}(x)=0$ for all other x.

Then, the combined function $\rho^{\prime}(x)=f\left(\rho_{1}^{\prime}(x), \rho_{2}^{\prime}(x)\right)$ has the following form

- $\rho^{\prime}(x)=f(1,0)=k_{1}$ for $x \in\left[-\left(1-\Delta \cdot \rho_{1}\right), 0\right]$,
- $\rho^{\prime}(x)=f\left(2 \rho_{1}, 0\right)=k_{1} \cdot\left(2 \rho_{1}\right)$ for $x \in[0, \Delta / 2]$,
- $\rho^{\prime}(x)=f\left(0,2 \rho_{2}\right)=k_{2} \cdot\left(2 \rho_{2}\right)$ for $x \in[\Delta / 2, \Delta]$,
- $\rho^{\prime}(x)=f(0,1)=k_{2}$ for $x \in\left[\Delta, \Delta+\left(1-\Delta \cdot \rho_{2}\right)\right]$, and
- $\rho^{\prime}(x)=f(0,0)=0$ for all other x.

For this combined function $\rho^{\prime}(x)$, the condition that $\int \rho^{\prime}(x) d x=1$ takes the form

$$
\begin{equation*}
k_{1} \cdot\left(1-\Delta \cdot \rho_{1}\right)+k_{1} \cdot\left(2 \rho_{1}\right) \cdot(\Delta / 2)+k_{2} \cdot\left(2 \rho_{2}\right) \cdot(\Delta / 2)+k_{2} \cdot\left(1-\Delta \cdot \rho_{2}\right)=1 \tag{5}
\end{equation*}
$$

If we subtract (5) from (4) and divide the difference by $\Delta>0$, then we conclude that $f\left(\rho_{1}, \rho_{2}\right)-k_{1} \cdot \rho_{1}-k_{2} \cdot \rho_{2}=0$, i.e., exactly what we want to prove in this section.
5°. To complete the proof, we need to show that $k_{2}=1-k_{1}$, i.e., that $k_{1}+k_{2}=1$.

Indeed, let us take:

- $\rho_{1}(x)=\rho_{2}(x)=1$ when $x \in[0,1]$ and
- $\rho_{1}(x)=\rho_{2}(x)$ for all other x.

Then, for the combined pdf, we have:

- $\rho(x)=f\left(\rho_{1}(x), \rho_{2}(x)\right)=k_{1}+k_{2}$ for $x \in[0,1]$ and
- $\rho(x)=0$ for all other x.

For this combined function $\rho(x)$, the condition $\int \rho(x) d x=1$ implies that

$$
k_{1}+k_{2}=1
$$

The proposition is proven.

Acknowledgments

This work was supported in part by the National Science Foundation grants HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and DUE-0926721, and by an award "UTEP and Prudential Actuarial Science Academy and Pipeline Initiative" from Prudential Foundation.

References

[1] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, Chapman and Hall/CRC, Boca Raton, Florida, 2011.

