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Why Mixture of Probability Distributions?

Andrzej Pownuk and Vladik Kreinovich
Computational Scie nce Program
University of Texas at El Paso
El Paso, Texas 79968, USA

ampownuk@utep.edu, vladik@utep.edu

Abstract

If we have two random variables ξ1 and ξ2, then we can form their
mixture if we take ξ1 with some probability w and ξ2 with the remaining
probability 1 − w. The probability density function (pdf) ρ(x) of the
mixture is a convex combination of the pdfs of the original variables:
ρ(x) = w · ρ1(x) + (1 − w) · ρ2(x). A natural question is: can we use
other functions f(ρ1, ρ2) to combine the pdfs, i.e., to produce a new pdf
ρ(x) = f(ρ1(x), ρ2(x))? In this paper, we prove that the only combination
operations that always lead to a pdf are the operations

f(ρ1, ρ2) = w · ρ1 + (1− w) · ρ2

corresponding to mixture.

1 Formulation of the Problem

What is mixture. If we have two random variables ξ1 and ξ2, then, for each
probability w ∈ [0, 1], we can form a mixture ξ of these variables by selecting ξ1
with probability w and ξ2 with the remaining probability 1− w; see, e.g., [1].

In particular, if we know the probability density function (pdf) ρ1(x) corre-
sponding to the first random variable and the probability density function ρ2(x)
corresponding to the second random variable, then the probability density func-
tion ρ(x) corresponding to their mixture has the usual form

ρ(x) = w · ρ1(x) + (1− w) · ρ2(x). (1)

A natural question. A natural question is: are there other combination
operations f(ρ1, ρ2) that always transform two probability distributions ρ1(x)
and ρ2(x) into a new probability distribution

ρ(x) = f(ρ1(x), ρ2(x)). (2)

1



Our result. Our result is that the only possible transformation (2) that always
generates a probability distribution is the mixture (1), for which

f(ρ1, ρ2) = w · ρ1 + (1− w) · ρ2 (3)

for some w ∈ [0, 1].

2 Main Result

Definition 1. We say that a function f(ρ1, ρ2) that maps pairs of non-negative
real numbers into a non-negative real number is a probability combination op-
eration if for every two probability density functions ρ1(x) and ρ2(x) defined on
the same set X, the function ρ(x) = f(ρ1(x), ρ2(x)) is also a probability density
function, i.e.,

∫
ρ(x) dx = 1.

Proposition. A function f(ρ1, ρ2) is a probability combination operation if and
only if it has the form f(ρ1, ρ2) = w · ρ1 + (1− w) · ρ2 for some w ∈ [0, 1].

Proof.

1◦. Let us first prove that f(0, 0) = 1.

Indeed, let us take X = IR, and the following pdfs:

• ρ1(x) = ρ2(x) = 1 for x ∈ [0, 1] and

• ρ1(x) = ρ2(x) = 0 for all other values x.

Then, the combined function ρ(x) = f(ρ1(x), ρ2(x)) has the following form:

• ρ(x) = f(1, 1) when x ∈ [0, 1] and

• ρ(x) = f(0, 0) for x ̸∈ [0, 1].

Let us use the condition
∫
ρ(x) dx = 1 to prove that f(0, 0) = 0.

We can prove it by contradiction. If we had f(0, 0) ̸= 0, i.e., if we had
f(0, 0) > 0, then we would have∫

ρ(x) dx = f(1, 1) · 1 + f(0, 0) · ∞ = ∞ ≠ 1.

Thus, we should have f(0, 0) = 0.

2◦. Let us now prove that f(0, ρ2) = k2 · ρ2 for some k2 ≥ 0.

Let us take the following function ρ1(x):

• ρ1(x) = 1 for x ∈ [−1, 0] and

• ρ1(x) = 0 for all other x.
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Let us now pick any number ρ2 > 0 and define the following pdf ρ2(x):

• ρ2(x) = ρ2 for x ∈ [0, 1/ρ2] and

• ρ2(x) = 0 for all other x.

In this case, the combined function ρ(x) has the following form:

• ρ(x) = f(1, 0) for x ∈ [−1, 0];

• ρ(x) = f(0, ρ2) for x ∈ [0, 1/ρ2], and

• ρ(x) = f(0, 0) = 0 for all other x.

Thus, the condition
∫
ρ(x) dx = 1 takes the form

f(1, 0) + f(0, ρ2) · (1/ρ2) = 1,

hence f(0, ρ2) · (1/ρ2) = 1 − f(1, 0) and therefore, f(0, ρ2) = k2 · ρ2, where we

denoted k2
def
= 1− f(1, 0).

3◦. Similarly, we can prove that f(ρ1, 0) = k1 · ρ1 for some k1 ≥ 0.

4◦. Let us now prove that for all ρ1 and ρ2, we have f(ρ1, ρ2) = k1 · ρ1 + k2 · ρ2.

We already know, from Parts 1, 2 and 3 of this proof, that the desired equality
holds when one of the values ρi is equal to 0.

Let us now take any values ρ1 > 0 and ρ2 > 0. Let us then pick a positive
value ∆ ≤ 1/max(ρ1, ρ2) and define the following pdfs. The first pdf ρ1(x) is
defined by the following formulas:

• ρ1(x) = ρ1 for x ∈ [0,∆],

• ρ1(x) = 1 for x ∈ [−(1−∆ · ρ1), 0], and

• ρ1(x) = 0 for all other x.

The second pdf ρ2(x) is defined by the following formula:

• ρ2(x) = ρ2 for x ∈ [0,∆],

• ρ2(x) = 1 for x ∈ [∆,∆+ (1−∆ · ρ2)], and

• ρ2(x) = 0 for all other x.

Then, the combined function ρ(x) = f(ρ1(x), ρ2(x)) has the following form

• ρ(x) = f(1, 0) = k1 for x ∈ [−(1−∆ · ρ1), 0],

• ρ(x) = f(ρ1, ρ2) for x ∈ [0,∆],

• ρ(x) = f(0, 1) = k2 for x ∈ [∆,∆+ (1−∆ · ρ2)], and
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• ρ(x) = f(0, 0) = 0 for all other x.

For this combined function ρ(x), the condition that
∫
ρ(x) dx = 1 takes the form

k1 · (1−∆ · ρ1) + f(ρ1, ρ2) ·∆+ k2 · (1−∆ · ρ2) = 1. (4)

Let us now consider a different pair of pdfs, ρ′1(x) and ρ′2(x). The first
pdf ρ′1(x) is defined by the following formulas:

• ρ′1(x) = 2ρ1 for x ∈ [0,∆/2],

• ρ′1(x) = 1 for x ∈ [−(1−∆ · ρ1), 0], and

• ρ′1(x) = 0 for all other x.

The second pdf ρ′2(x) is defined by the following formula:

• ρ′2(x) = 2ρ2 for x ∈ [∆/2,∆],

• ρ′2(x) = 1 for x ∈ [∆,∆+ (1−∆ · ρ2)], and

• ρ′2(x) = 0 for all other x.

Then, the combined function ρ′(x) = f(ρ′1(x), ρ
′
2(x)) has the following form

• ρ′(x) = f(1, 0) = k1 for x ∈ [−(1−∆ · ρ1), 0],

• ρ′(x) = f(2ρ1, 0) = k1 · (2ρ1) for x ∈ [0,∆/2],

• ρ′(x) = f(0, 2ρ2) = k2 · (2ρ2) for x ∈ [∆/2,∆],

• ρ′(x) = f(0, 1) = k2 for x ∈ [∆,∆+ (1−∆ · ρ2)], and

• ρ′(x) = f(0, 0) = 0 for all other x.

For this combined function ρ′(x), the condition that
∫
ρ′(x) dx = 1 takes the

form

k1 · (1−∆ · ρ1)+ k1 · (2ρ1) · (∆/2)+ k2 · (2ρ2) · (∆/2)+ k2 · (1−∆ · ρ2) = 1. (5)

If we subtract (5) from (4) and divide the difference by ∆ > 0, then we conclude
that f(ρ1, ρ2)− k1 · ρ1 − k2 · ρ2 = 0, i.e., exactly what we want to prove in this
section.

5◦. To complete the proof, we need to show that k2 = 1−k1, i.e., that k1+k2 = 1.

Indeed, let us take:

• ρ1(x) = ρ2(x) = 1 when x ∈ [0, 1] and

• ρ1(x) = ρ2(x) for all other x.

Then, for the combined pdf, we have:
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• ρ(x) = f(ρ1(x), ρ2(x)) = k1 + k2 for x ∈ [0, 1] and

• ρ(x) = 0 for all other x.

For this combined function ρ(x), the condition
∫
ρ(x) dx = 1 implies that

k1 + k2 = 1.

The proposition is proven.
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