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Abstract 49 

 50 

Genotypic microbial resistance to antibiotics with intracellular targets commonly arises from 51 

mutations that increase the activities of transporters (pumps) that cause the efflux of intracellular 52 

antibiotics. A priori it is not obvious why this is so much more common than are mutations that 53 

simply inhibit the activity of uptake transporters for the antibiotics. We analyse quantitatively a 54 

mathematical model consisting of one generic equilibrative transporter and one generic 55 

concentrative uptake transporter (representing any number of each), together with one generic 56 

efflux transporter. The initial conditions are designed to give an internal concentration of the 57 

antibiotic that is three times the minimum inhibitory concentration (MIC). The effect of varying the 58 

activity of each transporter type 100-fold is dramatically asymmetric, in that lowering the activities 59 

of individual uptake transporters has comparatively little effect on internal concentrations of the 60 

antibiotic. By contrast, increasing the activity of the efflux transporter lowers the internal antibiotic 61 

concentration to levels far below the MIC. Essentially, these phenomena occur because inhibiting 62 

individual influx transporters allows others to ‘take up the slack’, whereas increasing the activity of 63 

the generic efflux transporter cannot easily be compensated. The findings imply strongly that 64 

inhibiting efflux transporters is a much better approach for fighting antimicrobial resistance than is 65 

stimulating import transporters. This has obvious implications for the development of strategies to 66 

combat the development of microbial resistance to antibiotics and possibly also cancer 67 

therapeutics in human. 68 

 69 

 70 

  71 
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Introduction 72 

In order to understand genotypic antimicrobial resistance and how to combat it, a starting point 73 

should be an understanding of the main kinds of mutation that can cause it. For present purposes, 74 

we assume that the molecular targets of the antibiotic are intracellular (and indeed when the 75 

microbes themselves are inside host cells, their access presents its own problems 1). Broadly, 76 

these mutations are of then of three kinds 2-4: (i) mutations in or overproduction of one or more 77 

targets of the antibiotic (e.g. DNA gyrase and topoisomerase IV for ciprofloxacin 5), (ii) mutations 78 

that lead to inactivation of the antibiotic (e.g. of chloramphenicol 6 and aminoglycosides 7), or (iii) 79 

mutations that affect the ability of the antibiotic to be transported to a compartment containing its 80 

sites of action in the target microbe.  81 

 82 

To enter the target microbe, antibiotics (as do other drugs, e.g. 8-14) require transporters. (In Gram-83 

negatives, outer-membrane proteins may also play a role 15-17.) The precise identities of these 84 

uptake transporters are in general not well understood, because mutations tend to lead only to 85 

partial resistance. However, they have been identified for antibiotics such as aminoglycosides 18, 86 

chloramphenicol 19, cycloserine 20 and fosfomycin 21, 22. In addition, bacteria have also evolved a 87 

variety of efflux pumps that serve to remove such antibiotics (see later, and also many other 88 

substances 23, 24) from the cells. Thus, mutations that affect transporter activity can in principle 89 

involve uptake transporters, efflux transporters, or upstream regulators of their activity. Our focus is 90 

on this collective class, viz. transporters. In particular, consistent with the difficulty of identifying 91 

transporters for their uptake, we note that the very great bulk of transporter-mediated resistance is 92 

mediated via (multi-drug) efflux rather than influx transporters (e.g. 25-45). The focus of this article is 93 

to enquire as to the reasons why this might be so. 94 

 95 

To this end, we create a very simple and generic model (Fig 1), consisting of two types of influx 96 

and one type of efflux transporter. For the influx transporters, one is a generic equilibrative 97 

transporter and one is concentrative for uptake, i.e. it has the capability of raising the concentration 98 

of the drug of interest to a higher level inside than outside. Such transporters necessarily require a 99 

source of free energy; in prokaryotes this is mainly ATP 46, 47. The effluxer is also taken to be ATP-100 
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driven. We assume that a drug (antibiotic) has been added at 3x the minimum inhibitory 101 

concentration (MIC), which for our purposes is taken to be 1 concentration unit in the case of the 102 

wild type, but that the drug does not itself alter the expression levels of the transporters (cf. 48).  103 

Fig 1. The generic model in which we have a suite of (A) equilibrative and (B) concentrative influx 104 

transporters, together with a generic ATP-driven efflux transporter. 105 

 106 

Intuitively, lowering the internal concentration of the drug by blocking the concentrative one only 107 

works if the equilibrative ones are collectively slower than an individual concentrator, and this is 108 

unlikely if there are several. Similarly, trying to lower the internal concentration by blocking one of 109 

the equilibrative ones would just let the concentrative one(s) ‘pick up the slack’. This already 110 

suggests the general reason why a partial inhibition of uptake activity might have comparatively 111 

little effect. Of course if we start with the drug at a level above its MIC it is clear that increasing the 112 

effluxer activity can serve to bring to a level below the MIC (and that lowering any starting efflux 113 

activity would increase antibiotic sensitivity). We now wish to assess these intuitions by putting 114 

some concrete numbers on these fluxes. In systems biology 49-53, this is commonly done by casting 115 

the enzymatic rate equations into the form of ordinary differential equations, and this is what we do 116 

here. 117 

 118 
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Materials and methods 119 

As previously 54, all simulations were performed using COPASI, here version 4.27, with the LSODA 120 

integrator 55-57 (http://copasi.org/), which reads and writes SBML-compliant models 58-60. It contains 121 

a full suite of enzyme rate equations, and admits automated parameter sweeps. Model files 122 

including the precise parameters are included as supplementary data. 123 

 124 

The simulations were carried out with a differential equation-based model with three compartments 125 

(Fig 1), viz. the intracellular space, the inner membrane, and the extracellular space (including the 126 

periplasmic volume). Three different transporters are considered: transporter A is an equilibrator 127 

that allows transport in both directions  (Keq = 1), B is a concentrative influx transporter; even 128 

though allowing transport in both directions, it favors transport into the cell (modelled by setting 129 

Keq = 10 or Keq = 100). C is an efflux pump that only transports the drug from the cytoplasm to the 130 

outside.  131 

 132 

The model was set up to mimic typical assays, and parameters were set to values that are 133 

comparable to what is found in the literature as follows. Total volume of the assay is 150 µl (from 134 

61). Each assay is estimated to have 106 cells, with an average volume of 4×10-15 l per cell 62 135 

(grown in rich media). Estimates of the proportion of volume taken by the periplasm are around 136 

30% 63. Thus, the total cell volume in the assay is estimated at 4×10-9 l and the cytoplasmic volume 137 

at 2.8×10-9 l. For the inner membrane surface area we adopt the average value in the range 138 

considered by Wong and Amir 64 34.5 µm2 (3.45×10-7 cm2), which corresponds to a total 139 

surface area of 0.345 cm2 (i.e. for all 106 cells); note that Thanassi et al. provide an 140 

estimate 3-fold lower (0.103 cm2) 65.  141 

 142 

Kinetic parameters for the efflux pump (C) come from Nagano and Nikaido for AcrB (part 143 

of acrAB/tolC) with nitrocefin 66; they cite a Km of 5 µM, kcat of 10 s-1 and a Vmax of 2.35×10-11 144 

mol/s/109 cells, which implies a total of 2.35×10-12 mol of transporter. Considering that our 145 

simulation contains 106 cells, the adjusted amount of transporter is then 2.35×10-15 mol 146 
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(considering the surface area estimated above, this corresponds to a surface density of 6.8×10-15 147 

mol/cm2) with a Vmax of 2.35×10-14 mol/s, assuming the same kcat as for nitrocefin. For Km 148 

we chose a higher value (500 µM). 149 

 150 

 151 

Results 152 

Fig 2 shows our ‘baseline simulation, in which a steady-state intracellular level of the drug similar 153 

to that outside is obtained by balancing the three main fluxes. 154 

 155 

Fig 2 Effect of varying the relative rates of the three generic transporters individually on the 156 

normalized accumulation of an antibiotic. Parameters as in Methods and the supplementary files, 157 

with Keq for transporter B set at 10. 158 
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 159 

It is clear that there is a very strong asymmetry; decreasing the individual activities of the 160 

equilibrative or concentrative transporters even 100-fold has only a 1.63- or 2.33-fold effect on the 161 

steady-state intracellular concentration of the drug, while increasing the effluxer activity by the 162 

same amount lowers the intracellular concentration fifty-fold. 163 

 164 

Changing the (maximal) degree to which the concentrator concentrates (viz 100-fold rather than 165 

10-fold) also has no material effect on the results when individual transporter activities are lowered, 166 

and only a marginal effect when the activity of the concentrator is raised (Fig 3, top right). 167 

 168 

 169 

Fig 3. Effect of varying the relative rates of the three generic transporters on the normalized 170 

accumulation of accumulation of an antibiotic. Parameters as in Methods and the supplementary 171 

files, with Keq for transporter B set at 100. 172 
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 173 

 174 

Discussion 175 

Microbial resistance to antibiotics (AMR) remains a huge problem (e.g. 67-72). To this end, a major 176 

cause is the ability of efflux pumps to create resistance to antibiotics by pumping them out from the 177 

cytoplasm of cells (e.g. 25-45). This is true for cytotoxic substances more generally, including anti-178 

cancer drugs 42, 48.  Many efflux transporters are sufficiently active that even when the drug has 179 

relatively tight intracellular binding sites they can effectively remove almost all of it, as is the case 180 

with AcrAB/TolC and ethidium bromide 73, 74. A recent experimental survey of several hundred gene 181 

knockouts in E. coli, using fluorescent probes as antibiotic surrogates showed that dozens of such 182 

efflux transporters could be active and thereby contribute to lowering the steady-state uptake 47. 183 

There is also considerable redundancy and plasticity 75. Thus, as expected from metabolic control 184 

analysis, while there is little effect of single-gene knockouts on fluxes 76, there can be potentially 185 

very large effects on the concentrations of intermediary metabolites 77, 78 or, as in our model, the 186 

intracellular concentration of an antibiotic of interest, 187 

 188 

If there is only a single influx transporter (or one that is overwhelmingly dominant) for a cytotoxic 189 

drug of interest, as occasionally happens 13, inhibiting it can lower the toxicity of the drug 190 

enormously; in the case of YM155 (sepantronium bromide) this could be by several hundredfold 13. 191 

However, it is possible that mutation of a non-redundant influx transporter might also induce 192 

significant metabolic costs, although there are also constraints 79. Moreover, most cytotoxic drugs 193 

can be taken up by multiple transporters 80, 81, and affecting all of them simultaneously is probably 194 

not realistic.  195 

 196 

The consequences of our simple model are thus clear: in order to inhibit the development of 197 

antimicrobial resistance, we need to be able to inhibit the efflux pumps that such bacteria possess 198 

and use in abundance. To this end, it is indeed widely considered that inhibitors of efflux pumps 199 

might well have a role to play in reducing AMR 42, 82-85. The present simulations put this thinking on 200 

a firm and quantitative footing.  201 
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