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Why network approach can promote a new way of thinking
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This work deals with the particular nature of network-based approach in biology. We will
comment about the shift from the consideration of the molecular layer as the definitive
place where causative process start to the elucidation of the among elements (at any level
of biological organization they are located) interaction network as the main goal of scientific
explanation.This shift comes from the intrinsic nature of networks where the properties of
a specific node are determined by its position in the entire network (top-down explanation)
while the global network characteristics emerge from the nodes wiring pattern (bottom-up
explanation).This promotes a “middle-out” paradigm formally identical to the time honored
chemical thought holding big promises in the study of biological regulation.
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INTRODUCTION
The classical form in which biological systems are described
(being they metabolic charts, gene expression regulation path-
ways, protein–protein interaction maps, intercellular connections,
food webs, and so forth) corresponds to a set of nodes linked by
edges in which the nodes are the basic elements of the described
system (genes, proteins, metabolites, cells, and so forth) and
the edges connecting them some rules of the kind “is trans-
formed into” or “is increased by” or, more in general “is correlated
with.”

The figures normally present in books and scientific papers
implicitly consider these pathways as linear causative chains in
which a signal starting from a molecular perturbation, after a
sequence of “if-then” events, emerges as a biological end-point
(Tun et al., 2011). Normally these processes are referred as “cas-
cades”provoking a progressive amplification of the initial stimulus
(MacFarlane, 1964).

This style of reasoning considers biological systems having a
strictly hierarchical architecture going from molecular to whole
organism level and in which the ultimate causative layer is the
most microscopic one, i.e., the molecular level (genes).

The widespread recognition of the limitations of this purely
bottom-up way of reasoning [e.g., the problems encountered in
genome-wide-association-studies (GWAS), see McCarthy et al.,
2008] is in general ascribed to lack of sufficient statistical power
of the study and to the need of more sophisticated analyses. The
recognition of alternative“ultimate”explanation levels is in general
referred to as “epigenetics” (Jiang et al., 2004).

The development of high throughput “omics” methodologies
in which thousands of variables (genes, proteins, metabolites)
are measured in parallel on the same statistical units (biologi-
cal samples) made the graphs corresponding to the “perceived”

regulation networks sketched in the usual “box-and-arrow” style
to become larger and larger and urgently asked for some kind of
global analysis in order to get rid of their wild multiplicity.

Considering the graph as a system of differential equations
in which an entering stimulus, correspondent to a modification
of a peripheral node of the network, is progressively processed
according to the wiring architecture and kinetics constraints is the
most powerful representation. In the case of biological systems this
avenue of research is severely hampered by a lot of problems like
the difficulties in parameter estimation (Gutenkunst et al., 2007)
overfitting (Sun et al., 2012), lack of stationarity (Donner et al.,
2011).

For these reasons many authors preferred a purely topolog-
ical approach to the analysis of biological networks (Nordling
et al., 2007; Dehmer et al., 2013) considering the presence of a link
between two nodes as a pure yes/no binary relation and limiting
themselves to statistical descriptions making use of the so called
graph invariants (Watts and Strogatz, 1998). Graph invariants are
statistical descriptors of networks relying on the simple count of
nodes and edges with no reference at the nature of each node,
enabling the analyst to identify crucial elements of the network
or to highlight specific features of the entire network architecture
responsible for some aspects of the studied system behavior (Watts
and Strogatz, 1998).

In a recent work Dehmer et al. (2013) demonstrated the effi-
ciency of graph invariants derived by the adjacency matrix coming
from the gene expression signatures of different patient samples
in predicting the different disease states with no explicit reference
to the specific nature of the involved nodes (genes).

The existence of an autonomous level of analysis, independent
of the specific properties of the elements and directly deriving
from the wiring pattern is at the basis of the so called Tellegen
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theorem (Tellegen, 1952; Mikulecki, 2001) stating the thermo-
dynamics of each system has two complementary but distinct
contributions: the constitutive laws for the network elements and
the network topology. The use of constitutive laws for the net-
works elements is the usual way we tackle natural phenomena,
Tellegen demonstrated (Tellegen, 1952) the topology or connected
pattern of these elements constitutes an independent reality about
the system (Mikulecki, 2001). The same topology can be realized
for an infinite variety of network elements giving rise to shared
universal properties.

The importance of purely topological properties is widely
accepted in protein science, where protein contact networks allow
to derive crucial functional features of the studied systems (Di
Paola et al., 2013) but it is still in its infancy in the field of biological
regulation.

We will show in the next how this way of reasoning can by
no means be considered as a new approach being at the basis of
chemical thought since the widespread use of structural formulas
(a particular form of graph) in organic chemistry around 80 years
ago allowing to define a generalized“Graph-Energy”(Gutman and
Zhou, 2006) analogous to the Huckel Molecular Orbital Theory
used by chemists to approximate

∏
-electron energies (Gunthard

and Primas, 1956).

GRAPHS: A “CHEMICAL” CONCEPT
Network graph-theoretical approaches are located half-way
between bottom-up and top-down approaches focusing on the
relation between the elements of the studied phenomenon. We
can roughly describe the network approach as the answer to the
question “What can we derive from the sole knowledge of the
wiring diagram of a system?”

The classic Konigsberg bridge problem introduced graph the-
ory in 18th century. The problem had the following formulation:
does there exist a walk crossing each of the seven bridges of
Konigsberg exactly once? The solution to this problem appeared in
“Solutio Problematis ad geometriam situs pertinentis” by Eulero
(1741). This structure was called a graph and this was the first time
a problem was codified in terms of nodes and edges (Figure 1).

The problem was to find a walk through the city that would
cross each bridge once and only once. The islands could not be

FIGURE 1 |The Konigsberg bridge problem: the seven bridges (edges)

extremities are indicated by letters (nodes).

reached by any route other than the bridges, and every bridge
must have been crossed completely every time; one could not walk
halfway onto the bridge and then turn around and later cross
the other half from the other side. The walk need not start and
end at the same spot. Eulero proved that the problem has no
solution. The interest of the Eulero demonstration lies in the fact
he considered as the only important feature for the solution the
sequence of bridges crossed. He formalized the problem in terms
of nodes (land masses) and edges (bridges) connecting the nodes.
The resulting mathematical structure is called a graph.

More in general, a graph G is a mathematical object used to
model complex structures and it is made of a finite set of vertices
(or nodes) V and a collection of edges E connecting two vertices
(Figure 2).

Graphs can be defined by descriptors located at local (single
nodes), global (entire network), and mesoscale (clusters of nodes,
optimal paths) levels. Thus we can compute the degree of each
node (how many links are attached to a given node) that is a
local, microscopic characteristic or we can compute the so called
“average shortest path” or “characteristic length” of a graph corre-
sponding to the average length of minimal paths connecting all the
node pairs (this corresponds to a mesoscopic feature of the sys-
tem) or the general connectivity of the network (A global feature;
Watts and Strogatz, 1998; Di Paola et al., 2013).

It is important to stress these different views are strictly inter-
mingled among them, given they derive from the same basic
representation (the graph) so that any view influences (and in
turn is influenced) by all the others. The necessary (and natural)
interaction of different level views is called “middle-out” approach
to stress the fact the interest is focused on the mesoscopic level,
i.e., on the pattern of between elements relation and not on the

FIGURE 2 | A protein contact network (PCN): this is a complex graph in

which each node corresponds to an aminoacid residue and each edge

to a physical contact between two residues. The nodes are variously
colored according to aminoacid chemico-physical features (Di Paola et al.,
2013). The chemico-physical features can be made to correspond to the
Tellegen’s constitutive laws, while the wiring pattern has an autonomous
status.
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fundamental features of the constituting elements (Csermely et al.,
2005).

The science that was mostly influenced by this “naturally
systemic” view is chemistry that uses since decades the most
widespread (and effective) graph formalization: the structural for-
mula (Di Paola et al., 2013). An hydrogen atom embedded into
methane molecule has different features than the same hydrogen
atom of a water molecule: e.g., the hydrogen in the water molecule
has a partial positive charge much greater than the methane hydro-
gen for the greater electronegative character of oxygen with respect
to carbon atom. This is a clear example of top-down causation: the
properties of the most basic level (atom) depends on the features of
the entire system (molecule). At the same time both methane and
water molecules derive their features from the constituent atoms
(bottom-up causation). Stressing the two “directions of causality”
is in any case out-of-scope, because the chemical graph incorpo-
rates both into a global systemic reasoning made it possible by the
structural formula or chemical graph.

If we shift to more complex formulas of organic molecules
we can appreciate the richness of the possibilities offered by this
approach by the way thousands of different quantitative features
of the molecules can be directly derived from structural formulas
so that, strictly speaking, properties like solubility, melting point,
molar refractivity, partition coefficients can be considered as graph
descriptors (Todeschini and Consonni, 2008).

Organic chemistry is thus a perfect example of the power
of middle-out approach: a chemical graph (structural formula)
allows for deriving functional properties of the studied object
(chemico-physical and reactivity features), in other words, a
“semantics” emerges from a purely syntactical approach (molecu-
lar graph). In the case of chemistry, the existence of very powerful
“network-based-theories” is a crucial ingredient of the success of
network approaches. As a matter of fact the so called “energy of
a graph” E(G) can be defined on a purely topological basis as
the sum of the absolute values of the eigenvalues of its adjacency
matrix (de Abreu et al., 2010), theoretical chemists did know since
decades (Gunthard and Primas, 1956) that, under some reason-
able assumptions the graph energy was coincident with the total∏

-electrons energy according to Huckel molecular orbital theory.
The marked superiority of the simple consideration of molec-

ular graphs over more sophisticated methods in the prediction of
biological activity of drugs is an important proof of the power of
the graph-theoretical approach in medicinal chemistry (Bender
and Glen, 2005).

Is it possible, at least in perspective, to apply this style of reason-
ing when going into the more “fuzzy” biological world? The work
of Denis Noble about the absence of a single privileged level of
causation (Noble, 2012) and the need to go from a molecular to a
modular approach set forth by Hartwell et al. (1999) go along this
direction. In the following we will sketch some operative examples
of this kind of approach, focusing on the use of graph-theoretical
methods.

GOING INTO BIOLOGY
A very simple biological proof of the efficiency of the “network-
style” of reasoning, beside the much more sophisticated and deep
Dehmer et al. (2013) analysis quoted in the introduction, is the

prediction of lethal mutants in yeasts by the graph analysis of their
metabolic network (Palumbo et al., 2005, 2007).

As we stated before, all the properties relative to each node
(edge) must be derived only by its pattern of relations and thus by
its peculiar location in the complete graph. In (Palumbo et al.,
2005, 2007) the authors checked for the possibility to derive,
from purely topological information on the metabolic network
of yeast (Saccharomyces cerevisiae), the lethal character of genetic
mutations. A metabolic network can be considered as a graph
having enzymatic reactions as edges and metabolites as nodes.
Since an enzymatic reaction is catalyzed by one or more enzymes,
an edge can also represent the enzymes involved in the reac-
tion. The experimental knock-out of an enzyme corresponds to
the elimination from the network of the edge (or edges since
the same enzyme can catalyze different reactions) corresponding
to that particular enzyme (Palumbo et al., 2005). If it is possi-
ble to pick up a connectivity descriptor able to unequivocally
define essential enzymes (those enzymes whose lack provoke the
yeast death) we can safely assume the biological relevance of the
metabolism “wiring structure”, irrespective of the specific nature
of the involved enzymes.

In the case of yeast metabolic network, the analysis of 36
lethal mutations out of the 412 relative to enzymes involved in
metabolism, reported in the Stanford repository (http://www-
sequence.stanford.edu/group/yeast_deletion_project/deletions3.
html) and in Jeong et al. (2003) and cured by Ma et al. (2004),
allowed the authors to discover that the enzymes correspond-
ing to lethal mutations, when deleted, prevent the connections
between the separate nodes (Palumbo et al., 2005, 2007). No alter-
native path is available to connect the separate nodes and this
mesoscopic feature based on paths along the network explains the
essential character of each specific mutation on a pure topological
basis.

This “essentiality-by-location” mesoscopic principle equating
the lethal character of a mutation to the lack of an alternative path
in the network, was confirmed in (Palumbo et al., 2007) demon-
strating that a double mutation involving two enzymes that per
se are not essential acquires essentiality and then causes the death
of the organism, if the double knock-out provokes the “lack of
alternative path” condition. The arising of lethality by the summa-
tion of two non-lethal events derives from the existence of a global
metabolism architecture and thus cannot be inferred by going in
depth into the nature of the two enzymes, in other words is a col-
lective emergent property of the network system (Mikulecki, 2001;
Giuliani, 2010).

The lack of exceptions to the “lack of alternative path rule”
seems to rule out the existence of lethal mutations deriving by
poor kinetics, but this is might be a too strong deduction. Indeed
it is worth noting that the analyzed Stanford repository refers to
experiments carried out in the same experimental conditions and
thus eliminating all the “real life” well known difficulties that make
the phenotypic effects of a given mutation strongly context depen-
dent so that even relatively minor variations of nutrients, pH,
temperature can exert dramatic effects.

The reported study must be intended as a proof-of-concept of
the possibility to observe the“pure topology”properties devised by
Tellegen theorem in a biological context, in any case by no means
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can we consider strictly topological approach as the obliged way
for middle-out approaches in biology.

The contemporary presence of “hard wired” topology driven
(presence/absence of a link irrespective of its strength is the main
driver) and “transient functional” (kinetics plays a relevant role)
relations in biological regulation is at the basis of another very
interesting application of the “Middle-Out” (starting from the
relations) approach.

In their very interesting work, Han et al. (2004) modeled the
correlation dynamics of the mutual relation between hubs (pro-
teins engaging a very high number of relations with other proteins,
i.e., network elements with a very high node degree) and their
partners by using messenger RNA expression profiles.

The authors examined the extent to which hubs in the yeast
interactome are co-expressed with their interaction partners:
for each hub they computed the average Pearson correlation
coefficient (APCC) between the hub mRNA expression and its
neighbors and found that APCC followed a bimodal distribu-
tion clearly evidencing two distinct hub populations. They called
“party hubs” those nodes that were highly correlated as for expres-
sion with their partners (high values of APCC). By contrast, they
called “date hubs” these nodes characterized by lower APCC val-
ues. Looking at particular protein-protein interactions of “party”
and “date” hubs the authors discovered high APCC correspond to
permanent interactions while “date” hubs correspond to transient
interactions (see also Blasi et al., 2005). Moreover, the authors
(Han et al., 2004) demonstrated a link between this hub clas-
sification and the network tolerance against node breakdown.
Scale-free networks are particularly resistant to random node
removal (failure) but are extremely sensitive to targeted removal
of hubs (attack; Jeong et al., 2001). Han et al. (2004) showed that
the removal of party hubs did not affect the network charac-
teristic path length (and consequently the efficiency of network
integration), as it happens in the case of failures: conversely when
deleting date hubs, the effects were similar to those expected in
the case of targeted attacks with a dramatic increase in character-
istic length and thus a neat decrease in network communication
efficiency.

CONCLUSION
The specific role of Systems Biology is, in our opinion, to
integrate mainly mechanistic biological thinking with a rela-
tional paradigm analog to chemical thought. This positive influ-
ence can only be obtained by means of the conscious use of
network-based approaches, given the graphs have “embedded
in their intimate nature” the co-existence and mutual inter-
actions of different explanation layers. This interaction stems
from the computation of graph invariants and thus is inde-
pendent of any specific theory or assumption on the studied
phenomenon.

While there are many examples of complex network approaches
in the description of biological systems, what in our opinion
is lacking and could constitute a new frontier is the conscious
development of a network-based statistical mechanics approach
(the Dehmer et al., 2013 paper is a starting point) considering
autonomous “network biomarkers” irrespective of the “consti-
tutive laws” of the constituting elements: we are convinced this

kind of approach could make us to appreciate completely new and
unexpected “biological organizational laws”.
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