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Pyramidal neurons represent the majority of excitatory neurons in the neocortex.

Each pyramidal neuron receives input from thousands of excitatory synapses that are

segregated onto dendritic branches. The dendrites themselves are segregated into

apical, basal, and proximal integration zones, which have different properties. It is a

mystery how pyramidal neurons integrate the input from thousands of synapses, what

role the different dendrites play in this integration, and what kind of network behavior

this enables in cortical tissue. It has been previously proposed that non-linear properties

of dendrites enable cortical neurons to recognize multiple independent patterns. In

this paper we extend this idea in multiple ways. First we show that a neuron with

several thousand synapses segregated on active dendrites can recognize hundreds

of independent patterns of cellular activity even in the presence of large amounts of

noise and pattern variation. We then propose a neuron model where patterns detected

on proximal dendrites lead to action potentials, defining the classic receptive field of

the neuron, and patterns detected on basal and apical dendrites act as predictions

by slightly depolarizing the neuron without generating an action potential. By this

mechanism, a neuron can predict its activation in hundreds of independent contexts.

We then present a network model based on neurons with these properties that learns

time-based sequences. The network relies on fast local inhibition to preferentially activate

neurons that are slightly depolarized. Through simulation we show that the network

scales well and operates robustly over a wide range of parameters as long as the

network uses a sparse distributed code of cellular activations. We contrast the properties

of the new network model with several other neural network models to illustrate the

relative capabilities of each. We conclude that pyramidal neurons with thousands of

synapses, active dendrites, and multiple integration zones create a robust and powerful

sequence memory. Given the prevalence and similarity of excitatory neurons throughout

the neocortex and the importance of sequence memory in inference and behavior, we

propose that this form of sequence memory may be a universal property of neocortical

tissue.
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INTRODUCTION

Excitatory neurons in the neocortex have thousands of excitatory
synapses. The proximal synapses, those closest to the cell body,
have a relatively large effect on the likelihood of a cell generating
an action potential. However, a majority of the synapses are
distal, or far from the cell body. The activation of a single
distal synapse has little effect at the soma, and for many years
it was hard to imagine how the thousands of distal synapses
could play an important role in determining a cell’s responses
(Major et al., 2013). It has been observed that dendrite branches
are active processing elements. The activation of several distal
synapses within close spatial and temporal proximity can lead
to a local dendritic NMDA spike and consequently a significant
and sustained depolarization of the soma (Antic et al., 2010;
Major et al., 2013). This has led some researchers to suggest
that dendritic branches act as independent pattern recognizers
(Poirazi et al., 2003; Polsky et al., 2004). However, the functional
and theoretical benefits of networks of neurons with active
dendrites as compared to a multi-layer network of neurons
without active dendrites are unclear (Poirazi et al., 2003).

Lacking a theory of why neurons need active dendrites,
almost all artificial neural networks, such as those used in
deep learning (LeCun et al., 2015) and spiking neural networks
(Maass, 1997), use artificial neurons with simplified dendritic
models, introducing the possibility they may be missing key
functional aspects of biological neural tissue. To understand how
the neocortex works and to build systems that work on the same
principles as the neocortex we need an understanding of how
biological neurons integrate input from thousands of synapses
and whether active dendrites play an essential role. Of course,
neurons cannot be understood in isolation. Therefore, we also
need a complementary theory of how networks of neurons, each
with active dendrites, work together toward a common purpose.

In this paper we introduce such a theory. First, we show how
a typical pyramidal neuron with active dendrites and thousands
of synapses can recognize hundreds of independent patterns of
cellular activity. We show that a neuron can recognize these
independent patterns even in the presence of large amounts
of noise and variability as long as overall neural activity is
sparse. Next we introduce a neuron model where the inputs
to different parts of the dendritic tree serve different purposes.
In this model the patterns detected on proximal dendrites lead
to action potentials, defining the classic receptive field of the
neuron. Patterns recognized by a neuron’s distal synapses act as
predictions by depolarizing the cell without directly causing an
action potential. By this mechanism neurons can learn to predict
their activation in hundreds of unique contexts. Then we show
how a network of such neurons can learn and recall sequences
of patterns. The network relies on a competitive process where
previously depolarized neurons emit a spike sooner than non-
depolarized neurons. When combined with fast local inhibition
the network’s activation state is biased toward its predictions. A
cycle of activation leading to prediction leading to activation etc.
forms the basis of sequence memory.

We describe a set of learning and activation rules required
for neurons with active dendrites. A network of standard linear

or non-linear neurons with a simplified dendrite structure
cannot easily implement these activation and learning rules. To
do so would require the introduction of several complex and
biologically unlikely features. Therefore, we have chosen to use a
neuron model that includes active dendrites as well as proximal,
basal, and apical dendrite integration zones, which we believe
more closely matches known neuron anatomy and physiology.

Through simulation we illustrate that the sequence memory
network exhibits numerous desirable properties such as on-line
learning, multiple simultaneous predictions, and robustness. The
overall theory is consistent with a large body of experimental
evidence. We outline a number of detailed biological predictions
that can be used to further test the theory.

RESULTS

Neurons Reliably Recognize Multiple
Sparse Patterns
It is common to think of a neuron as computing a single weighted
sum of all of its synapses. This notion, sometimes called a “point
neuron,” forms the basis of almost all artificial neural networks
(Figure 1A).

Active dendrites suggest a different view of the neuron, where
neurons recognize many independent unique patterns (Poirazi
et al., 2003; Polsky et al., 2004; Larkum and Nevian, 2008).
Experimental results show that the coincident activation of 8–20

FIGURE 1 | Comparison of neuron models. (A) The neuron model used in

most artificial neural networks has few synapses and no dendrites. (B) A

neocortical pyramidal neuron has thousands of excitatory synapses located on

dendrites (inset). The co-activation of a set of synapses on a dendritic segment

will cause an NMDA spike and depolarization at the soma. There are three

sources of input to the cell. The feedforward inputs (shown in green) which

form synapses proximal to the soma, directly lead to action potentials. NMDA

spikes generated in the more distal basal and apical dendrites depolarize the

soma but typically not sufficiently to generate a somatic action potential. (C)

An HTM model neuron models dendrites and NMDA spikes with an array of

coincident detectors each with a set of synapses (only a few of each are

shown).
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synapses in close spatial proximity on a dendrite will combine in a
non-linear fashion and cause an NMDA dendritic spike (Larkum
et al., 1999; Schiller et al., 2000; Schiller and Schiller, 2001; Major
et al., 2013). Thus, a small set of neighboring synapses acts as a
pattern detector. It follows that the thousands of synapses on a
cell’s dendrites act as a set of independent pattern detectors. The
detection of any of these patterns causes an NMDA spike and
subsequent depolarization at the soma.

It might seem that 8–20 synapses could not reliably recognize
a pattern of activity in a large population of cells. However, robust
recognition is possible if the patterns to be recognized are sparse;
i.e., few neurons are active relative to the population (Olshausen
and Field, 2004). For example, consider a population of 200K
cells where 1% (2000) of the cells are active at any point in time.
We want a neuron to detect when a particular pattern occurs in
the 200K cells. If a section of the neuron’s dendrite forms new
synapses to just 10 of the 2000 active cells, and the threshold for
generating an NMDA spike is 10, then the dendrite will detect
the target pattern when all 10 synapses receive activation at the
same time. Note that the dendrite could falsely detect many
other patterns that share the same 10 active cells. However, if
the patterns are sparse, the chance that the 10 synapses would
become active for a different random pattern is small. In this
example it is only 9.8× 10−21.

The probability of a false match can be calculated precisely as
follows. Let n represent the size of the cell population and a the
number of active cells in that population at a given point in time,
for sparse patterns a ≪ n. Let s be the number of synapses on a
dendritic segment and θ be the NMDA spike threshold. We say
the segment recognizes a pattern if at least θ synapses become
active, i.e., at least θ of the s synapses match the currently active
cells.

Assuming a random distribution of patterns, the exact
probability of a false match is given by:

∑s
b=θ

(
s
b

)
×

(
n− s
a− b

)

(
n

a

) (1)

The denominator is simply the total number of possible patterns
containing a active cells in a population of n total cells. The
numerator counts the number of patterns that would connect to
θ or more of the s synapses on one dendritic segment. A more
detailed description of this equation can be found in Ahmad and
Hawkins (2016).

The equation shows that a non-linear dendritic segment can
robustly classify a pattern by sub-sampling (forming synapses to
only a small number of the cells in the pattern to be classified).
Table A in S1 Text lists representative error probabilities
calculated from Equation (1).

By forming more synapses than necessary to generate an
NMDA spike, recognition becomes robust to noise and variation.
For example, if a dendrite has an NMDA spike threshold of
10, but forms 20 synapses to the pattern it wants to recognize,
twice as many as needed, it allows the dendrite to recognize the
target pattern even if 50% of the cells are changed or inactive.

The extra synapses also increase the likelihood of a false positive
error. Although the chance of error has increased, Equation (1)
shows that it is still tiny when the patterns are sparse. In the
above example, doubling the number of synapses and hence
introducing a 50% noise tolerance, increases the chance of error
to only 1.6 × 10−18. Table B in S1 Text lists representative error
rates when the number of synapses exceeds the threshold.

The synapses recognizing a given pattern have to be co-
located on a dendritic segment. If they lie within 40µm of each
other then as few as eight synapses are sufficient to create an
NMDA spike (Major et al., 2008). If the synapses are spread
out along the dendritic segment, then up to 20 synapses are
needed (Major et al., 2013). A dendritic segment can contain
several hundred synapses; therefore each segment can detect
multiple patterns. If synapses that recognize different patterns
are mixed together on the dendritic segment, it introduces an
additional possibility of error by co-activating synapses from
different patterns. The probability of this type of error depends
on how many sets of synapses share the dendritic segment and
the sparsity of the patterns to be recognized. For a wide range
of values the chance for this type of error is still low (Table
C in S1 Text). Thus, the placement of synapses to recognize a
particular pattern is somewhat precise (they must be on the same
dendritic segment and ideally within 40µm of each other), but
also somewhat imprecise (mixing with other synapses is unlikely
to cause errors).

If we assume an average of 20 synapses are allocated to
recognize each pattern, and that a neuron has 6000 synapses,
then a cell would have the ability to recognize approximately
300 different patterns. This is a rough approximation, but makes
evident that a neuron with active dendrites can learn to reliably
recognize hundreds of patterns within a large population of cells.
The recognition of any one of these patterns will depolarize the
cell. Since all excitatory neurons in the neocortex have thousands
of synapses, and, as far as we know, they all have active dendrites,
then each and every excitatory neocortical neuron recognizes
hundreds of patterns of neural activity.

In the next section we propose that most of the patterns
recognized by a neuron do not directly lead to an action potential,
but instead play a role in how networks of neurons make
predictions and learn sequences.

Three Sources of Synaptic Input to Cortical Neurons
Neurons receive excitatory input from different sources that are
segregated on different parts of the dendritic tree. Figure 1B
shows a typical pyramidal cell, the most common excitatory
neuron in the neocortex. We show the input to the cell divided
into three zones. The proximal zone receives feedforward input.
The basal zone receives contextual input, mostly from nearby
cells in the same cortical region (Yoshimura et al., 2000; Petreanu
et al., 2009; Rah et al., 2013). The apical zone receives feedback
input (Spruston, 2008). (The second most common excitatory
neuron in the neocortex is the spiny stellate cell; we suggest
they be considered similar to pyramidal cells minus the apical
dendrites.) We propose the three zones of synaptic integration
on a neuron (proximal, basal, and apical) serve the following
purposes.
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Proximal synapses define the classic receptive field of a cell
The synapses on the proximal dendrites (typically several
hundred) have a relatively large effect at the soma and therefore
are best situated to define the basic receptive field response of the
neuron (Spruston, 2008). If the coincident activation of a subset
of the proximal synapses is sufficient to generate a somatic action
potential and if the inputs to the proximal synapses are sparsely
active, then the proximal synapses will recognize multiple unique
feedforward patterns in the same manner as discussed earlier.
Therefore, the feedforward receptive field of a cell can be thought
of as a union of feedforward patterns.

Basal synapses learn transitions in sequences
We propose that basal dendrites of a neuron recognize patterns
of cell activity that precede the neuron firing, in this way
the basal dendrites learn and store transitions between activity
patterns. When a pattern is recognized on a basal dendrite
it generates an NMDA spike. The depolarization due to an
NMDA spike attenuates in amplitude by the time it reaches
the soma, therefore when a basal dendrite recognizes a pattern
it will depolarize the soma but not enough to generate a
somatic action potential (Antic et al., 2010; Major et al., 2013).
We propose this sub-threshold depolarization is an important
state of the cell. It represents a prediction that the cell will
become active shortly and plays an important role in network
behavior. A slightly depolarized cell fires earlier than it would
otherwise if it subsequently receives sufficient feedforward input.
By firing earlier it inhibits neighboring cells, creating highly
sparse patterns of activity for correctly predicted inputs. We will
explain this mechanism more fully in a later section.

Apical synapses invoke a top-down expectation
The apical dendrites of a neuron also generate NMDA spikes
when they recognize a pattern (Cichon and Gan, 2015). An apical
NMDA spike does not directly affect the soma. Instead it can
lead to a Ca2+ spike in the apical dendrite (Golding et al., 1999;
Larkum et al., 2009). A single apical Ca2+ spike will depolarize
the soma, but typically not enough to generate a somatic action
potential (Antic et al., 2010). The interaction between apical
Ca2+ spikes, basal NMDA spikes, and somatic action potentials
is an area of ongoing research (Larkum, 2013), but we can say
that under many conditions a recognized pattern on an apical
dendrite will depolarize the cell and therefore have a similar effect
as a recognized pattern on a basal dendrite. We propose that the
depolarization caused by the apical dendrites is used to establish
a top-down expectation, which can be thought of as another form
of prediction.

The HTM Model Neuron
Figure 1C shows an abstract model of a pyramidal neuron we use
in our software simulations. We model a cell’s dendrites as a set
of threshold coincidence detectors; each with its own synapses. If
the number of active synapses on a dendrite/coincidence detector
exceeds a threshold the cell detects a pattern. The coincidence
detectors are in three groups corresponding to the proximal,
basal, and apical dendrites of a pyramidal cell. We refer to
this model neuron as an “HTM neuron” to distinguish it from

biological neurons and point neurons. HTM is an acronym for
Hierarchical Temporal Memory, a term used to describe our
models of neocortex (Hawkins et al., 2011). HTM neurons used
in the simulations for this paper have 128 dendrite/coincidence
detectors with up to 40 synapses per dendrite. For clarity,
Figure 1C shows only a few dendrites and synapses.

Networks of Neurons Learn Sequences
Because all tissue in the neocortex consists of neurons with
active dendrites and thousands of synapses, it suggests there are
common network principles underlying everything the neocortex
does. This leads to the question, what network property is
so fundamental that it is a necessary component of sensory
inference, prediction, language, and motor planning?

We propose that the most fundamental operation of all
neocortical tissue is learning and recalling sequences of patterns
(Hawkins and Blakeslee, 2004), what Karl Lashley famously
called “the most important and also the most neglected problem
of cerebral physiology” (Lashley, 1951). More specifically, we
propose that each cellular layer in the neocortex implements a
variation of a common sequence memory algorithm.We propose
cellular layers use sequencememory for different purposes, which
is why cellular layers vary in details such as size and connectivity.
In this paper we illustrate what we believe is the basic sequence
memory algorithm without elaborating on its variations.

We started our exploration of sequence memory by listing
several properties required of our network in order to model the
neocortex.

(1) On-line learning

Learningmust be continuous. If the statistics of the world change,
the network should gradually and continually adapt with each
new input.

(2) High-order predictions

Making correct predictions with complex sequences requires the
ability to incorporate contextual information from the past. The
network needs to dynamically determine how much temporal
context is needed to make the best predictions. The term “high-
order” refers to “high-order Markov chains” which have this
property.

(3) Multiple simultaneous predictions

Natural data streams often have overlapping and branching
sequences. The sequence memory therefore needs to make
multiple predictions at the same time.

(4) Local learning rules

The sequence memory must only use learning rules that are local
to each neuron. The rules must be local in both space and time,
without the need for a global objective function.

(5) Robustness

The memory should exhibit robustness to high levels of noise,
loss of neurons, and natural variation in the input. Degradation
in performance under these conditions should be gradual.
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All these properties must occur simultaneously in the context
of continuously streaming data.

Mini-Columns and Neurons: Two Representations
High-order sequence memory requires two simultaneous
representations. One represents the feedforward input to the
network and the other represents the feedforward input in
a particular temporal context. To illustrate this requirement,
consider two abstract sequences “ABCD” and “XBCY,” where
each letter represents a sparse pattern of activation in a
population of neurons. Once these sequences are learned the
network should predict “D” when presented with sequence
“ABC” and it should predict “Y” when presented with sequence
“XBC.” Therefore, the internal representation during the
subsequence “BC” must be different in the two cases; otherwise
the correct prediction cannot be made after “C” is presented.

Figure 2 illustrates how we propose these two representations
are manifest in a cellular layer of cortical neurons. The panels
in Figure 2 represent a slice through a single cellular layer in
the neocortex (Figure 2A). The panels are greatly simplified for
clarity. Figure 2B shows how the network represents two input
sequences before the sequences are learned. Figure 2C shows
how the network represents the same input after the sequences
are learned. Each feedforward input to the network is converted
into a sparse set of active mini-columns. (Mini-columns in
the neocortex span multiple cellular layers. Here we are only
referring to the cells in a mini-column in one cellular layer.)
All the neurons in a mini-column share the same feedforward
receptive fields. If an unanticipated input arrives, then all the cells
in the selected mini-columns will recognize the input pattern and
become active. However, in the context of a previously learned
sequence, one or more of the cells in the mini-columns will be
depolarized. The depolarized cells will be the first to generate
an action potential, inhibiting the other cells nearby. Thus, a
predicted input will lead to a very sparse pattern of cell activation
that is unique to a particular element, at a particular location, in
a particular sequence.

Basal Synapses Are the Basis of Sequence Memory
In this theory, cells use their basal synapses to learn the
transitions between input patterns. With each new feedforward
input some cells become active via their proximal synapses. Other
cells, using their basal synapses, learn to recognize this active
pattern and upon seeing the pattern again, become depolarized,
thereby predicting their own feedforward activation in the
next input. Feedforward input activates cells, while basal input
generates predictions. As long as the next input matches the
current prediction, the sequence continues, Figure 3. Figure 3A
shows both active cells and predicted cells while the network
follows a previously learned sequence.

Often the network will make multiple simultaneous
predictions. For example, suppose that after learning the
sequences “ABCD” and “XBCY” we expose the system to just the
ambiguous sub-sequence “BC.” In this case we want the system
to simultaneously predict both “D” and “Y.” Figure 3B illustrates
how the network makes multiple predictions when the input
is ambiguous. The number of simultaneous predictions that

can be made with low chance of error can again be calculated
via Equation (1). Because the predictions tend to be highly
sparse, it is possible for a network to predict dozens of patterns
simultaneously without confusion. If an input matches any
of the predictions it will result in the correct highly-sparse
representation. If an input does not match any of the predictions
all the cells in a column will become active, indicating an
unanticipated input.

Although every cell in a mini-column shares the same
feedforward response, their basal synapses recognize different
patterns. Therefore, cells within a mini-column will respond
uniquely in different learned temporal contexts, and overall levels
of activity will be sparser when inputs are anticipated. Both of
these attributes have been observed (Vinje and Gallant, 2002; Yen
et al., 2007; Martin and Schröder, 2013).

For one of the cells in the last panel of Figure 3A, we show
three connections the cell used to make a prediction. In real
neurons, and in our simulations, a cell would form 15 to 40
connections to a subset of a larger population of active cells.

Apical Synapses Create a Top-Down Expectation
Feedback axons between neocortical regions often form synapses
(in layer 1) with apical dendrites of pyramidal neurons whose cell
bodies are in layers 2, 3, and 5. It has long been speculated that
these feedback connections implement some form of expectation
or bias (Lamme et al., 1998). Our neuron model suggests a
mechanism for top-down expectation in the neocortex. Figure 4
shows how a stable feedback pattern to apical dendrites can
predict multiple elements in a sequence all at the same time.
When a new feedforward input arrives it will be interpreted as
part of the predicted sequence. The feedback biases the input
toward a particular interpretation. Again, because the patterns
are sparse, many patterns can be simultaneously predicted.

Thus, there are two types of prediction occurring at the same
time. Lateral connections to basal dendrites predict the next
input, and top-down connections to apical dendrites predict
multiple sequence elements simultaneously. The physiological
interaction between apical and basal dendrites is an area of active
research (Larkum, 2013) and will likely lead to a more nuanced
interpretation of their roles in inference and prediction. However,
we propose that the mechanisms shown in Figures 2–4 are likely
to continue to play a role in that final interpretation.

Synaptic Learning Rule
Our neuron model requires two changes to the learning rules
by which most neural models learn. First, learning occurs by
growing and removing synapses from a pool of “potential”
synapses (Chklovskii et al., 2004). Second, Hebbian learning and
synaptic change occur at the level of the dendritic segment, not
the entire neuron (Stuart and Häusser, 2001).

Potential synapses
For a neuron to recognize a pattern of activity it requires a set of
co-located synapses (typically 15–20) that connect to a subset of
the cells that are active in the pattern to be recognized. Learning
to recognize a new pattern is accomplished by the formation of a
set of new synapses collocated on a dendritic segment.
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FIGURE 2 | Representing sequences in cortical cellular layers. (A) The neocortex is divided into cellular layers. The panels in this figure show part of one generic

cellular layer. For clarity, the panels only show 21mini-columns with 6 cells per column. (B) Input sequences ABCD and XBCY are not yet learned. Each sequence

element invokes a sparse set of mini-columns, only three in this illustration. All the cells in a mini-column become active if the input is unexpected, which is the case

prior to learning the sequences. (C) After learning the two sequences, the inputs invoke the same mini-columns but only one cell is active in each column, labeled B′,

B′′, C′, C′′, D′, and Y′′. Because C′ and C′′ are unique, they can invoke the correct high-order prediction of either Y or D.

FIGURE 3 | Basal connections to nearby neurons predict the next input. (A) Using one of the sequences from Figure 2, both active cells (black) and

depolarized/predicted cells (red) are shown. The first panel shows the unexpected input A, which leads to a prediction of the next input B′ (second panel). If the

subsequent input matches the prediction then only the depolarized cells will become active (third panel), which leads to a new prediction (fourth panel). The lateral

synaptic connections used by one of the predicted cells are shown in the rightmost panel. In a realistic network every predicted cell would have 15 or more

connections to a subset of a large population of active cells. (B) Ambiguous sub-sequence “BC” (which is part of both ABCD and XBCY) is presented to the network.

The first panel shows the unexpected input B, which leads to a prediction of both C′ and C′′. The third panel shows the system after input C. Both sets of predicted

cells become active, which leads to predicting both D and Y (fourth panel). In complex data streams there are typically many simultaneous predictions.

Figure 5 shows how we model the formation of new synapses
in a simulated HTM neuron. For each dendritic segment we
maintain a set of “potential” synapses between the dendritic
segment and other cells in the network that could potentially
form a synapse with the segment (Chklovskii et al., 2004). The
number of potential synapses is larger than the number of
actual synapses. We assign each potential synapse a scalar value
called “permanence” which represents stages of growth of the
synapse. A permanence value close to zero represents an axon
and dendrite with the potential to form a synapse but that have
not commenced growing one. A 1.0 permanence value represents
an axon and dendrite with a large fully formed synapse.

The permanence value is incremented and decremented using
a Hebbian-like rule. If the permanence value exceeds a threshold,
such as 0.3, then the weight of the synapse is 1, if the permanence
value is at or below the threshold then the weight of the synapse is
0. The threshold represents the establishment of a synapse, albeit
one that could easily disappear. A synapse with a permanence
value of 1.0 has the same effect as a synapse with a permanence
value at threshold but is not as easily forgotten. Using a scalar
permanence value enables on-line learning in the presence of
noise. A previously unseen input pattern could be noise or it
could be the start of a new trend that will repeat in the future.
By growing new synapses, the network can start to learn a new
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FIGURE 4 | Feedback to apical dendrites predicts entire sequences. This figure uses the same network and representations as Figure 2. Area labeled “apical

dendrites” is equivalent to layer 1 in neocortex; the apical dendrites (not shown) from all the cells terminate here. In the figure, the following assumptions have been

made. The network has previously learned the sequence ABCD as was illustrated in Figure 2. A constant feedback pattern was presented to the apical dendrites

during the learned sequence, and the cells that participate in the sequence B′ C′D′ have formed synapses on their apical dendrites to recognize the constant

feedback pattern. After the feedback connections have been learned, presentation of the feedback pattern to the apical dendrites is simultaneously recognized by all

the cells that would be active sequentially in the sequence. These cells, shown in red, become depolarized (left pane). When a new feedforward input arrives it will lead

to the sparse representation relevant to the predicted sequence (middle panel). If a feedforward pattern cannot be interpreted as part of the expected sequence (right

panel) then all cells in the selected columns become active indicative of an anomaly. In this manner apical feedback biases the network to interpret any input as part of

an expected sequence and detects if an input does not match any one of the elements in the expected sequence.

pattern when it is first encountered, but only act differently after
several presentations of the new pattern. Increasing permanence
beyond the threshold means that patterns experienced more than
others will take longer to forget.

HTMneurons andHTMnetworks rely on distributed patterns
of cell activity, thus the activation strength of any one neuron or
synapse is not very important. Therefore, in HTM simulations
we model neuron activations and synapse weights with binary
states. Additionally, it is well known that biological synapses are
stochastic (Faisal et al., 2008), so a neocortical theory cannot
require precision of synaptic efficacy. Although scalar states
and weights might improve performance, they are not required
from a theoretical point of view and all of our simulations have
performed well without them. The formal learning rules used in
our HTMnetwork simulations are presented in theMaterials and
Methods section.

SIMULATION RESULTS

Figure 6 illustrates the performance of a network of HTM
neurons implementing a high-order sequence memory. The
network used in Figure 6 consists of 2048mini-columns with 32
neurons per mini-column. Each neuron has 128 basal dendritic
segments, and each dendritic segment has up to 40 actual
synapses. Because this simulation is designed to only illustrate
properties of sequence memory it does not include apical
synapses. The network exhibits all five of the desired properties
for sequence memory listed earlier.

Although we have applied HTM networks to many types
of real-world data, in Figure 6 we use an artificial data set to
more clearly illustrate the network’s properties. The input is
a stream of elements, where every element is converted to a
2% sparse activation of mini-columns (40 active columns out
of 2048 total). The network learns a predictive model of the
data based on observed transitions in the input stream. In
Figure 6 the data stream fed to the network contains a mixture
of random elements and repeated sequences. The embedded

FIGURE 5 | Learning by growing new synapses. Learning in an HTM

neuron is modeled by the growth of new synapses from a set of potential

synapses. A “permanence” value is assigned to each potential synapse and

represents the growth of the synapse. Learning occurs by incrementing or

decrementing permanence values. The synapse weight is a binary value set to

1 if the permanence is above a threshold.

sequences are six elements long and require high-order temporal
context for full disambiguation and best prediction accuracy, e.g.,
“XABCDE” and “YABCFG.” For this simulation we designed
the input data stream such that the maximum possible average
prediction accuracy is 50% and this is only achievable by using
high-order representations.

Figure 6A illustrates on-line learning and high-order
predictions. The prediction accuracy of the HTM network over
time is shown in red. The prediction accuracy starts at zero
and increases as the network discovers the repeated temporal
patterns mixed within the random transitions. For comparison,
the accuracy of a first-order network (created by using only
one cell per column) is shown in blue. After sufficient learning,
the high-order HTM network achieves the maximum possible
prediction accuracy of 50% whereas the first-order network
only achieves about 33% accuracy. After the networks reached
their maximum performance the embedded sequences were
modified. The accuracy drops at that point, but since the network
is continually learning it recovers by learning the new high-order
patterns.

Figure 6B illustrates the robustness of the network. After the
network reached stable performance we inactivated a random
selection of neurons. At up to about 40% cell death there was

Frontiers in Neural Circuits | www.frontiersin.org 7 March 2016 | Volume 10 | Article 23

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Hawkins and Ahmad Sequence Memory in Neocortex

FIGURE 6 | Simulation results of the sequence memory network. The input stream used for this figure contained high-order sequences mixed with random

elements. The maximum possible average prediction accuracy of this data stream is 50%. (A) High-order on-line learning. The red line shows the network learning

and achieving maximum possible performance after about 2500 sequence elements. At element 3000 the sequences in the data stream were changed. Prediction

accuracy drops and then recovers as the model learns the new temporal structure. For comparison, the lower performance of a first-order network is shown in blue.

(B) Robustness of the network to damage. After the network reached stable performance we inactivated a random selection of neurons. At up to 40% cell death there

is almost no impact on performance. At greater than 40% cell death the performance of the network declines but then recovers as the network relearns using

remaining neurons.

minimal impact on performance. This robustness is due to the
noise tolerance described earlier that occurs when a dendritic
segment forms more synapses than necessary to generate an
NMDA spike. At higher levels of cell death the network
performance initially declines but then recovers as the network
relearns the patterns using the remaining neurons.

As implied in part by Figure 6B the model is highly robust
and fairly insensitive to various parameter settings. The most
critical parameters are the dendritic spike threshold and the
number of synapses stored per pattern. When setting these
parameters it is important to keep in mind the tables in S1
Text, where we list parameters associated with low error rates.
In particular it is important to ensure the dendritic threshold
and synapses per pattern are high enough (at least 12 and 20,
respectively). As discussed earlier, these numbers correspond
closely to experimental literature. A more detailed discussion of
these equations can be found in Ahmad and Hawkins (2016).
Section Materials and Methods includes the specific parameters
used in these experiments.

DISCUSSION

We presented a model pyramidal neuron that is substantially
different than model neurons used in most artificial neural
networks. The key features of the model neuron are its use
of active dendrites and multiple synaptic integration zones
(proximal, basal, and apical). Active dendrites permit the neuron
to reliably recognize hundreds of independent patterns in
large populations of cells. The synaptic integration zones play
functionally unique roles enabling a neuron to predict transitions
and sequences in cell activity. In this model only the proximal
synapses lead directly to action potentials, patterns detected on
the basal and apical dendrites depolarize the cell, representing
predictions.

We showed that a network of these neurons, when combined
with fast local inhibition, learns sequences in streams of data.
Basal synapses detect contextual patterns that predict the next
feedforward input. Apical synapses detect feedback patterns that
predict entire sequences. The operation of the neuron and the
network rely on neural activity being sparse. The sequence
memory model learns continuously, uses variable amounts
of temporal context to make predictions, can make multiple
simultaneous predictions, uses only local learning rules, and
is robust to failure of network elements, noise, and pattern
variation.

It has been suggested that a neuron with active dendrites can
be equivalently modeled with a multi-layer perceptron (Poirazi
et al., 2003). Thus, the functional and theoretical benefits of active
dendrites were unclear. The sequence memory model described
in this paper suggests such a benefit by assigning unique roles to
the different synaptic integration zones. For example, our model
pyramidal neuron is directly activated only by patterns detected
on proximal synapses whereas it maintains longer lasting sub-
threshold depolarization for patterns detected on basal and apical
dendrites. Also, inhibitory effects of the network do not apply
equally to the different synaptic integration zones. And finally,
the unsupervised learning rules are different and operate at
different time scales depending on the integration zone. Although
one could conceivably create a circuit of standard perceptron-like
neurons that encompasses all of these operations, we suggest that
using a neuron model containing active dendrites and unique
integration zones is a more elegant and parsimonious approach.
It also more closely reflects the underlying biology.

Relationship to Previous Models
It is instructive to compare our proposed biological sequence
memory mechanism to other sequence memory techniques used
in the field of machine learning. The most common technique
is Hidden Markov Models (HMMs) (Rabiner and Juang, 1986).
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HMMs are widely applied, particularly in speech recognition.
The basic HMM is a first-order model and its accuracy
would be similar to the first-order model shown in Figure 6A.
Variations of HMMs can model restricted high-order sequences
by encoding high-order states by hand. Time delay neural
networks (TDNNs) (Waibel, 1989) allow a feedforward neural
network to handle a limited subset of high-order sequences
by explicitly incorporating delayed inputs. More recently,
recurrent neural networks, specifically long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997), have become
popular, often outperforming HMMs and TDNNs. Unlike HTM
networks, neither HMMs, TDNNs, nor LSTMs attempt to
model biology in any detail; as such they provide little insight
into neuronal or neocortical functions. The primary functional
advantages of the HTM model over both these techniques are
its ability to learn continuously, its superior robustness, and
its ability to make multiple simultaneous predictions. A more
detailed comparison can be found in S1 Table and in Cui et al.
(2015).

There are a number of biologically motivated sequence
memory models that are related. Coincidence detection in
pyramidal cells has been discussed in the context of temporal
thalamocortical binding and 40Hz oscillations (Llinás et al.,
1994). A number of papers have studied spiking neuron models
(Maass, 1997; Deneve, 2008; Ghosh-Dastidar and Adeli, 2009;
Jahnke et al., 2015) in the context of sequence learning.
These models are more biophysically detailed than the neuron
models used in the machine learning literature. They show
how spike-timing-dependent plasticity (STDP) can lead to a cell
becoming responsive to a particular sequence of presynaptic
spikes and to a specific time delay between each spike (Ruf and
Schmitt, 1997; Rao and Sejnowski, 2000; Gütig and Sompolinsky,
2006). Memmesheimer et al. (2014) show that a number of
precisely timed sequences can be learned and replayed, with
applications in modeling the rich vocal outputs of songbirds.
These models are generally restricted to Markovian (non-
high order) sequences and have not been applied to complex
real-world tasks.

In general spiking neuron models are at a lower level of
detail than the HTM model proposed in this paper. They
explicitly model integration times of postsynaptic potentials and
the corresponding time delays are typically sub-millisecond to a
fewmilliseconds. They also typically deal with a very small subset
of the synapses on a neuron and do not explicitly model non-
linear active dendrites or multiple synaptic integration zones (but
see Legenstein and Maass, 2011). The focus of our work is at a
larger scale. The work presented in this paper models neurons
with full sets of synapses, active dendrites, and multiple synaptic
integration zones. The networks encompass tens of thousands of
neurons arranged in columns and layers. The resulting model is
a computationally sophisticated sequence memory that can be
applied to real world problems (Cui et al., 2015). One limitation
of the HTM model presented in this paper is that it does
not deal with the specific timing of sequences. An interesting
direction for future research therefore is to connect these two
levels of modeling, i.e., to create biophysically detailed models
that operate at the level of a complete layer of cells. Some progress

is reported in Billaudelle and Ahmad (2015), but there remains
much to do on this front.

Network Capacity and Generalization
There exists significant past work on understanding the
capacity of systems with linear and non-linear neurons and
computing elements (Cover, 1965; Vapnik et al., 1994), and
their corresponding error rates (Haussler, 1988, 1990). Sparse
neural systems have been studied in Kanerva (1988), Olshausen
and Field (1997) as well as more recent work such as Jahnke
et al. (2015). The literature to date has not included a complete
characterization of error rates of sparse representations with
parameters that correspond to cortical neurons. In this paper
we extend previous work to show that it is possible to reliably
recognize high dimensional sparse patterns with the small
number of synapses required to initiate NMDA spikes on active
dendrites.

The capacity of various forms of sequence memory has been
studied before (Sompolinsky and Kanter, 1986; Riedel et al., 1988;
Leibold and Kempter, 2006). In our model it is straightforward
to obtain an estimate of sequence capacity. Although we refer
to the network model as a “sequence memory,” it is actually a
memory of transitions. There is no representation or concept of
the length of sequences or of the number of stored sequences.
The network only learns transitions between inputs. Therefore,
the capacity of a network is measured by how many transitions a
given network can store. This can be calculated as the product
of the expected duty cycle of an individual neuron (cells per
column/column sparsity) times the number of patterns each
neuron can recognize on its basal dendrites. For example, a
network where 2% of the columns are active, each column has 32
cells, and each cell recognizes 200 patterns on its basal dendrites,
can store approximately 320,000 transitions ((32/0.02)∗200). The
capacity scales linearly with the number of cells per column and
the number of patterns recognized by the basal synapses of each
neuron.

Our model enables the representation of complex high order
(non-Markovian) sequences. The model can automatically learn
very long-range temporal dependencies. As such, an important
capacity metric is how many times a particular input can
appear in different temporal contexts without confusion. This
is analogous to how many times a particular musical interval
can appear in melodies without confusion, or how many times a
particular word can be memorized in different sentences. If mini-
columns have 32 cells it does not mean a particular pattern can
have only 32 different representations. For example, if we assume
40 active columns per input, 32 cells per column, and one active
cell per column, then there are 3240 possible representations of
each input pattern, a practically unlimited number. Therefore,
the practical limit is not representational but memory-based. The
capacity is determined by how many transitions can be learned
with a particular sparse set of columns.

So far we have only discussed cellular layers where all cells in
the network can potentially connect to all other cells with equal
likelihood. This works well for small networks but not for large
networks. In the neocortex, it is well known that most regions
have a topological organization. For example cells in region V1
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receive feedforward input from only a small part of the retina
and receive lateral input only from a local area of V1. HTM
networks can be configured this way by arranging the columns in
a 2D array and selecting the potential synapses for each dendrite
using a 2D probability distribution centered on the neuron.
Topologically organized networks can be arbitrarily large.

A key consideration in learning algorithms is the issue of
generalization, or the ability to robustly deal with novel patterns.
The sequence memory mechanism we have outlined learns by
forming synapses to small samples of active neurons in streams
of sparse patterns. The properties of sparse representations
naturally allow such a system to generalize. Two randomly
selected sparse patterns will have very little overlap. Even a small
overlap (such as 20%) is highly significant and implies that the
representations share significant semantic meaning. Dendritic
thresholds are lower than the actual number of synapses on each
segment, thus segments will recognize novel but semantically
related patterns as similar. The system will see similarity
between different sequences and make novel predictions based
on analogy.

Testable Predictions
There are several testable predictions that follow from this
theory.

(1) The theory provides an algorithmic explanation for the
experimentally observed phenomenon that overall cell
activity becomes sparser during a continuous predictable
sensory stream (Vinje and Gallant, 2002; Yen et al., 2007;
Martin and Schröder, 2013). In addition, it predicts that
unanticipated inputs will result in higher cell activity,
which should be correlated vertically within mini-columns.
Anticipated inputs on the other hand will result in activity
that is uncorrelated within mini-columns. It is worth noting
that mini-columns are not a strict requirement of this theory.
The model only requires the presence of small groups of
cells that share feedforward responses and that are mutually
inhibitory. We refer to these groups as mini-columns, but
the columnar aspect is not a requirement, and the groupings
could be independent of actual mini-columns.

(2) A second core prediction of the theory is that the current
pattern of cell activity contains information about past
stimuli. Early experimental results supporting this prediction
have been reported in Nikolic̀ et al. (2009). Further studies
are required to validate the exact nature of dynamic cell
activity and the role of temporal context in high order
sequences.

(3) Synaptic plasticity should be localized to dendritic segments
that have been depolarized via synaptic input followed a
short time later by a back action potential. This effect
has been reported (Losonczy et al., 2008), though the
phenomenon has yet to be widely established.

(4) There should be few, ideally only one, excitatory synapses
formed between a given axon and a given dendritic segment.
If an excitatory axon made many synapses in close proximity
onto a single dendrite then the presynaptic cell would
dominate in causing an NMDA spike. Two, three, or even

four synapses from a single axon onto a single dendritic
segment could be tolerated, but if axons routinely made
more synapses to a single dendritic segment it would lead
to errors. Pure Hebbian learning would seem to encourage
forming multiple synapses. To prevent this from happening
we predict the existence of a mechanism that actively
discourages the formation of a multiple synapses after one
has been established. An axon can form synapses onto
different dendritic segments of the same neuron without
causing problems, therefore we predict this mechanism will
be spatially localized within dendritic segments or to a local
area of an axonal arbor.

(5) When a cell depolarized by an NMDA spike subsequently
generates an action potential via proximal input, it needs
to inhibit all other nearby excitatory cells. This requires a
fast, probably single spike, inhibition. Fast-spiking basket
inhibitory cells are the most likely source for this rapid
inhibition (Hu et al., 2014).

(6) All cells in a mini-column need to learn common
feedforward responses. This requires a mechanism to
encourage all the cells in a mini-column to become active
simultaneously while learning feedforward patterns. This
requirement for mutual excitation seems at odds with the
prior requirement for mutual inhibition when one or more
cells are slightly depolarized. We do not have a specific
proposal for how these two requirements are met but we
predict a mechanism where sometimes cells in a column
are mutually excited and at other times they are mutually
inhibited.

Different cortical regions and different layers are known to have
variations. Cells in different layers may have different dendritic
lengths and numbers of synapses (Thomson and Bannister,
2003). We predict that despite these differences all excitatory
neurons are learning transitions or sequences. Neurons with
fewer dendritic segments and fewer synapses would have learned
fewer transitions. We suggest variations in the number of
dendrites and synapses are largely a result of the number of
discoverable patterns in the data and less to do with functional
differences in the neurons themselves.

Pyramidal neurons are common in the hippocampus. Hence,
parts of our neuron and network models might apply to the
hippocampus. However, the hippocampus is known for fast
learning, which is incompatible with growing new synapses, as
synapse formation can take hours in an adult (Knott et al.,
2002; Trachtenberg et al., 2002; Niell et al., 2004; Holtmaat
and Svoboda, 2009). Rapid learning could be achieved in our
model if instead of growing new synapses, a cell had a multitude
of inactive, or “silent” synapses (Kerchner and Nicoll, 2008).
Rapid learning would then occur by turning silent synapses into
active synapses. The downside of this approach is a cell would
need many more synapses, which is metabolically expensive.
Pyramidal cells in hippocampal region CA2 have several times
the number of synapses as pyramidal cells in neocortex (Megías
et al., 2001). If most of these synapses were silent it would be
evidence to suggest that region CA2 is also implementing a
variant of our proposed sequence memory.
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MATERIALS AND METHODS

Here we formally describe the activation and learning rules for an
HTM sequence memory network. There are three basic aspects
to the rules: initialization, computing cell states, and updating
synapses on dendritic segments. These steps are described below,
along with notation and some implementation details.

Notation: Let N represent the number of mini-columns in
the layer, M the number of cells per column, and NM the total
number of cells in the layer. Each cell can be in an active state,
in a predictive (depolarized) state, or in a non-active state. Each
cell maintains a set of segments each with a number of synapses.
(In this figure we use the term “synapse” to refer to “potential
synapses” as described in the body of the paper. Thus, at any
point in time some of the synapses will have a weight of 0 and
some will have a weight of 1.) At any time step t, the set of active
cells is represented by the M×N binary matrix At, where atij is

the activity of the i’th cell in the j’th column. Similarly, the M×N
binarymatrix5t denotes cells in a predictive state at time t, where
πt
ij is the predictive state of the i’th cell in the j’th column.

Each cell is associated with a set of distal segments, Dij,
such that Dd

ij represents the d’th segment of the i’th cell in
the j’th column. Each distal segment contains a number of
synapses, representing lateral connections from a subset of the
other NM− 1 cells. Each synapse has an associated permanence
value (see Figure 5). Therefore, Dd

ij itself is also an M×N sparse

matrix. If there are s potential synapses associated with the
segment, the matrix contains s non-zero elements representing
permanence values. A synapse is considered connected if its
permanence value is above a connection threshold. We use D̃d

ij to

denote a binarymatrix containing only the connected synapses.

(1) Initialization: the network is initialized such that each
segment contains a set of potential synapses (i.e., with non-
zero permanence value) to a randomly chosen subset of
cells in the layer. The permanence values of these potential
synapses are chosen randomly: initially some are connected
(above threshold) and some are unconnected.

(2) Computing cell states: All the cells in a mini-column share
the same feed forward receptive fields. We assume that an
inhibitory process has already selected a set of k columns
that best match the current feed forward input pattern.
We denote this set as Wt. The active state for each cell is
calculated as follows:

atij =





1 if j ∈ W
tand π

t−1
ij = 1

1 if j ∈ W
tand

∑
i π

t−1
ij = 0

0 otherwise

(2)

The first line will activate a cell in a winning column if it was
previously in a predictive state. If none of the cells in a winning
column were in a predictive state, the second line will activate all
cells in that column. The predictive state for the current time step
is then calculated as follows:

π
t
ij =

{
1 if ∃d

∥∥∥D̃ d
ij ◦ A

t
∥∥∥
1

> θ

0 otherwise
(3)

Threshold θ represents the NMDA spiking threshold and ◦

represents element-wise multiplication. At a given point in
time, if there are more than θ connected synapses with active
presynaptic cells, then that segment will be active (generate an
NMDA spike). A cell will be depolarized if at least one segment
is active.

(3) Updating segments and synapses: the HTM synaptic plasticity
rule is a Hebbian-like rule. If a cell was correctly
predicted (i.e., it was previously in a depolarized state
and subsequently became active via feedforward input), we
reinforce the dendritic segment that was active and caused
the depolarization. Specifically, we choose those segments
Dd

ij such that:

∀j∈Wt

(
π
t−1
ij > 0

)
and

∥∥∥D̃d
ij ◦ A

t−1
∥∥∥
1

> θ (4)

The first term selects winning columns that contained correct
predictions. The second term selects those segments specifically
responsible for the prediction.

If a winning column was unpredicted, we need to select one
cell that will represent the context in the future if the current
sequence transition repeats. To do this we select the cell with the
segment that was closest to being active, i.e., the segment that had
themost input even though it was below threshold. Let Ḋ

d
ij denote

a binary matrix containing only the positive entries in Dd
ij. We

reinforce a segment where the following is true:

∀j∈Wt

(
∑

i

π
t−1
ij = 0

)
and

∥∥∥Ḋd
ij ◦ A

t−1
∥∥∥
1
=

maxi(
∥∥∥Ḋd

ij ◦ A
t−1
∥∥∥
1
) (5)

Reinforcing the above segments is straightforward: we wish
to reward synapses with active presynaptic cells and punish
synapses with inactive cells. To do that we decrease all the
permanence values by a small value p− and increase the
permanence values corresponding to active presynaptic cells by
a larger value p+:

△D
d
ij = p+

(
Ḋ
d
ij ◦ A

t−1
)
− p−Ḋd

ij (6)

The above rules deal with cells that are currently active. We also
apply a very small decay to active segments of cells that did not
become active. This can happen if segments were mistakenly
reinforced by chance:

△D
d
ij = p−−

Ḋ
d
ij where atij = 0 and

∥∥∥D̃d
ij ◦ A

t−1
∥∥∥
1

> θ (7)

The matrices △Dd
ij are added to the current matrices of

permanence values at every time step.
Implementation details: in our software implementation,

we make some simplifying assumptions that greatly speed
up simulation time for larger networks. Instead of explicitly
initializing a complete set of synapses across every segment
and every cell, we greedily create segments on a random cell
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and initialize potential synapses on that segment by sampling
from currently active cells. This happens only when there
is no match to any existing segment. In our simulations
N = 2048,M = 32, k = 40. We typically randomly connect
between 20 and 40 synapses on a segment, and θ is around 15.
Permanence values vary from 0 to 1 with a connection threshold
of 0.5. p+ and p− are small values that are tuned based on the
individual dataset but typically less than 0.1. The full source code
for the implementation is available on Github at https://github.
com/numenta/nupic.
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