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Several observations suggest that overlearned ordinal categories (e.g., letters, numbers,

weekdays, months) are processed differently than non-ordinal categories in the brain. In

synesthesia, for example, anomalous perceptual experiences are most often triggered by

members of ordinal categories (Rich et al., 2005; Eagleman, 2009). In semantic dementia

(SD), the processing of ordinal stimuli appears to be preserved relative to non-ordinal ones

(Cappelletti et al., 2001). Moreover, ordinal stimuli often map onto unconscious spatial

representations, as observed in the SNARC effect (Dehaene et al., 1993; Fias, 1996).

At present, little is known about the neural representation of ordinal categories. Using
functional neuroimaging, we show that words in ordinal categories are processed in a

fronto-temporo-parietal network biased toward the right hemisphere. This differs from

words in non-ordinal categories (such as names of furniture, animals, cars, and fruit),

which show an expected bias toward the left hemisphere. Further, we find that increased

predictability of stimulus order correlates with smaller regions of BOLD activation, a

phenomenon we term prediction suppression. Our results provide new insights into the

processing of ordinal stimuli, and suggest a new anatomical framework for understanding

the patterns seen in synesthesia, unconscious spatial representation, and SD.

Keywords: overlearned sequence, synesthesia, fMRI, semantic dementia, language, right hemisphere,

predictability

INTRODUCTION

Overlearned ordinal categories, whose members carry an inher-

ent sequence to them (e.g., days of the week, months of the year,

letters of the alphabet, or the integer numbers), appear to belong
to a special class of stimuli. One indication comes from synes-

thesia, a perceptual condition in which a perceptual experience,

such as color, is triggered by an unrelated sensory input (Cytowic
and Eagleman, 2009). Most synesthetic experiences are triggered

by members of learned ordinal categories such as letters, num-

bers, days of the week, and months of the year (Rich et al., 2005;
Eagleman, 2009).

Another indicator of the uniqueness of ordinal categories

comes from semantic dementia (SD), in which numerical stim-
uli are often preserved while processing of non-ordinal categories

(e.g., names of animals, furniture, fruit, and cars) is impaired

(Cappelletti et al., 2001; Halpern et al., 2004). Although there
has not been a detailed characterization of ordinal category-

processing in a large sample of SD patients, there is some evidence
to suggest relatively intact processing of other ordinal categories

in SD (Cappelletti et al., 2001).

A third indication of the special status of ordinal categories
comes from the finding that they can acquire a spatial representa-

tion that influences the allocation of spatial attention. In cultures

that read numbers and words from left to right, individuals are
quicker to react to members later in an overlearned category (e.g.,

the second half of the alphabet) when the stimuli are presented

in the right (or top) half of visual space, an effect known as

the Spatial-Numerical Association of Response Codes (SNARC)

effect (Dehaene et al., 1993; Fias, 1996). SNARC effects have been

observed with non-numerical ordinal stimuli such as letters, days
of the week, and months of the year (Gevers et al., 2003, 2004).

Collectively, the above observations suggest a different encod-

ing for ordinal vs. non-ordinal stimuli in the brain. To test the
hypothesis that stimuli from ordinal categories are processed

differently than stimuli from non-ordinal categories, we had par-

ticipants carry out a semantic task while their neural activity was
measured with functional magnetic resonance imaging (fMRI).

Further, we explored whether the neural correlates of ordinality

speak to the behavioral consequences of predictability that stem
from the order of presentation of ordinal stimuli.

MATERIALS AND METHODS

PARTICIPANTS

Forty-one participants (16 female; mean age range = 23.9; all
right handed) with normal or corrected-to-normal vision partic-

ipated in the experiment after giving written consent in accor-

dance with the Institutional Review Board at Baylor College of
Medicine. Six participants were removed from analysis due to

realignment failure during pre-processing.

EXPERIMENTAL PROCEDURE

Participants performed a simple oddball task while in the MRI
scanner. Each trial in the experiment consisted of 5 words

that were presented serially for 500 ms each with interstimulus
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intervals of 300 ms. Randomly interleaved trials represented one
of three conditions (Figure 1A): (1) words in an ordinal cate-

gory were presented in their proper order (Sequential condition),

(2) words in an ordinal category were presented in a scram-
bled order (Scrambled condition), or (3) words belonged to a

non-ordinal category (Non-ordinal condition). To ensure that par-

ticipants remained attentive inside the scanner, on 50% of the
trials the fifth stimulus would be an oddball (e.g., “Monday,

Tuesday, Wednesday, Thursday, Banana”, or “Pear, Peach, Grape,

Apple, 8”). Six to ten seconds after the last stimulus, a ques-
tion appeared on the screen: “Was there an oddball?” Participants

made a “yes” or “no” response using a button box, and the next

trial commenced 6–10 s later. Participants completed 20 practice
trials outside the MRI scanner and 120 trials in the scanner. All

120 experimental trials were carried out in one functional run,

lasting approximately 45 min.
Words were presented in black font on a light background

(∼20 cd/m2). Average lengths of words in ordinal and non-

ordinal categories were 2.9 and 4.9 letters, respectively. The ordi-
nal and non-ordinal items were not explicitly matched on age

of acquisition or familiarity but were comparable on usage fre-

quency (Table A1). Each word subtended on average a visual
angle of ∼1.5◦.

fMRI DATA ACQUISITION AND PRE-PROCESSING

High-resolution T1-weighted anatomical scans were acquired on

a Siemens 3.0 Tesla Allegra scanner using an MPRage sequence.
Functional run details were as follows: echo-planar imaging

(EPI), gradient recalled echo; repetition time (TR) = 2000 ms;

echo time (TE) = 40 ms; flip angle = 90◦; 64 × 64 matrix, 26

4 mm axial slices, yielding functional 3.4 × 3.4 × 4.0 mm voxels.
Parts of the cerebellum were excluded from the slices.

DATA ANALYSIS

Data preprocessing and analysis were performed using

SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8) and

the ART toolbox (http://www.nitrc.org/projects/artifact_detect/).
Additionally, the AFNI program 3dClustSim was used to

obtain threshold information (http://afni.nimh.nih.gov/pub/

dist/doc/program_help/3dClustSim.html). Images were created
using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/).

Motion correction was carried out by co-registering data to

a base volume. TRs in which head motion exceeded a cutoff
(1 mm of translation or rotation between consecutive TRs) were

removed. TRs that were outliers (2 standard deviations away

from mean) in global brain activation were omitted from further
analysis as well.

The average of the motion-corrected images was co-registered

to each individual’s structural MRI using a 12 parameter affine
transformation. EPI images were spatially normalized to the MNI

template (3.4 × 3.4 × 4 mm voxels) by applying a 12 parameter

affine transformation, followed by a non-linear warping using
basis functions (Kao et al., 2005). Images were then smoothed

with a 6 mm isotropic Gaussian kernel and highpass filtered in

the temporal domain (filter width of 128 s).
To identify regions involved in processing ordinal stimuli, we

performed a general linear model (GLM) regression. Regressors
were defined from the onset times of Sequential trials, Scrambled

trials, and Non-ordinal trials. Oddball trials for each of these

conditions were defined as separate regressors in the GLM, but

FIGURE 1 | Processing of ordinal stimuli involves more right hemisphere

processing. (A) Example stimuli presented during the experiment from each

of the three stimuli categories. (B) The right middle temporal gyrus (rMTG),

the right inferior parietal lobe (rIP) including right supramarginal gyrus (rSMG),

the left inferior parietal lobe (lIPL), the left inferior frontal gyrus/ventral

precentral gyrus (lIFG), and the right inferior frontal gyrus/ventral precentral

gyrus (rIFG) show greater activity to Scrambled stimuli (red; p < 0.05

corrected for multiple comparisons). (C) The rSMG, rMTG, and the lIPL

display greater activity for Sequential trials, while the left occipital lobe

extending into the inferior temporal lobe, the left and right inferior frontal

gyrus, the right occipital lobe, and the left middle frontal gyrus bilateral

inferior parietal lobes, the right angular gyrus, the rMTG, and the right

medial prefrontal cortex (rmPFC) respond with greater activity to Non-ordinal

stimuli (blue; p < 0.05, corrected for multiple comparisons). n = 35.
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as they confounded predictability, they were excluded from fur-
ther analysis for the purposes of this paper. Additionally, the

timing of subjects’ button presses and head movement parame-

ters were included in the GLM as effects of no interest. In total,
there were 14 types of events in the GLM. The events were con-

volved with a canonical hemodynamic response function to create

the regressors used for analysis. After performing the regressions,
we formed three random-effects contrasts. All p-values were cor-

rected for multiple comparisons using an uncorrected p-value of

0.001 and a cluster size threshold of 11 voxels to obtain a corrected
p < 0.05 (3dClustSim; Forman et al., 1995).

RESULTS

In the scanner, participants performed the oddball detection
task with an average accuracy of 96.53%, indicating appropriate

attentiveness. There was no significant difference between partic-

ipants’ performance on ordinal and non-ordinal trials for oddball
detection accuracy (paired t-test; p = 0.3). Trials which included

oddball stimuli were not included in the present analysis.

To determine which regions responded to ordinal stimuli—
regardless of the order of presentation—we contrasted Scrambled

trials over Non-ordinal trials (Figure 1B; Table A2). This revealed

greater activity in the right middle temporal gyrus (rMTG), the
right inferior parietal lobe (rIP) including right supramarginal

gyrus (rSMG), the left inferior parietal lobe (lIPL), the left inferior
frontal gyrus/ventral precentral gyrus (lIFG), and the right infe-

rior frontal gyrus/ventral precentral gyrus (rIFG) in response to

Scrambled trials. There were no significant clusters that displayed
greater activation to Non-ordinal trials (p < 0.05 corrected for

multiple comparisons, random effects analysis).

Next, to determine the effect of predictability in the order
of presentation, we compared Sequential trials and Non-ordinal

trials (Figure 1C; Table A2). This contrast revealed greater acti-

vation in the right supramarginal gyrus (rSMG), rMTG, and the
lIPL for Sequential trials. In contrast, the Non-ordinal condi-

tion induced greater activity in the left occipital lobe extending

into the inferior temporal lobe, the left and right inferior frontal
gyrus, the right occipital lobe, and the left middle frontal gyrus

(p < 0.05 corrected for multiple comparisons, random effects

analysis).
To identify regions that were involved in processing ordi-

nal stimuli whether or not they were presented in their natural

(or predictable) order, we next focused on the conjunction of
the above two contrasts (Nichols et al., 2005). The regions sig-

nificantly activated in both the Sequential > Non-ordinal and

Scrambled > Non-ordinal contrasts are shown in Figure 2A. The
conjunction reveals three regions that display greater activity in

response to members of ordinal categories regardless of their

FIGURE 2 | Prediction suppression: Scrambled stimuli recruit greater

activity in temporo-parietal networks than Sequential stimuli.

(A) Overlay of Scrambled > Non-ordinal (blue), Sequential > Non-ordinal

(green), and Scrambled > Sequential (red) contrasts shown in Figures 1B

and C (p < 0.05 corrected). (B) Voxel counts of the clusters from the rIP

and the rMTG from the previous two contrasts. In order to obtain a

value subjectable to statistics, the contrasts were performed 30 times,

each time using 70% of subjects (25 out of 35) (a bootstrapped

voxel count). The resulting comparison shows that Scrambled stimuli

recruit greater volumes than Sequential stimuli in the MTG and rIP

(∗∗∗p < 0.001, repeated measures t-test). (C) Beta weights in the rIP are

shown here averaged across the superior-inferior axis (z-axis) for all three

conditions (for visualization only). The mask includes voxels that were

found from either the contrast of Scrambled trials over non-ordinal trials,

the Sequential over non-ordinal trials, or Scrambled over Sequential trials.

Both amplitude and spatial extent of the rIP cluster decrease when

ordinal stimuli are presented in a predictable order, as compared to a

scrambled order.
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order of presentation—the rSMG (23 voxels), the rMTG (18 vox-
els), and the lIPL (15 voxels; p < 0.05 corrected for multiple

comparisons, random effects analysis).

Next, to directly assess the effect of predictability, we per-
formed a whole-brain contrast of Scrambled trials over Sequential

trials (Figure 2A, red). This yielded a cluster within the rIP and

the right superior parietal lobe; there were no significant clusters
in the reverse contrast.

In both the rIP and the rMTG, we found that the response

to Sequential stimuli spans a smaller volume than the response
to Scrambled stimuli. A bootstrapped voxel count in these two

regions (30 iterations of 70% of subjects, uncorrected p < 0.001,

no cluster size restriction) found the number of voxels in the
Scrambled trials > Non-ordinal contrast (rIP, 165 ± 68 voxels;

rMTG, 42 ± 31 voxels) to be significantly greater than the num-

ber of voxels in the Sequential > Non-ordinal contrast (Figure 2B;
rIP, 11 ± 27 voxels; rMTG, 6 ± 7 voxels; repeated measures

t-test, rIP, t(29) = 12.36; rMTG, t(29) = 6.29; p < 0.001). This

change in cluster size is not a result of the statistical threshold,
as this effect is maintained at a variety of thresholds (Figure A1).

Note that although we did not find a significant cluster within

the rMTG in our Scrambled > Sequential contrast, a more
liberal threshold (uncorrected p < 0.005) revealed increased acti-

vation in Scrambled relative to Sequential conditions here. Taken

together, our results suggest increased efficiency with increasing
predictability in the rIP (Figure 2C), and potentially in the rMTG

as well.

Finally, to ensure that the differences we found between ordi-
nal and non-ordinal stimuli were not driven mainly by one type

of stimulus in particular (e.g., numbers or letters of the alphabet),

we analyzed the time-series data for the eight different types of
stimuli in the Sequential and Non-ordinal conditions for the rIP

and rMTG (Figure 3). Qualitatively, the activity in the right mid-

dle temporal gyrus and the right inferior parietal lobe does not
appear to be driven by any one stimulus in particular. Because

there were a small number of trials per sub-type of stimulus, we
lack sufficient power to carry out a more rigorous exploration of

this question.

DISCUSSION

Although semantic processing is thought to predominantly

engage the left hemisphere (Binder et al., 1997), we have found

that the processing of ordinal stimuli involves more right hemi-
sphere activation, specifically in the right middle temporal gyrus

and the right inferior parietal lobe.
SD typically involves extensive atrophy of the left (dominant)

temporal lobe (Chan et al., 2001). Our results may thus serve to

explain why the processing of ordinal stimuli is selectively pre-
served in SD (Cappelletti et al., 2001; Grossman and Ash, 2004;

Halpern et al., 2004), as well as in aphasias resulting from lesions

to the left temporal cortex (Thioux et al., 1998; Varley et al.,
2005). That is, even while patients lose the capacity to generate

words, they can still recite sequences such as numbers and days

of the week. Currently, it is difficult to dissociate the effect of
“overlearnedness” or familiarity from the effect of belonging to

an ordinal category. What is important for our purpose is the fact

that these ordinal elements (weekdays, months, letters, numbers)
appear to shift to a preferentially right hemispheric processing,

where they can be spared from left hemisphere damage.

It is possible that our results can be explained by the fact that
our ordinal stimuli are slightly more abstract, with concurrent

low imageability or ability to visualize, while our non-ordinal

stimuli are more concrete (Table A1). However, weighing against
this possibility is the general observation that more left hemi-

sphere activation is seen in response to abstract concepts over

concrete ones (Sabsevitz et al., 2005). Because our ordinal stim-
uli involve more right hemisphere activation than non-ordinal

stimuli, the abstractness explanation of our data is not strongly

supported. Further, although the right temporal lobe (including
the MTG) has previously been implicated in networks involved

FIGURE 3 | Bold traces in the rMTG (A) and rIP (B) show that no one particular stimulus appears to drive the results in Figure 1.
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in the processing of abstract stimuli (Sabsevitz et al., 2005), the
rIP has not. This leads us to suggest that our findings reveal

something about ordinality beyond mere abstractness.

Members of ordinal categories carry a rank within the set. As
such, presenting them in their natural order could lead to strong

expectations about what is to follow, and these effects on pre-

dictability can shrink the perceived duration of sequential stimuli
(Pariyadath and Eagleman, 2007, 2012). Here, we found that the

amplitude and spatial extent of neural activation diminishes in

rIP, and possibly in the rMTG, when ordinal stimuli are presented
in their natural order (Figure 2). In other words, increasing pre-

dictability results in a more efficient neural representation of

stimuli. Previous research has suggested an attenuation of neu-
ral response when perceptual expectations based on very recent

events (within the preceding 1–2 min) are fulfilled (Summerfield

et al., 2008). To our knowledge, ours is the first piece of evidence
indicating that long-term experience drives similar expectation-

related attenuation of neural response. Collectively, we summa-

rize our findings and those of Summerfield et al. (2008) under
the term “prediction suppression,” an analog to repetition sup-

pression. Further, because there is decreased neural activation in

conditions that typically result in decreased perceived duration
(Pariyadath and Eagleman, 2007), our current data support the

hypothesis that subjective duration is linked to efficiency of neural

representation (Eagleman and Pariyadath, 2009).
Previous studies have implicated the rIP in time perception

(Rao et al., 2001), and one model posits that the inferior pari-

etal cortex is the heart of a common magnitude system, one
in which computations of space, time, and quantity are based

(Walsh, 2003). Here, we have shown that when stimulus pre-

sentation order becomes predictable (by virtue of position in an
overlearned sequence), the amplitude and spatial extent of activa-

tion within the rIP decreases. As mentioned in the last paragraph,

the predictability of a stimulus influences its perceived duration
(Pariyadath and Eagleman, 2007, 2012). It is reasonable to infer

now that the interaction of predictability and duration may be
mediated by the rIP. More studies are needed to elucidate the

mechanisms by which increasing predictability might translate

into decreased activation in regions involved in processing time
specifically and magnitude in general.

The observation that synesthesia typically involves the trig-

gering of a sensory experience by elements of ordinal categories
(Rich et al., 2005; Cytowic and Eagleman, 2009; Eagleman, 2009)

suggests that synesthetes might show greater functional or struc-

tural connectivity between color regions and the right hemi-
sphere areas described here (such as MTG). Indeed, studies in

synesthetes find increased BOLD activation in the right MTG and
increased structural connectivity in the nearby right inferior tem-

poral gyrus (Rouw and Scholte, 2007). In this same vein, new

studies demonstrate increased white matter integrity in the right-
hemisphere inferior fronto-occipital fasciculus (a tract which

includes white matter underlying the right MTG; Zamm et al.,

under review), further supporting the hypothesis of increased
connectivity in synesthetes between color regions and regions

involved in overlearned sequences.

One possible framework for our results is that the relative
position (i.e., location) of an item in an ordinal category is a

salient feature of its representation—specifically, that positions

within ordinal categories are analogous to positions in space. This
hypothesis would make our results consonant with the finding

that the right hemisphere is more involved in the processing of

elements with coordinates (elements in specific locations), while
the left hemisphere is more concerned with categorical relation-

ships (e.g., inside/outside, above/below) (for a review, see Jager

and Postma, 2003). The hypothesis that ordinal sequences are
encoded by analogy to spatial locations is also consistent with the

SNARC effect, which unmasks an implicit spatial-coordinate rep-

resentation of the number lines, alphabets, weekdays, and months
(for review, see Hubbard et al., 2005). Further, in spatial sequence

synesthesia, the relationship between ordinality and space is per-

ceptually explicit: sequences such as weekdays, months, letters,
and numbers are experienced as having specific locations in rela-

tion to one another (Cytowic and Eagleman, 2009; Eagleman,

2009).
Given the above observations, our data offer a new prediction:

if participants were to be overtrained on two new sets of arbi-

trary symbols—one taught as a ordinal category and one as a
non-ordinal category—we may be able to witness the transfer of

the encoding of the ordinal set (but not the non-ordinal set) to

the right hemisphere with learning. This is a subject of current
investigation in our laboratory. An open question is whether the

right-lateralized processing is unique to ordinal stimuli learned
during childhood, or instead whether similar activation can be

reproduced in brains of adults who are overtrained on new ordi-

nal categories. We are also testing whether, in synesthesia, such
a transfer corresponds in time to a new ordinal category which

begins to trigger color experiences.
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APPENDIX

THE NEURAL REPRESENTATION OF OVERLEARNED SEQUENCES

Table A1 | Age of acquisition, usage frequency, and imageability of stimuli used in the experiment.

Category Age of acquisition* Usage frequency† Imageability‡

(months) (per million words) (scale: 1 = poor, 7 = high)

Animals 32 18.96 6.29

Fruits 42.4 5.67 6.71

Furniture 34.52 96.43 6

Cars – – 4.86

Numbers 42 – 4.71

Letters 42 – 3.86

Days 48 40 2.86

Months 48 43.42 3

* Morrison et al., 1997; Cytowic and Eagleman, 2009.

†Usage frequency was obtained from the COBUILD corpus, which was accessed via the WebCelex website. http://www.mpi.nl/world/celex

‡Imageability ratings were obtained from seven naive participants who rated the stimuli used in the experiment on a 7-point scale (where 1 indicated poor

imageability and 7 indicated high imageability).
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Table A2 | Brain areas activated during the different experimental conditions.

Area (Hemisphere) Brodmann area MNI coordinates at peak Maximum Cluster size

activation t-statistic (No. of voxels)

SCRAMBLED TRIALS > NON-ORDINAL TRIALS

Temporal Lobe (R) including the middle temporal

gyrus and the inferior temporal gyrus

19/21/37 58 −57.6 −6 5.25 80

Temporal Lobe(L) including the middle temporal gyrus

and the inferior temporal gyrus

37 −50.8 −67.8 −2 3.96 23

Frontal Lobe (L) including the inferior frontal gyrus and

precentral gyrus

44 −50.8 3.6 18 4.45 25

Frontal Lobe (R) including the inferior frontal gyrus

and precentral gyrus

44 51.2 7 22 4.43 25

Parietal Lobe (L) including the inferior parietal lobe,

the supramarginal gyrus, and the postcentral gyrus

40/2 −50.8 −40.6 50 5.42 239

Parietal Lobe (R) including the inferior parietal lobe,

supramarginal gyrus, and postcentral gyrus

2/3/40 47.8 −33.8 46 6.35 268

SEQUENTIAL TRIALS > NON-ORDINAL TRIALS

Temporal Lobe (R) including the middle and inferior

temporal gyri

19/37 54.6 −61 −6 4.58 18

Parietal Lobe (R) including the angular gyrus, the

supramarginal gyrus, and the inferior parietal lobe

40 54.6 −54.2 34 3.79 13

Parietal Lobe (L) including the inferior parietal lobe

and the supramarginal gyrus

40 −64.4 −37.2 30 4.39 17

Parietal Lobe (R) including the supramarginal gyrus

and the inferior parietal lobe

2/40 58 −27 42 4.00 25

SEQUENTIAL TRIALS < NON-ORDINAL TRIALS

Occipital and Temporal lobes (L) including the

fusiform gyrus, the middle and inferior occipital gyri,

the lingual gyrus, and the parahippocampal gyrus

18/19/36/37 −23.6 −91.6 −6 −8.50 157

Frontal Lobe (R) including the inferior and middle

frontal gyri

11/47 −30.4 30.8 −14 −5.36 20

Occipital Lobe (R) including the lingual gyrus, and the

middle and inferior occipital gyri

18 20.6 −91.6 −2 −6.05 52

Frontal Lobe (L) including the inferior frontal gyrus and

the mid-frontal gyrus

47 −30.4 30.8 −14 −5.92 38

Frontal Lobe (L) including the inferior frontal gyrus 46 −40.6 20.6 22 −4.32 19

Frontal Lobe (R) including the middle and inferior

frontal gyri

46 44.4 27.4 18 −5.33 47

SCRAMBLED TRIALS > SEQUENTIAL TRIALS

Parietal Lobe (R) including the superior parietal lobe 7 30.8 −61 46 3.66 12

Parietal Lobe (R) including the supramarginal and

postcentral gyrus

2/40 54.6 −30.4 46 4.11 18
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FIGURE A1 | The difference in the sizes of activated clusters is

not an artifact of the chosen statistical threshold. More voxels

were activated in the rMTG and rIP in Scrambled trials than in the

Sequential trials relative to the Non-ordinal trials at several different

thresholds. Eighty-three percentage of subjects were randomly

selected for 30 iterations of each contrast. All differences between

sequential and scrambled clusters are significant by paired t-test

(p < 0.001).
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