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Abstract The study of sexual selection is being
revolutionised by the realisation that most populations exhibit
some degree of polyandry, i.e. females mating with multiple
males. Polyandry can drastically change the operation of sex-
ual selection on males as it reduces the reproductive success
that males derive by mating with different females, by forcing
their ejaculates to compete for fertilisation after copulation
(sperm competition). Variation in polyandry within a popula-
tion means that the impact of polyandry can differ drastically
across males, depending on the polyandry of their own mating
partners. Because the patterns through which males share
mates within a population may have strong repercussions for

variation in male reproductive success, measuring such pat-
terns is critical to study the operation of sexual selection.
Several methods have been proposed to measure the pattern
of mate sharing at the population level. Here, we develop a
new method (sperm competition intensity correlation, SCIC)
and compare its performance against two established methods
(Newman’s assortativity and nestedness), using both idealised
model populations and random simulated populations, across
a range of biologically relevant population parameters: (i)
population size, (ii) sex ratio and (iii) the ‘mating density’ of
the population. We conclude that SCIC may be the most
promising approach, as it is both internally consistent and
robust across the parameter range. We discuss some important
caveats and provide advice regarding the choice of method for
future studies of sexual selection.
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Introduction

Sexual selection is the selective process arising from variation
in reproductive success due to intrasexual competition over
access to mates and their gametes (Darwin 1871; Andersson
1994). Traditionally, competition over mates was viewed as
the main source of intrasexual variation in reproductive suc-
cess, and the strength of sexual selection on mating success
was measured by the Bateman gradient, i.e. the slope of the
univariate regression of total reproductive success, Tovermat-
ing success, M:

T Mð Þ ¼ βM �Mð Þ þ ε ð1Þ

The Darwin-Bateman paradigm predicts that the male
Bateman gradient (i.e. βMmales

) is typically steeper than
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would strengthen βMmales
. Understanding the operation of

sexual selection therefore requires a measure of the rela-
tionship between the mating success of a male and the
sperm competitive environment faced by his ejaculates,
i.e. the mating success (i.e. polyandry) of his partners
within a population (Sih et al. 2009; McDonald and
Pizzari 2014).

Borrowing techniques developed in both social science
and ecological research focusing on food webs and mutu-
alistic interactions, two such measures have recently been
proposed: Newman’s assortativity (r) and nestedness metric
based on overlap and decreasing fill (NODF) (Newman 2002;
Almeida-Neto et al. 2008). Both methods utilise a network
perspective of sexual interactions, where mating populations
are described as a collection of nodes (males and females) that
are connected by edges representing copulations (Fig. 1).
Such sexual networks have been extensively explored in
studies investigating the spread of sexually transmitted
infections (Gupta et al. 1989; Liljeros et al. 2001), but their
application to sexual selection begun only recently
(McDonald et al. 2013; McDonald and Pizzari 2014;
Inghilesi et al. 2015; Muniz et al. 2015). Mating patterns show
a tremendous variety both between and within populations
(Emlen and Oring 1977; Thornhill and Alcock 1983;
Clutton-Brock 1989; Andersson 1994; Shuster and Wade
2003; Shuster 2009). The rapid surge in the availability of
fine-grained behavioural data sets in combination with
molecular parentage assignment (e.g. Preston et al. 2005;
Rodríguez-Muñoz et al. 2010; Collet et al. 2012; Pélissié
et al. 2014) is generating increasing scope for network
approaches, and metrics such as Newman’s assortativity (r)
and nestedness (NODF) are gaining prominence as tools to
quantify mating patterns. Yet, despite this potential, we are
aware of no analytical or quantitative evaluations of these
methodological tools.

Here, we first review both, Newman’s assortativity (r)
and nestedness (NODF), in the context of sexual networks
and introduce a third measure that we term ‘sperm com-
petition intensity correlation’ (SCIC). Secondly, we com-
pare the performance of these three metrics in quantifying
the assortativity of mating patterns based on mating suc-
cess. Thirdly, we use randomly organised simulated popu-
lations to explore the sensitivity of these three metrics to
each of three key axes of sexual selection variation: (i)
population size, (ii) population adult sex ratio and (iii)
the ‘mating density’ of the population. ‘Mating density’
measures the percentage of male–female pairs that copu-
late out of all possible heterosexual pairing combinations
in a given population and thus reflects the saturation of a
sexual network (i.e. the overall promiscuity of a popula-
tion), independently of population size or sex ratio (see
below). Furthermore, we examine how these three metrics
(i.e. Newman’s r, NODF and SCIC) relate to each other
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that of females, due to stronger precopulatory sexual se-

lection on male mating success (Bateman 1948; Andersson

1994; Parker and Pizzari 2015). Less appreciated, howev-

er, are the profound implications that female mating suc-

cess (Mfemales) can have on the strength of sexual selection

on males. When females are polyandrous (Mfemales > 1)

such that the ejaculates of multiple males overlap at the

time of fertilisation (Pizzari and Wedell 2013), the scope

of male monopolisation is fundamentally changed. This is

because, for males, mating is no longer a zero sum game

as females become a shared resource, and males continue

to compete after mating for the fertilisation of sets of ova,

via sperm competition (Parker 1970) and under cryptic

female choice (Childress and Hartl 1972; Thornhill

1983). Therefore, in polyandrous populations (i.e. female

mating success can be greater than one), male reproductive

success is not only contingent on the number of females

mated and their fecundity but—crucially—also on the pro-

portion of ova produced by his partners that a male man-

ages to fertilise (Webster et al. 1995). Males that mate

with the same female share the paternity of her ova, and

the proportion of ova that a male fertilises is therefore a

function of the intensity of sperm competition (sensu

Parker 1998) faced by the male’s ejaculates across the

females that he inseminates: the more intense the sperm

competition, the lower the average share of paternity for

each male (Shuster and Wade 2003; Parker and Pizzari

2010). In polyandrous populations, sperm competition in-

tensity is therefore a key determinant of male reproductive

success (Parker and Pizzari 2010; Collet et al. 2012;

Kvarnemo and Simmons 2013; Parker and Birkhead

2013). Crucially, when individual females in a population

vary in their polyandry (variance in Mfemales > 0), some

males have the potential to suffer higher sperm competi-

tion intensity than others. The way in which sperm com-

petition intensity is distributed across males dictates

population-level patterns in sexual selection, determining

both the total variation in male reproductive success and

the strength of precopulatory sexual selection on mating

success (i.e. βMmales
). For example, consider a population

where males with relatively high mating success tend to

mate with the most polyandrous females and as a conse-

quence face intense sperm competition. Despite the rela-

tively high mating success of these males, their reproduc-

tive success is limited by the high polyandry of their

partners, which reduces their paternity share. At the pop-

ulation level, such non-random mating patterns may weak-

en sexual selection on male mating success (i.e. βMmales
), as

further increases in mating success result in diminishing

gains in fertilisation success (Sih et al. 2009; McDonald

et al. 2013; McDonald and Pizzari 2014). Similarly, a

negative relationship between male mating success and

the mating success of his mates at the population level



across these three axes. Finally, in light of these results,
we consider the application of these metrics to the study
of sexual selection.

Methods

Sexual networks and measures of the mating structure

success and that of his partners: Newman’s assortativity
(rNewman), nestedness (NODF) and SCIC.

Newman’s assortativity (rNewman)

Newman’s assortativity (rNewman) measures the assortativity
of a network as the Pearson correlation coefficient between
the trait values at either end of an edge (i.e. the link connecting
a female to her mating partner), across all edges in the network
(Newman 2002, 2003). The trait of interest in this context is
node degree, which measures individual mating success (see
above). Developed for unipartite networks (i.e. networks with
one type of node, where edges can be potentially drawn be-
tween all individuals), rNewman can be defined as:

rNewman ¼

X
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where E is the total number of edges in the network and ji and
ki are node degrees of individuals j and k at either end of the ith
edge. Therefore, rNewman ranges from 1 (positive correlation,
positive assortativity) to −1 (negative correlation,
disassortativity). In a network of one monogamous mating
pair, E equals 2 if we treat edges as undirected or 1 if we treat
edges as directed. This is because in undirected networks, the
edge is considered mutual and the correlation between trait
values (in this case node degree) between linked nodes is
therefore viewed from both directions (Newman 2003). To
highlight this difference, consider the following example

Fig. 1 Each panel shows two visualisations of mating populations as
sexual networks. Network visualisations show nodes representing
individual males (red) or females (blue) and links (edges) represent
copulations. Matrix representations show the same populations where
males are rows, females are columns and filled squares represent
copulations. a Monogamous population. b pPolygynyous population. c
Polygynandrous population. d Example of positive mating assortativity
(e) negative mating assortativity. Inset pictures courtesy of Wikimedia

commons https://commons.wikimedia.org, from left to right:
Californian mouse (Peromyscus californicus) by Whatiguana (Own
work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)
or GFDL (http://www.gnu.org/copyleft/fdl.html)], grey seal
(Halichoerus grypus) by Steenbergs (Grey Seal On Farne Islands) [CC
BY 2.0 (http://creativecommons.org/licenses/by/2.0)] and fruit fly
(Drosophila melanogaster) by André Karwath aka Aka (Own work)
[CC BY-SA 2.5 (http://creativecommons.org/licenses/by-sa/2.5)]
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A sexual network is a collection of individuals (nodes) con-

nected by links (edges) representing (inter- and/or intra-) sex-

ual interactions, where the total number of links of a node is its

degree (Croft et al. 2008; Wey et al. 2008; Sih et al. 2009;

McDonald et al. 2013; Krause et al. 2014; McDonald and

Pizzari 2014). In this study, we are interested in sperm com-

petition so we focus on bipartite networks, that is networks

with two sets of nodes, male and females, with edges between

heterosexual mating partners and where an individual’s node

degree represents its mating success. Conceptually, edges in

these networks can either be directed or undirected. In an

undirected network, when one male and one female are con-

nected to each other, both are treated as having one link (male

and female degree = 1). In a directed network, if one male and

one female are connected, one individual (e.g. the male) is

considered as having an outward link with that female (out-

degree = 1, in-degree = 0) and the female is considered as hav-

ing one inward link with that male (out-degree = 0, in-

degree = 1). When females are polyandrous, their degree is

greater than 1 andmeasures the intensity of sperm competition

faced by their male partners (Parker 1970; Parker and

Birkhead 2013). Below, we introduce three network metrics

aimed at quantifying the relationship between a male’s mating

https://commons.wikimedia.org/
http://creativecommons.org/licenses/by-sa/3.0
http://www.gnu.org/copyleft/fdl.html
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/licenses/by-sa/2.5
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network with two males as rows and two females as columns,
1 1

1 0

� �

; where 1 means that the pair copulated. The directed

Newman’s assortativity, rNewman(D), would treat this network

as having three edges (E = 3), where the trait values (i.e. mat-

ing success) for the outgoing male links are
2

2

1

0

@

1

A and the trait

values for the female inward links are
2

1

2

0

@

1

A. Alternatively,

Newman’s assortativity for undirected networks, rNewman(U),

treats each link as a mutual connection and so would treat this

network as having six edges (E = 6) where the trait values at

either end of each link are
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This means that rNewman(U) can yield both positive and

negative values of assortativity and behaves in a way similar

to rNewman(D) when populations approach an even sex ratio,

but the metrics can generate drastically divergent estimates of

assortativity when sex ratios deviate from unity.

Nestedness (NODF)

Nestedness is a concept originally borne from ecological re-

search, designed to quantify patterns of species co-occurrences

in metacommunities, where sites with lower species richness

contain reduced subsets of those sites with higher species rich-

ness (Ulrich and Almeida-Neto 2012). This concept was later

applied to ecological networks such as mutualistic plant-

pollinator networks (Ulrich et al. 2009). Mutualistic plant-

pollinator networks are nested when specialist plants (those with

few connections) tend to connect to the most generalist pollina-

tors (thosewithmany connections) and specialist pollinators tend

to connect to the most generalist plants (Bascompte et al. 2003;

Bascompte and Jordano 2007; Ulrich et al. 2009). In the context

of sexual networks, a population is nested when males with few

mating partners (i.e. low mating success; M) tend to mate with

the most polyandrous females (i.e. females with high M), and

males with the highest mating success tend to include amongst

their partners the least polyandrous females (i.e. femaleswith low

M). Nestedness is therefore specific to patterns of disassortativity

and bipartite networks, i.e. negative assortment between male

mating success and the mating success of their partners

(McDonald and Pizzari 2014) and is perhaps best visualised by

using the matrix representation of sexual networks (Fig. 1e).

Accordingly, the most widely used methods to calculate

nestedness is NODF (Almeida-Neto et al. 2008; Strona and

Fattorini 2014), which measures nestedness based on the rules

of percentage overlap (PO) and decreasing fill (DF) between

pairs of rows and pairs of columns of such matrix and quantifies

the extent to which the mating partners of individuals with low

degree form subsets of the mating partners of those individuals

with a higher degree (McDonald and Pizzari 2014). To calculate

nestedness as outlined by Almeida-Neto et al. (2008) for sexual

networks, we first order the mating population matrix of left to

right (females) and top to bottom (males) in order of decreasing

mating success. Then, for every pair of i and j rows (males), we

calculate two values, DF (decreasing fill) and PO (percentage

overlap). To calculate DF, we ask whether the upper row in the

pair (rowi) has a higher mating success (M) than the lower row

(rowj). If Mj<Mi, then DFij= 100 and if Mj ≥Mi then DFij = 0.

The PO of pairs of rows is calculated as the percentage of rowj’s

mating partners shared with rowi. The same process is calculated

for all pairs of columns (females), where the ith female is the

leftmost and the jth female is the female to its right. For all pairs

of rows and columns, we then calculate thier individual

nestedness (Nij) as:

If DF i j ¼ 0; thenN i j ¼ 0

If DF i j ¼ 100; then N i j ¼ POi j

For example, consider the top male rows in Fig. 1e. The top

male has six mates and the second male has five mates, there-

foreDFij = 100. The secondmale also shares all of his females

with the top male, so the percentage overlap POij = 100 and

Nij = 100. We can then measure the nestedness of the whole

network as:

NODF ¼

X

N i j

f f −1ð Þ

2

� �

þ
m m−1ð Þ

2

� � ð3Þ

where f and m are the numbers of males and females, respec-

tively, and NODF ranges between 100 (perfect nestedness)

and 0 (no nestedness) (Almeida-Neto et al. 2008).

SCIC

The aim of quantifying population-level patterns in assortative

mating by mating success is to understand its influence on the

strength of sexual selection on male mating success (i. e. βM).

When females are polyandrous, males will be forced to sperm

compete and, all else being equal, the reproductive success of

a focal male is inversely proportional to the number of sperm

competitors with which he competes (i.e. his ‘sperm compet-

itive intensity’, SCI). The sperm competition intensity suf-

fered by a male can be characterised by the harmonic mean

of a male’s partners mating success (Shuster and Wade 2003;

Wade and Shuster 2005). For example, consider a male that

mates with two females; one of which does not remate, whilst

the other copulates with two other males. The sperm of this

male does not face sperm competition within the first female.

For the second female however, the sperm of the focal male

must compete with the sperm of two other males. Assuming
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the simplest null model of sperm competition (i.e. fair raffle

and similar ejaculate size and fertilising efficiency across com-

petitors), the focal male’s share of paternity for this female is 1
3

(Shuster and Wade 2003). The average share of paternity of

the focal male across the two partners is then
1
2
� 1

1
þ 1

3

� �

¼ 0:667 where 1
0:667

is the harmonic mean number

of sperm competitors faced by the focal male (i.e. 1
0:667

¼ 1:4

99 competitor males). This can be calculated for the ith male

simply as:

SCIi ¼
1

1

M i

XM

j

1

k j

	 
 ð4Þ

where kj is the mating success (degree) of the jth female mated

with the ith male, andM is the total number of mating partners

of the ith male (i.e. his mating success). This parameter can

then be added to our regression model in Eq. 1 as:

T i ¼ βM ⋅SCI �M ið Þ þ βSCI⋅M � SCIið Þ þ ε ð5Þ

where βM ⋅ SCI represents the male Bateman gradient control-

ling for variation in SCI. Crucially, the way in which the

univariate Bateman gradient, βM, is affected by variation in

sperm competition intensity across males is determined by the

slope of the partial regression of mating success on the mean

sperm competition intensity faced by a male (i.e. βSCI ⋅M) and

the correlation between βM ⋅ SCI andβSCI ⋅M (i.e. SCIC, Fig. 2) as:

βM ¼ βM ⋅SCI þ SCIC� βSCI⋅Mð Þ ð6Þ

In general, theory predicts that βSCI ⋅M will be negative as

increased sperm competition decreases a male’s reproductive

success (Shuster and Wade 2003). Therefore, when SCIC is

positive, we predict a reduction in male Bateman gradients,

whereas a negative SCIC will steepen the slope of the male

Bateman gradient (Wolf et al. 1999). Typically, Bateman gra-

dients are standardised by dividing reproductive success and

mating success by their respective means (Jones 2009). In this

fashion, we can also standardise SCI by its population mean

and provide a standardised slope for SCIC that facilitates com-

parisons across populations. If instead, Mmales was

standardised by subtracting the population mean and dividing

by its standard deviation, as for selection gradients on pheno-

typic traits (Lande and Arnold 1983; Wolf et al. 1999), SCIC

could be calculated as the Pearson product correlation coeffi-

cient between SCI andMmales. We provide R code to calculate

SCIC as supplementary material (R Core Team 2014).

Model populations

We develop model populations displaying a range of mating

systems to test the performance of all the metrics (i.e.

rNewman(U), rNewman(D), NODF and SCIC) in identifying mating

success assortativity. Research has highlighted a tremendous va-

riety both between and within populations (Emlen and Oring

1977; Thornhill and Alcock 1983; Clutton-Brock 1989;

Andersson 1994; Shuster and Wade 2003; Shuster 2009).

Variation in mating patterns (the mating topology) across popu-

lations can be decomposed into three main axes: (i) individual

variation in male mating success (i.e. level of polygyny,

var(Mmales)), (ii) individual variation in female mating success

(i.e. level of polyandry, var(Mfemales)) and (iii) the average level

of polygyny and polyandry of the entire population (i.e. Mmales

and M females, respectively). In strictly monogamous populations

with unitary sex ratio, Mmales ¼ M females ¼ 1; and there is no

intrasexual variation in either male or female mating success

(Fig. 1a). On the other hand, in populations with unitary sex ratio

where the mating success of one sex (but not the other) exceeds

1, there is variation in mating success amongst members of that

sex but no variation in mating success in the opposite sex

(Fig. 1b). For sperm competition to occur, populations must ex-

hibit some level of polyandry (i.e. M females > 1; Pizzari and

Wedell 2013). Furthermore, for males and females to mate assor-

tatively by mating success, there must also be some variation in

both male and female mating success (var(Mmales) > 0,

var(Mfemales) > 0, not including individuals that do not mate at

all). Any metric measuring the assortativity of mating partners

based on mating success should therefore only provide non-zero

results when all three conditions are met, namely M females > 1;

var(Mmales) > 0 and var(Mfemales) > 0.

None of the developed model populations in Fig. 3 display

all three conditions and thus are not expected to generate as-

sortative mating byM different from zero. On the other hand,

the model populations in Fig. 4 meet all three conditions for

assortative mating byM. These populations represent different

‘mating densities’ (i.e. the proportion of possible mating pairs

realised of all heterosexual pairing combinations possible in a

given population) and display either positive or negative mat-

ing assortativity by M.

Simulated populations

When measuring the relationship between male mating suc-

cess and that of their partners, any useful metric should allow

the estimation of such assortativity across a wide range of

population parameters but should not be confounded by other

naturally varying population parameters. Here, we test the

performance of all metrics, rNewman(U) and rNewman(D),

NODF and SCIC on randomly simulated mating populations

along three fundamental gradients of variation in mating sys-

tems, namely (i) population size, (ii) sex ratio and (iii) ‘mating

density’. We do so by varying each axis separately one at a

time as outline below.



3. Mating density: We measured the ‘mating density’ of a
population as the percentage of male–female pairs that
mated out of the total possible combinations of heterosex-
ual mating pairs (i.e. for a population of 10 males and 10
females, there are 100 possible mating pairs and if 50 of
those pairs actually mated, the population would have a
‘mating density’ of 50 % or a density of 0.5 in network
nomenclature). ‘Mating density’ therefore gives an indi-
cation of how well connected sexual networks are that is
independent of population size or sex ratio. This parame-
ter is important as many network analysis measures are
strongly affected on the overall density of networks (Croft
et al. 2008). We simulated populations that differed in the
realised proportion of all possible mating combinations
(‘mating density’) but not in population size or sex ratio.
To do so, we created 1,000 populations, all with 20 males
and 20 females (i.e. same population size and sex ratio),
where either 25, 50 or 75 % of possible pairs mated. We
simulated mating by randomly connecting males and
females until the target ‘mating density’ was achieved,
ensuring that every individual mated at least once.

To assess the independence of assortative mating measures
across each level of population size, sex ratio and mating

density, we report the Spearman rank correlation coefficient
between all assortative mating measures: rNewman(U), rNewman
(D), NODF and SCIC, with all population parameters. To
explore whether each measure is likely to capture similar
information, we also calculated the Pearson product moment
correlation coefficient between each assortative mating
measures at each level of population size, sex ratio andmating
density. All analyses were conducted using R statistical
software (R Core Team 2014). As this study is entirely based
on in silico simulations rather than empirical data, no blinded
protocol was required.

Results

Model populations

We first assessed the consistency of each measure of assorta-
tive mating (rNewman(U), rNewman(D), NODF and SCIC) by ap-
plying all measures to the six model populations presented in
Fig. 3. No population in Fig. 3 satisfies the criteria required for
a correlation between male mating success and the mating
success of his partners (i.e. polyandry and variation in both
male and female mating success), and thus we should expect
measures of assortative mating to return zero or no value for
all six populations. As expected, all metrics returned zero or
no value for all populations with the exception of rNewman(U)
that returned negative values for four populations (Fig. 3b, c, e
and f and Table 1). This is because rNewman(U) was originally

Fig. 2 Path diagram showing the relationship between reproductive
success (T), mating success (M), sperm competition intensity (SCI) and
the relationship between the two (SCIC)

Fig. 3 Model mating populations that show either variation in male or
female mating success (Var(M)) and polyandry, but no population
displays all three conditions simultaneously and so cannot demonstrate
assortative/disassortative mating topologies

214 Behav Ecol Sociobiol (2016) 70:209–220

1. Population size: We generated populations that differ in

the total number of individuals, keeping their ‘mating

density’ (i.e. realised proportion of all possible mating

combinations) and sex ratio constant. To do so, we created

1,000 populations of each of three sizes: 6 males and 6

females (6 × 6), 20 males and 20 females (20 × 20) or 80

males and 80 females (80 × 80), totaling 3,000 popula-

tions. We simulated mating by randomly connecting

males and females until 50 % of the total possible mating

pairs was realised ensuring that every individual mated at

least once. Of the 1,000 populations with 6 males and 6

females (6 × 6), ten populations had zero variation in fe-

male mating success and four populations had zero vari-

ation in male mating success, so no value could be calcu-

lated for rNewman(D) in the former and SCIC in the latter

case. These populations were removed from analyses that

included these two metrics, respectively.

2. Sex ratio: We created 1,000 populations with 10 males

and 50 females (1:5), 30 males and 30 females (1:1) or

50 males and 10 females (5:1) and simulated mating by

randomly connecting males and females until 50 % of the

total possible mating pairs was realised ensuring that

every individual mated at least once. Each population

therefore had the same population size and ‘mating

density’.



intended for unipartite networks (networks with one type of
node, e.g. all males). Therefore, although there is no variation
in mating success within one sex (which would preclude the
calculation of a correlation coefficient), rNewman(U) instead
correlates the mating success (degree) of individuals at either
end of an edge (i.e. effectively counting each copulation twice
from both the male and female end of an edge). Therefore,
although there is no variation in degree within a sex,
rNewman(U) utilises variation between sexes when calculating
the correlation between male and female mating success.

We next assessed the sensitivity of all metrics to detect
positive or negative assortativity by mating success across a
range of mating structures in idealised populations. All
metrics provided qualitatively logical values, consistent with
expectations across all matrices, with the exception of NODF
that returned zero values for two populations (Table 1 and
Fig. 4a, e). This inconsistency arises for two reasons: firstly,
because despite the apparent negative correlation between
male mating success and the mating success of their partners
in the population in Fig. 4a, this population does not show
both decreasing fill and overlap in the mating partners be-
tween any males. Secondly, the population shown in Fig. 4e
is a completely positively assorted, and NODF is a measure
specific to negative assortment (i.e. disassortativity) and thus
identifies this population as zero nestedness. Therefore, only
two parameters rNewman(D) and SCIC provided consistent
results across all model populations (Table 1).

Simulated populations

1. Population size: All assortative mating measures were
moderately correlated with population size, with the
exception of NODF, which was decoupled from popula-
tion size (Fig. 5a, d, g and j), confirming the result for
NODF presented in Almeida-Neto et al. (2008). The

Table 1 Results for all
assortativity metrics for model
populations in Figs. 2 and 3

Model population SCIC NODF rNewman(U) rNewman(D) Overall assortative mating pattern

Figure 3a – 0.000 – – None

Figure 3b 0.000 0.000 −0.615 – None

Figure 3c – 0.000 −1.000 – None

Figure 3d – 0.000 – – None

Figure 3e 0.000 0.000 −0.091 – None

Figure 3f – 0.000 −0.615 – None

Figure 4a –0.385 0.000 −1.000 −1.000 Negative

Figure 4b –0.342 33.333 −0.833 −0.833 Negative

Figure 4c –0.555 100.000 −0.500 −0.500 Negative

Figure 4d –0.193 33.333 −0.167 −0.167 Negative

Figure 4e 1.000 0.000 1.000 1.000 Positive

Figure 4f 0.515 20.000 0.550 0.550 Positive

– represents when no result is estimated by the method or is undefined (i.e. NA or NaN)

Fig. 4 Model mating populations that simultaneously show polyandry
and variation in male and female mating success (Var(M)) and so can
demonstrate assortative/disassortative mating topologies. a Minimal
‘mating density’, strongly disassortative (e.g. alternative reproductive
tactics). b Strongly disassortative (e.g. alternative reproductive
tactics). c High ‘mating density’ and disassortative. d Maximal ‘mating
density’ and disassortative. e High positive assortativity. f Imperfect
positive assortativity with some disassortativity
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correlations of rNewman(U), rNewman(D) and SCIC with pop-
ulation size tended towards zero as populations became
larger. This observation is significant because it reveals that
negative assortativity can emerge as a property of random
mating in very small groups or populations, whereas devi-
ations from 0 in larger populations more likely require a
biological explanation (e.g. behavioural strategies).

2. Sex ratio: All assortative mating measures were very
weakly or weakly correlated with population sex ratio
(Fig. 5b, e, h and k). The measure rNewman(U), however,
showed a clear strong, non-monotonic relationship with
sex ratio (Fig. 5b). When sex ratios were skewed in either
direction, rNewman(U) tended to be strongly negative. This
is because uneven sex ratios resulted in one sex having a
higher mean mating success than the other sex, and
rNewman(U) reflects the tendency for one sex with high
mating success to mate with the other sex, which neces-
sarily has a lower mean mating success.

3. Mating density: All assortative mating measures were
very weakly correlated with the ‘mating density’ of pop-
ulations (Fig. 5c, f and i), with the exception of NODF
which was very strongly positively correlated with ‘mat-
ing density’ (Fig. 5l), confirming previous results for
NODF (Almeida-Neto et al. 2008).

4. Correlations between assortative mating measures.
Overall, for population size and ‘mating density’ simula-
tions rNewman(U), rNewman(D) and SCIC tended to strongly
positively correlate with each other (Fig. 6). Similarly,
because increasing values of NODF suggest more nega-
tive assortment, all three of these measures tended to cor-
relate negatively with NODF, although this correlation
was weaker (Fig. 6). These results suggest that over most
parameter ranges, these metrics capture similar informa-
tion, although the correlations with NODF were much
weaker, potentially because NODF specifically measures
negative assortment. For sex ratio simulations, correla-
tions involving rNewman(U) showed a marked pattern
across different sex ratios (Fig. 6). When populations di-
verged from an equal sex ratio, correlations between
rNewman(U) and all other measures reversed direction and
weakened, reflecting the tendency for rNewman(U) to iden-
tify increasingly negative assortativity values when sex
ratios are biased in either direction. Overall, rNewman(D)
and SCIC were consistently and strongly correlated with
each other across all parameter ranges (Fig. 6).

Discussion

Multiple mating by females (polyandry) results in variance in
male paternity share, creating opportunity for postcopulatory sex-
ual selection via sperm competition and cryptic female choice

(Parker 1970; Childress and Hartl 1972; Thornhill 1983).
Consequently, in polyandrous populations, males can increase
reproductive success by both mating with more females and/or
increasing their paternity share (Alcock 1994; Alonzo and
Warner 2000; Parker and Birkhead 2013), for example by main-
taining exclusive access to mating partners by curtailing their
polyandry (e.g. through mate guarding). Sexual selection on
male mating success βMmales

� �

is stronger when males who mate
with many females also enjoy a higher exclusivity of mating.
Conversely, in populations with positive assortativity between
male and female mating success, males with highmating success
also face more intense sperm competition. This weakens selec-
tion on male mating success βMmales

� �

because increasing mating
success results in decreasing returns in terms of reproductive
success, due to reduced paternity share. Therefore, understanding
inter-population variation in sexual selection hinges on
characterising population-level patterns of the association be-
tweenmalemating success and themating success of his partners
(assortative mating byM).

In this work, we outlined multiple approaches to measures
of the relationship betweenmale mating success and the mating
success of his partners, namely Newman’s assortativity for un-
directed and directed networks (rNewman(U) and rNewman(D)) and
nestedness (NODF) and introduced a third quantitative mea-
sure, the SCIC. We then used (i) idealised model populations
to assess the logical performance of these measures in capturing
assortative mating bymating success and (ii) simulated random
mating populations to test the dependency of these measures on
three main population parameters, namely population size, sex
ratio and the ‘mating density’ of the population.

Our model populations allowed us to test the performance
of all measures of assortative mating in situations where there
should be zero assortativity or where there should be qualita-
tively positive or negative assortativity. Our results highlight-
ed limitations in two measures, NODF and rNewman(U) as both
measures either indicate zero assortative mating by mating
success when there should positive or negative assortativity,
or alternatively indicated assortative mating when there
should be none. Instead, rNewman(D) and SCIC showed either
no assortativity or were undefined when there should be zero
assortative mating and qualitatively consistent results when
there should be non-zero assortative mating.

Our simulations allowed us to test for the dependency of all
assortative mating measures on population parameters expected
to vary in nature, namely (i) population size, (ii) sex ratio and (iii)
the ‘mating density’ of the population.Our results show thatmost
measures were often not strongly associated with these popula-
tion parameters. However, SCIC and rNewman(U) showed a bias
towards negative values at small populations. When populations
are very small, those males that mate with many females will
tend to on average compete with males who have lower mating
success, purely as a result of small, restricted populations.
Whether such patterns can be explained by random processes
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alone may be investigated through the use of randomised null
models (Ulrich and Gotelli 2007). However, in such small pop-
ulations, even small deviations from random may have a large
effect of the distribution of male reproductive success and a first
step should be to explore the link between measures of assorta-
tive mating and the operation of sexual selection. In two cases,
we identified strong relationships between population parameters
and measures of assortativity. In our sex ratio simulation,
rNewman(U) showed a strong non-monotonic relationship across
different sex ratios. This is because, when sex ratios are skewed,
the mean mating success of one sex is higher than the other
resulting in negative values of rNewman(U). For ‘mating density’
simulations, we demonstrated that NODF is strongly positively
correlated with ‘mating density’, similar to previously published
studies (Almeida-Neto et al. 2008). This relationship could be

overcome by z-transforming NODF values via simulated distri-
butions of observed mating networks controlling for ‘mating
density’ (Almeida-Neto et al. 2008). However, the choice of null
models used to simulate matrices may not be straightforward and
would change the interpretation of empirical NODF values, to a
deviation from randomness (Ulrich and Gotelli 2007; Strona and
Fattorini 2014).

Overall, the two measures that were most consistent across
all population parameters were rNewman(D) and SCIC. Both
measures correlated strongly and positively with each across
all population parameters, suggesting they are likely to capture
similar variation. However, arguably only SCIC has a clear
relationship to sexual selection theory. This is because unlike
rNewman(D), SCIC can be directly included in the partitioning
of the Bateman gradient into those components that reflect the

Fig. 5 The relationship between measures of assortative mating structure
(rNewman(U) (a–c, rNewman(D) (d–f), SCIC (g–i) and NODF (j–l) and
population level parameters (population size (a, d, g, j)), sex ratio

(males/females) (b, e, h, k) and ‘mating density’ (c, f, i, l) for randomly
simulated mating populations. Numbers on the bottom right are the
Spearman rank correlation coefficients
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independent effect of mating success and the independent ef-
fect of sperm competition on male reproductive success.
Furthermore, SCIC can be used directly to quantify the con-
tribution of polyandry and assortativity in mating patterns to
Bateman gradients, by multiplying SCIC and the partial re-
gression coefficient of the sperm competition intensity faced
by a male (βSCI⋅ M) (Fig. 2, Eq. 6).

An important caveat is that our approach calculates SCI
assuming that each mating has the same competitive value
(equality of mating). This assumption may generate simplistic
expectations in terms of variation in paternity share. Variation
in male traits such as ejaculate size, factors that load the sperm
competition raffle (e.g. mating order) and mechanisms of cryp-
tic female choice (Birkhead and Møller 1998; Simmons 2001)
can all influence variation in paternity share and generate devi-
ations from the predictions of our null model assuming of
equality of mating. Such processes may themselves erode the
predictive power of SCI in determining a male’s paternity
share, as the number of males that inseminate a female becomes
less important in determining male fertilisation success relative
to other factors, e.g. the timing of insemination or ejaculate
traits (Parker and Pizzari 2010). This may in turn reduce the
predictive power of SCIC. Such cases will themselves provide
interesting empirical studies in understanding how the pattern
of female multiple mating determines the operation of sexual
selection. A particularly relevant example arises when individ-
ual partners copulate with each other multiple times (i.e. edges
between males and females nodes are weighted by the number
of copulations). Remating between male and female pairs may
reflect postcopulatory selection on males and function as a trait
that allows a male to defend his paternity by increasing the
relative representation of his ejaculates versus competitors
(Shuster and Wade 2003). In such situations, the calculation
of a male’s SCI can be extended to include multiple copulations
between individual males and females. Using this weighted
approach, a male’s exclusivity with a female partner is deter-
mined not by the number of competitor males but instead by the
relative representation of his ejaculates (Shuster and Wade
2003). This weighted version of male SCI is therefore shaped
by both the remating rate of the focal male and the mating rates
of competitor males, i.e. a lowweighted SCI can be the result of
both high focal male remating rate and low remating rates of

other competitor males. Weighted and unweighted versions of
SCIC can be compared to explore how patterns of remating
accentuate or diminish the relationship between male mating
success and the intensity of sperm competition.

The simulation approach used in this work has provided hy-
pothetical conditions in which the researcher has detailed and
complete knowledge of the mating patterns of a population
However, in many empirical studies, researchers may have less
detailed knowledge, e.g. when mating success is inferred from
genetic parentage assignment with little or no behavioural data
(Collet et al. 2014; Taylor et al. 2014). Using genetic data alone
may result in overestimates of variance in male mating success
and Bateman gradients (Collet et al. 2014). With reference to the
estimation of assortative mating structure, we expect that using
genetic parentage as ameans of determiningmale–femalemating
networks may also bias results. When behavioural data are not
available, genetically determined mating networks may not ac-
curately characterise the distribution of sperm competitive envi-
ronments across males and instead may better represent the re-
sults of sperm competition rather than the competitive landscape,
potentially underestimating the assortativity of a given mating
network. This problem may be exacerbated when female clutch
size is small (Collet et al. 2014). An extreme example comes
from cases where females only lay one egg. In this case, using
genetic parentage assignment removes completely the potential
for female polyandry and any level of mating structure; however,
the distribution of reproductive success across males may strong-
ly depend on female polyandry and mating structure in such
‘winner fertilise all’ cases. A similar issue relates to the accuracy
of behavioural datawhen available.Missing datamay result in an
underestimation of polyandry and bias estimates of mating net-
work structure, which may be particularly strong when males of
a given mating success are associated with a particular reproduc-
tive tactic that is consistently not recorded (e.g. alternative repro-
ductive tactics; sneak mating). We therefore advocate that use of
suchmethods requires both genetic and detailed behavioural data
on copulations or genetic parentage assignment only in those
cases where genetic data are strongly representative of behav-
ioural mating patterns. Although these conditions may appear
restrictive, there is great potential to explore these methods in
experimental groups where behavioural data are more readily
available (e.g. Collet et al. 2012; Pélissié et al. 2014) and in some

Fig. 6 Plots show the Pearson
product correlation coefficient
between measures of assortative
mating structure (rNewman
(U), rNewman(D), SCIC and
NODF) across all levels of
population level parameters
(population size, sex ratio (males/
females) and ‘mating density) for
randomly simulated mating
populations

218 Behav Ecol Sociobiol (2016) 70:209–220



natural populations of both vertebrates and invertebrates, where
detailed behavioural data are becoming available (e.g. Preston
et al. 2005; Rodríguez-Muñoz et al. 2010).

Finally, although this study has focused largely on the utility
of assortment measures in studies on male Bateman gradients,
assortment measures such as SCIC may also have useful appli-
cations for studies focusing on female reproduction. Consider,
for example, populations where males are sperm limited and so
those male that mate many times may fail to deliver sufficient
sperm per copulation to fertilise all the ova of a female (Warner
et al. 1995; Wedell et al. 2002). Patterns of positive assortative
mating may then weaken female Bateman gradients, because
increasing mating success is associated with fewer sperm deliv-
ered per copulation. Whereas in negatively assorted mating net-
work, female Bateman gradients would be strengthened because
females with few mates suffer reduced fertility as their partners
tend to be the most promiscuous, and so potentially the most
sperm depleted.

This work merges network theory from both social sciences
and ecological literature to test the utility of a variety ofmeasures
in quantifying the relationship betweenmalemating success and
the mating success of their female mating partners, for use in the
study of sexual selection and sperm competition. Overall, our
results lead us to suggest that the measure of SCIC is the most
promising approach as it is both logically consistent with the
relationship between male mating success and the mating suc-
cess of their partners, is not strongly confounded by variation in
population parameters and has a clear relationship to sexual
selection theory.
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