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Abstract. Recently, methods from provable security, that had been de-
velopped for the last twenty years within the research community, have
been extensively used to support emerging standards. This in turn has
led researchers as well as practitioners to raise some concerns about this
methodology. Should provable security be restricted to the standard com-
putational model or can it rely on the so-called random oracle model?
In the latter case, what is the practical meaning of security estimates
obtained using this model? Also, the fact that proofs themselves need
time to be validated through public discussion was somehow overlooked.
Building on two case studies, we discuss these concerns. One example
covers the public key encryption formatting scheme OAEP originally
proposed in [3]. The other comes from the area of signature schemes and
is related to the security proof of ESIGN [43]. Both examples show that
provable security is more subtle than it at first appears.

1 Provable Security

1.1 A Brief Perspective

Public key cryptography was proposed in the 1976 seminal article of Diffie and
Hellman [19]. Shortly afterwards, Rivest, Shamir and Adleman introduced the
RSA cryptosystem as a first example. From an epistemological perspective, one
can say that Diffie and Hellman have drawn the most extreme consequence of
a principle already stated by Auguste Kerckhoffs in the XIXth century: “Le
mécanisme de chiffrement doit pouvoir tomber sans inconvénient aux mains de
l’ennemi1”. Indeed, Diffie and Hellman understood that only the deciphering
operation has to be controlled by a secret key: the enciphering method may
perfectly be executed by means of a publicly available key, provided it is virtu-
ally impossible to infer the secret deciphering key from the public data. Diffie
and Hellman also understood that the usual challenge/response authentication
method was granting non repudiation in the public key setting, thus creating
the concept of digital signature, an analog of handwritten signatures.

Very quickly, it was understood that the naive textbook RSA algorithm could
not be used as it stands: in particular, it has algebraic multiplicative properties
which are highly undesirable from a security perspective. Accordingly, it was
1 The enciphering mechanism may fall into the enemy’s hands without drawback.
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found necessary to define formatting schemes adding some redundancy, both
for encryption and signature. Besides bringing an improved security level, this
approach had the additional practical benefit of establishing interoperability
between different implementations.

For several years, standard makers worked by trials and errors. However, in
the late nineties, it was acknowledged that this was not appropriate. In 1998,
D. Bleichenbacher [5] devised a subtle attack against the PKCS #1 v1.5 en-
cryption scheme [52]. In this attack, the adversary discloses the secret key of an
SSL server, based on the information coming form the error messages received
when an incorrectly formatted ciphertext is submitted to the server. One year
later, the work of J. S. Coron, D. Naccache and J. P. Stern [16] on one hand,
D. Coppersmaith, S. Halevy and C. Jutla [13] on the other hand, resulted in
breaking the ISO/IEC 9796-1 signature scheme, by showing how to manufacture
a fresh message/signature pair, having previously requested the signature of a
few related messages.

Thus, a more formal approach appeared necessary, borrowing methods from
the theory of complexity. This approach allows a correct specification of the
security requirements, which in turn can be established by means of a security
proof.

1.2 Public Key Encryption Schemes

In modern terms, a public-key encryption scheme on a message spaceM consists
of three algorithms (K, E ,D):

– The key generation algorithm K(1k) outputs a random pair of private/public
keys (sk, pk), relatively to a security parameter k.

– The encryption algorithm Epk(m; r) outputs a ciphertext c corresponding to
the plaintext m ∈M, using random coins r.

– The decryption algorithm Dsk(c) outputs the plaintext m associated to the
ciphertext c.

We will occasionnally omit the random coins and write Epk(m) in place of
Epk(m; r). Note that the decryption algorithm is deterministic.

The starting point of the new approach is semantic security, also called poly-
nomial security/indistinguishability of encryptions, introduced by Goldwasser
and Micali [25] : an encryption scheme is semantically secure if no polynomial-
time attacker can learn any bit of information about the plaintext from the
ciphertext, except its length. More formally, an encryption scheme is semanti-
cally secure if, for any two-stage adversary A = (A1, A2) running in polynomial
time, the advantage Advind(A) is negligible, where Advind(A) is formally defined
as

2× Pr

[
(pk, sk)← K(1k), (m0, m1, s)← A1(pk),
b

R← {0, 1}, c = Epk(mb) : A2(m0, m1, s, c) = b

]
− 1,

where the probability space includes the internal random coins of the adversary,
and m0, m1 are two equal length plaintexts chosen by A1 in the message-space
M.
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Fig. 1. Relations between security notions

Another security notion has been defined in the literature [20], called non-
malleability (NM). Informally, it states that it is impossible to derive from a given
ciphertext a new ciphertext such that the plaintexts are meaningfully related.
We won’t dicuss this notion extensively since it has been proven equivalent to
semantic security in an extended attack model (see below).

The above definition of semantic security covers passive adversaries. It is a
chosen–plaintext or CPA attack since the attacker can only encrypt plaintext.
In extended models, the adversary is given restricted or non restricted access
to various oracles. A plaintext-checking oracle receives as its input a pair (m, c)
and answers whether c encrypts message m. This gives rise to plaintext-checking
attacks [44]. A validity-checking oracle answers whether its input c is a valid ci-
phertext or not. The corresponding scenario has been termed reaction attack [30].
This is exactly the situation met by Bleichenbacher when breaking the PKCS #1
v1.5 encryption scheme [5]. Finally, a decryption oracle returns the decryption
of any ciphertext c, with the only restriction that it should be different from
the challenge ciphertext. When access to the decryption oracle is only granted
to A1, i.e. during the first stage of the attack, before the challenge ciphertext is
received, the corresponding scenario is named indifferent chosen-ciphertext at-
tack (CCA1) [35]. When the attacker also receives access to the decryption oracle
in the second stage, the attack is termed the adaptive chosen-ciphertext attack
(CCA2) [50]. The security notions defined above and their logical relationships
have been discussed at length in [1]. The main results are summarized in the
well-known diagram shown on figure 1.

Thus, under CCA2, semantic security and non-malleability are equivalent.
This is the strongest security notion currently considered. We restate its defini-
tion in a more formal manner: any adversary A with unrestricted access to the
decryption oracle Dsk, has negligible advantage, where the advantage is:

Advind(ADsk) = 2× Pr

[
(pk, sk)← K(1k), (m0, m1, s)← ADsk

1 (pk),
b

R← {0, 1}, c = Epk(mb) : ADsk
2 (m0, m1, s, c) = b

]
− 1,
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1.3 Digital Signatures

In modern terms (see [28]), a digital signature scheme consists of three algorithms
(K, Σ, V ):

– A key generation algorithm K, which, on input 1k, where k is the security
parameter, outputs a pair (pk, sk) of matching public and private keys. Al-
gorithm K is probabilistic.

– A signing algorithm Σ, which receives a message m and the private key sk,
and outputs a signature σ = Σsk(m). The signing algorithm might be prob-
abilistic.

– A verification algorithm V , which receives a candidate signature σ, a mes-
sage m and a public key pk, and returns an answer Vpk(m, σ) testing whether
σ is a valid signature of m with respect to pk. In general, the verification
algorithm need not be probabilistic.

Attacks against signature schemes can be classified according to the goals of
the adversary and to the resources that it can use. The goals are diverse:

– Disclosing the private key of the signer. It is the most drastic attack. It is
termed total break.

– Constructing an efficient algorithm which is able to sign any message with
significant probability of success. This is called universal forgery.

– Providing a single message/signature pair. This is called existential forgery.

In many cases the latter does not appear dangerous because the output message
is likely to be meaningless. Nevertheless, a signature scheme, which is not exis-
tentially unforgeable, does not guarantee by itself the identity of the signer. For
example, it cannot be used to certify randomly looking elements, such as keys or
compressed data. Furthermore, it cannot formally guarantee the so-called non-
repudiation property, since anyone may be able to produce a message with a
valid signature.

In terms of resources, the setting can also vary. We focus on two specific at-
tacks against signature schemes: the no-message attacks and the known-message
attacks. In the first scenario, the attacker only knows the public key of the signer.
In the second, the attacker has access to a list of valid message/signature pairs.
Again, many sub-cases appear, depending on how the adversary gains knowledge.
The strongest is the adaptive chosen-message attack (CMA), where the attacker
can require the signer to sign any message of its choice, where the queries are
based upon previously obtained answers. When signature generation is not de-
terministic, there may be several signatures corresponding to a given message. A
slightly weaker security model, which we call single-occurrence adaptive chosen-
message attack (SO-CMA), allows the adversary at most one signature query for
each message. In other words the adversary cannot submit the same message
twice for signature.

In chosen-message attacks, one should point out that existential forgery be-
comes the ability to forge a fresh message/signature pair that has not been
obtained from queries asked during the attack. Again there is a subtle point
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here, related to the context where several signatures may correspond to a given
message. We actually adopt the stronger rule that the attacker needs to forge
the signature of message, whose signature was not queried.

When designing a signature scheme, one wishes to rule out existential forg-
eries, even under adaptive chosen-message attacks. More formally, one requires
that the success probability of any adversary A, whose running time remains be-
low some security bound t, is negligible, where the success probability is defined
by:

Succcma(A) = Pr
[
(pk, sk)← K(1k), (m, σ)← AΣsk(pk) : Vpk(m, σ) = 1

]
.

In the above, note the superscript Σsk, indicating adaptive calls to the signing
algorithm: this is consistent with the framework of relativized complexity theory,
and we will use the wording signing oracle in this setting. When dealing with
single-occurrence attacks, Succcma(A) is replaced by an appropriately defined
variant Succso−cma(A).

1.4 The Random Oracle Model

Ideally, one would like to establish the security of a cryptographic scheme based
on the sole assumption that some widely studied mathematical problem is hard.
Such problems include factoring, inverting the RSA function, and solving the
discrete logarithm problem or the Diffie-Hellman problem. Unfortunately, very
few schemes are know that allow such a proof (see however [17,18]), and none is
based on RSA.

Thus, the best one can hope for is a proof carried in a non-standard com-
putational model, as proposed by Bellare and Rogaway [2], following an earlier
suggestion by Fiat and Shamir [21]. In this model, called the random oracle
model, concrete objects such that hash functions [37] are treated as random ob-
jects. This allows to carry through the usual reduction arguments to the context
of relativized computations, where the hash function is treated as an oracle re-
turning a random answer for each new query. A reduction still uses an adversary
as a subroutine of a program that contradicts a mathematical assumption, such
as the assumption that RSA is one-way. However, probabilities are taken not
only over coin tosses but also over the random oracle.

Of course, the significance of proofs carried in the random oracle is debatable.
Firstly, hash functions are deterministic and therefore do not return random
answers. Along those lines, Canetti et al. [11] gave an example of a signature
scheme which is secure in the random oracle model, but insecure under any
instantiation of the random oracle. Secondly, proofs in the random oracle model
cannot easily receive a quantitative interpretation. One would like to derive
concrete estimates - in terms of key sizes - from the proof: if a reduction is
efficient, the security “loss” is small and the existence of an efficient adversary
leads to an algorithm for solving the underlying mathematical problem, which is
almost as efficient. Thus, key sizes that outreach the performances of the known
algorithms to break the underlying problem can be used for the scheme as well.
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Despite these restrictions, the random oracle model has proved extremely
useful to analyze many encryption and signature schemes [2,3,4,48,43,49,9,58,15,
6,22,31,59]. It clearly provides an overall guarantee that a scheme is not flawed,
based on the intuition that an attacker would be forced to use the hash function
in a non generic way.

Recently, several authors have proposed to use yet another model to argue
in favour of the security of cryptographic schemes, that could not be tackled by
the random oracle model. This is the so-called black-box group model, or generic
model [56,10,40]. In particular, paper [10] considered the security of ECDSA in
this model. Generic algorithms had been earlier introduced by Nechaev and
Shoup [41,57], to encompass group algorithms that do not exploit any special
property of the encodings of group elements other than the property that each
group element is encoded by a unique string. We will not further comment on
this method since it is not used in the examples that we wish to cover.

2 A Case Study: The OAEP Formatting Scheme

As already noted, the famous RSA cryptosystem has been proposed by Rivest,
Shamir and Adleman [51]. The key generation algorithm of RSA chooses two
large primes p, q of equal size and issues the so-called modulus n = pq. The sizes
of p, q are set in such a way that the binary length |n| of n equals the security
parameter k. Additionally, en exponent e, relatively prime to ϕ(n) = (p−1)(q−1)
is chosen, so that the public key is the pair (n, e). The private key d is the inverse
of e modulo ϕ(n). Variants allow the use of more than two prime factors.

Encryption and decryption are defined as follows:

En,e(m) = me mod n Dn,d(c) = cd mod n.

Note that both operations are deterministic and are mutually inverse to each
other. Thus, the RSA encryption function is a permutation. It is termed a trap-
door permutation since decryption can only be applied given the private key.

The basic security assumption on which the RSA cryptosystem relies is its
one-wayness (OW): using only public data, an attacker cannot recover the plain-
text corresponding to a given ciphertext. In the general formal setting provided
above, an encryption scheme is one-way if the success probability of any adver-
sary A attempting to invert E (without the help of the private key), is negligible,
i.e. asymptotically smaller than the inverse of any polynomial function of the
security parameter. Probabilities are taken over the message space M and the
randoin coins Ω. These include both the random coins r used for the encryption
scheme, and the internal random coins of the adversary. In symbols:

Succow(A) = Pr[(pk, sk)← K(1k), m R←M : A(pk, Epk(m)) = m].

Clearly, the factorization of n allows to invert the RSA encryption function,
since d can be computed from p and q. It is unknown whether the converse is true,
i.e. whether factoring and inverting RSA are computationnally equivalent. There
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Fig. 2. Optimal Asymmetric Encryption Padding

are indications that it might not be true (see [7]). Thus, the assumption that RSA
is one-way might be a stronger assumption than the hardness of factoring. Still,
it is a widely believed assumption and the only method to assess the strength
of RSA is to check whether the size of the modulus n outreaches the current
performances of the various factoring algorithms.

As already stated, the naive RSA algorithm defined in the previous sec-
tion cannot be used as it stands. More precisely RSA by itself cannot provide
a secure encryption scheme for any of the security notions considered in the
previous section: semantic security fails because encryption is deterministic and
non-malleability cannot hold due to the homomorphic property:

En,e(m1) · En,e(m2) = En,e(m1m2 mod n) mod n.

Therefore, any RSA-based cryptosystems has to use a padding or encoding
method before applying the RSA primitive.

The OAEP padding scheme (optimal asymmetric encryption padding) was
proposed by Bellare and Rogaway [3] in 1994. It is depicted on figure 2 . For a
long time it was implicitly believed that OAEP achieved CCA2 security for any
trapdoor function, based on a proof in the random oracle model, relying on the
one-wayness of the permutation.

However, Victor Shoup [58] recently showed, by means of a subtle counter-
example in a relativized model of computation, that it is quite unlikely that such
a security proof exists, at least under the sole one-wayness of the permutation.
He also proposed a modified version of OAEP, called OAEP+, which can be
proven secure, under the one-wayness of the permutation. What went wrong
here is that the proof of Bellare and Rogaway only applied in the restricted
attack setting where the adversary can query the decryption oracle before it
receives the challenge ciphertext c, referred above as CCA1. It did not mean
at all that the security proof provided by Bellare and Rogaway was incorrect,
since they never claimed to cover CCA2 security. It did not mean either that
RSA-OAEP was flawed. It only meant that a new proof was needed.
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Surprisingly, the repaired proof appeared shortly afterwards in [22]. Albeit
based on the same methodology, it was significantly different, using additional
algebraic tools, notably the reduction of two-dimensional lattices in the style
of [39], which did not appear in the earlier proof. Thus, the multiplicative prop-
erties of RSA, which motivated the quest for formatting schemes, ultimately
helped for the security proof. It should also be noted that alternative formatting
schemes with a more direct security proof such as OAEP+, have been recently
designed. However, OAEP is a widely used standard [52] and it is unclear whether
it will be replaced by these challengers.

3 Another Case Study: The ESIGN Signature Scheme

Soon after the appearance of the celebrated RSA cryptosystem [51], a lot of effort
was devoted to finding alternative schemes. In the area of signature, researchers
faced the challenge of reducing the computing effort needed from the signer, since
it is well known that RSA requires a full-size modular exponentiation. Among
the potential candidates to answer this challenge is the ESIGN signature scheme,
that has been proposed in the early nineties (see [42]). While RSA generates
signatures by computing an e-th root of a hash value, ESIGN only requests to
find an element whose e-th power is close enough to the hash value.

A precise specification of ESIGN appears in [43]. We refer to this papers for
details. The key generation algorithm chooses two large primes p, q of equal size
k and computes the modulus n = p2q. The sizes of p, q are set in such a way
that the binary length |n| of n equals 3k. Additionally, an exponent e > 4 is
chosen.

Signature generation is performed as follows, using a hash function H, out-
putting strings of length k − 1:

1. Pick at random r in Z
�
pq.

2. Convert (0‖H(m)‖02k) into an integer y.
3. Compute and output an element s in the interval Ik(y) = {u|y ≤ u <

y + 22k−1}.

Signature verification converts integer se mod n into a bit string S of length 3k
and checks that [S]k = 0‖H(m), where [S]k denotes the k leading bits of S.

The basic paradigm of ESIGN is that the arithmetical progression re mod n+
tpq consists of e-th powers of easily computed integers: the third step of signa-
ture generation adjusts t so as to fall into a prescribed interval Ik(y) of length
22k−1. This allows a very efficient way to sign, with a computing time essen-
tially equivalent to a single exponentiation to the e-th power. This is especially
attractive when e is small, and in particular a small power of two.

Thus, the mathematical assumption underlying ESIGN is that, given an el-
ement y of Z

�
n, it is hard to find x such that xe mod n lies in the interval

Ik(y) = {u|y ≤ u < y + 22k−1}, where the bit-size of n is 3k. This is called
the approximate e-th root problem (AERP) in [43]. In a more formal setting,
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denote by Succaerp(τ, k) the probability for any adversary A to find an element
whose e-th power lies in the prescribed interval, within time τ , in symbols:

Succaerp(τ, k)=Pr[(n, e)← K(1k), y ← ZN , x← A(N, e, y) : (xe mod n) ∈ Ik(y)].

then, the hardness assumption is the statement that, for large enough moduli,
this probability is extremely small. Variants of the above can be considered,
where the length of the interval is replaced by 22k or 22k+1.

Of course, the factorization of n allows to solve the AERP problem. It is
unknown whether the converse is true, i.e. whether AERP and inverting RSA
are computationally equivalent. As most proposed cryptosystems, ESIGN has
attracted cryptanalytic effort. Papers [8,60] described several attacks against
the underlying problem, for e = 2, 3. Still, It is fair to say that there is no known
attack against AERP when e is ≥ 4.

Recently, in connection with several standardization efforts such as IEEE
P1363, Cryptrec and NESSIE, an effort was made to lay ESIGN on firm founda-
tions, using the methodology of provable security. A security proof in the random
oracle model, along the lines of [4], formally relating the security of ESIGN with
the AERP problem, appeared in [43]. However, several unexpected difficulties
were found. Firstly, it was observed in [59] that the proof from [43] holds in a
more restricted model of security than claimed: this model, termed single occur-
rence chosen message attack SO-CMA in section 1.3 above, is very similar to the
usual chosen message attack scenario but does not allow the adversary to submit
the same message twice for signature. This observation does not endanger the
scheme in any way, and furthermore, it is quite easy to restore the usual CMA
security, as suggested in [29]. Still, it shows that the methodology of security
proofs should unambiguously define the attack model. Secondly, it was found
that the proof needs the additional assumption that e is prime to ϕ(n), thus
exluding some very attractive parameter choices, notably powers of two advo-
cated in the original proposal. The difficulty here comes from the simulation of
the random oracle. As far as we know, this is the only example where this part
is not straightforward, and the underlying difficulty may be easily overlooked.
In other words, it may appear obvious that picking x at random and suitably
truncating xe mod n yields an almost uniform distribution. However, it is not,
at least when e is not prime to ϕ(n) since it relies on the distribution of e-th
powers, which is not completely understood from a mathematical point of view.
Thus, removing the restriction that e is prime to ϕ(n) is not a side issue. Besides
allowing to make e a power of two in order to take full advantage of computa-
tional efficiency of ESIGN, it once again shows that security proofs have many
subtleties.

In an unpublished paper [46], Tatsuaki Okamoto and the author proved that
the set of e-th power modulo an RSA modulus n, is almost uniformly distributed
on any large enough interval. The proof borrows from analytic number theory
and uses Dirichlet characters and the Polya-Vinogradov inequality [47,62]. This
yield concrete estimates that are enough to complete the security proof of ES-
IGN.
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4 Conclusions

There are several lessons to learn form the above. Firstly, the methodology of
provable security has become unavoidable in designing, analyzing and evaluating
new schemes. Despite its limitations, the random oracle model needs to be used
in order to cover schemes that remain attractive for the practioner. On the other
hand, due to these limitations, the estimates that are drawn from proofs in the
random oracle model should be interpreted with care: considering SHA1 as a
random oracle is a methodological step, averaging on random oracles to derive
security margins is a further step.

Secondly, cryptography and provable security proceed at their pace and meet
many hidden subtleties. Twenty-five centuries were needed before the discovery
of public key cryptography by Diffie and Hellman. It took twenty-five more
years to understand how RSA could be correctly practiced. No cryptographic al-
gorithm can be designed and validated in twenty-five minutes, twenty-five hours,
or twenty-five days, not even twenty-five months.
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