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Abstract
Despite widespread adoption in numerous applications,

machine learning models remain mostly black boxes; it is

completely opaque to the user why predictions are made.

Understanding the reasons behind predictions is, however,

quite important as it can lead to effective hyper-parameter

tuning, feature engineering, and model selection. More im-

portantly, such an understanding is crucial in developing

trust between the user and the system. In particular, there

are two separate (but related) types of trust: whether the

end-user trusts a specific prediction (e.g. a doctor deciding

if a model prediction should be acted upon), or whether a

practitioner trusts a model enough to deploy it ’in the wild’.

In this work, we formalize the characteristics of good ex-

plainers that can explain why individual machine learning

predictions are made. Using these characteristics as a

guiding principle, we propose a novel explanation technique

that is able to explain any machine learning models in an

interpretable and faithful manner. We demonstrate that ac-

curate explanations are good indicators of trust, both at an

individual prediction level, as well as to compare different

models. We further present example explanations for differ-

ent domains (text and images) and classifiers that illustrate

the usefulness and flexibility of the explanation method.



Introduction
Machine learning is at the core of many recent advances.

Unfortunately, the important role of humans is an oft-overlooked

aspect in the field. Whether humans are directly using the

machine learning classifiers as tools, or are deploying mod-

els into products that need to be shipped, a vital concern

remains: if the users do not trust the model or their pre-

dictions, they will not use it. It is important to differenti-

ate between two different (but related) definitions of trust:

(1) trusting a prediction, i.e. whether a user trusts an indi-

vidual prediction sufficiently to take some action based on

it, and (2) trusting a model, i.e. whether the user trusts a

model to behave in reasonable ways if deployed.

Desired Characteristics for

Explanation Systems

(1) Model Agnostic: The sys-

tem should explain predictions

of any classifier, i.e. treat

them as black boxes. Apart

from explaining accurate,

state-of-art models, this also

provides flexibility to explain

future classifiers.

(2) Local fidelity: In order

to provide trust, explanations

must be faithful, i.e. they must

correspond to how the model

actually behaves in the vicinity

of the prediction.

(3) Interpretability: The

explanations must be inter-

pretable - that is, they must

take human cognitive limita-

tions into account [14].

(4) Explanation selection:

In order to evaluate a model,

examining a lot of explana-

tions is often not possible,

and thus the system should

present explanations only for

a representative subset.

(5) Anytime: The system

should allow a trade-off be-

tween fidelity and computa-

tion time, i.e. give immediate

explanation (at the cost of

fidelity), or give a faithful ex-

planation if the user can wait.

Trust in Individual Predictions

Determining trust in individual predictions is an important

problem when the model is being used for real-world ac-

tions. When using machine learning for medical diagno-

sis [5] or to detect terrorism activity, for example, the po-

tential effects of mistakes are catastrophic - and thus the

predictions cannot be acted upon on blind faith. Even when

the stakes are lower, as in product or movie recommen-

dations, the user needs to trust the prediction enough to

spend money or time on it. One popular way to address

the opacity of the models is to use alternate models that

are more interpretable [5, 10, 11, 20] and provide insight

into why predictions were made; unfortunately they do so

at the cost of accuracy and flexibility. It is thus crucial to

be able to explain predictions of state-of-the-art machine

learning models (such as random forests, neural networks,

and SVMs) that are functionally black boxes, in order to aid

users in ascertaining their trust in them.

Trust in the Model

Apart from trusting individual predictions, there is also a

need to evaluate the model as a whole before deploying

it “in the wild”. To make this decision, the users need to

be confident that the model will perform well on the real-

world data, on the metrics of interest. Currently, models are

evaluated using metrics such as accuracy on an available

validation dataset. However, real-world data is often signif-

icantly different, and further, the evaluation metric may not

correlate well with the overall goal of the product. Instead,

we are interested in approaches that incorporate humans

in the loop to utilize prior knowledge. For example, some

tools [1, 15] allow practitioners to look at measures of per-

formance such as confusion tables, dataset visualizations,

or explore specific predictions such as very confident mis-

takes. While these are definitely helpful in building trust in

a model, we argue that they are not sufficient. Problems

such as overestimating models’ accuracy [15], feedback

loops [18], leakage [8], dataset shift [4], or mismatch be-

tween metrics such as accuracy and business metrics (e.g.

“user happiness”) can be easily overlooked if one does not

have an understanding of what the model is doing for par-

ticular instances, but become obvious once explanations

are provided. Noticing such problems by just looking at raw

data is often not possible. Furthermore, as datasets grow in

size, it becomes important to guide users by suggesting the

instances they should be inspecting.

An Explanation System for Classifier Predictions

Trust (both in predictions and the model as a whole) is thus

a fundamental issue for human-centered machine learning,

and explaining individual predictions is a significant compo-

nent for providing trust. In the sidebar, we outline a number

of desired characteristics from an explainer, and in the re-

mainder of this paper we describe the local, interpretable

model-agnostic explanation (LIME) system designed to

meet these criteria. For individual predictions, the system

is faithful and model-agnostic, while being interpretable

and anytime in nature. We further propose an approach



to select representative explanations in order for a user to

evaluate the whole model from a subset of instances. We

evaluate trust on simulated tasks, and demonstrate that our

explanations are able to help users ascertain trust in indi-

vidual predictions and select between competing classifiers

significantly better than existing approaches.

Explaining predictions

Intelligibility

Even interpretable models

may not be intelligible to

humans. For example, an

additive model or feature

gradients [2] for hundreds

of features is too complex

for humans to comprehend.

Furthermore, an assump-

tion often made when using

interpretable models is that

features themselves are eas-

ily interpretable, which is

often not the case. In text, for

example, the features may

contain linguistic structures

or word embeddings that are

not intuitive for most users.

Similarly, for images, the fea-

tures may include spectral

transformations or raw pixels,

both which are not directly

amenable to human under-

standing. Instead, here we

allow each instance to be ac-

companied by an intelligible

representation that consists

of natural components for the

task, e.g. the list of words

for text documents, and a

collection of super-pixels for

images. Interpretable models

that use this representation as

features and are restricted in

their complexity will thus pro-

vide intelligible explanations.

Current work for explaining relies either on using inter-

pretable models (such as decision trees [7] or additive mod-

els [5]) or on approximating black-box model predictions

with interpretable models globally [2, 17]. Since the family

of interpretable models is quite restrictive, they are unable

to provide a faithful reproduction of the classifier, and thus

the utility of such explanations is not clear. On the other

hand, we aim to explain individual predictions, i.e. the much

more feasible task of approximating the classifier locally in

the neighborhood of the prediction, instead of globally on

all predictions. We call our method Local Interpretable

Model-agnostic Explanations (LIME).

The overall goal of LIME is to identify an interpretable model

over the intelligible representation (see sidebar) that is

locally faithful to the classifier. Formally, the explanation

model needs to explain why the prediction f(x) is made,

where x ∈ R
d is the instance, f : Rd → [0, 1] denotes the

black-box classifier, and the prediction f(x) is the probabil-

ity that x belongs to a certain class. Further, let Πx(z) be

the proximity of an instance z to x (used to define locality

around x). We use x′ to denote the intelligible represen-

tation of x, and let G be a family of explanations (simple,

interpretable models that use x′ as features). Let Ωx(g) be

a measure of complexity (as opposed to interpretability )

of the explanation g ∈ G in explaining instance x. Finally,

let L(f, g,Πx) be a measure of how unfaithful g is in ap-

proximating f in the locality defined by Πx. We define the

explanation model ξ(x) as:

ξ(x) = argmin
g∈G

L(f, g,Πx) + Ωx(g)

Concretely, we use linear classifiers as G, and set Ωx(g) =
∞ if the number of non-zero weights in g is greater than

some budget K (set to 10 unless specified otherwise), i.e.

each explanation will be a set of at most K elements of

x′ with associated weights. We use the locally weighted

square loss as L:

L(f, g,Πx) =
∑

z∈Rd

Πx(z) (f(z)− g(z′))
2

This summation is approximated by sampling randomly in

the vicinity of x. Finally, we let Πx(z) be the exponential

kernel applied on the cosine distance between x′ and z′.
This optimization thus reduces to identifying a linear model

that uses K features over the samples weighted by Πx(z),
which we approximate by first selecting K features with

Lasso (using the regularization path [6]) and then learning

with weighted least squares estimation.

Illustrative examples

Here we present two example explanations to show the

flexibility and utility of LIME. First we study text classification

- specifically, explaining predictions of a logistic regression

classifier trained on unigrams to differentiate “Christianity”

from “Atheism” (on a subset of the 20 newsgroup dataset).

Although this classifier achieves 93% held-out accuracy,

and one would be tempted to trust it based on this, the ex-

planation for an instance (Figure 1) shows that predictions

are made for quite arbitrary reasons (words “1993”, “rut-

gers” and “athos” have no connection to either Christianity

or Atheism). After examining a few more explanations, it is

clear that this dataset has serious issues (which would not

be evident by studying the raw data or predictions), and that

this classifier, or held-out evaluation, cannot be trusted.



(a) Original Image (b) Explaining “Electric guitar” (c) Explaining “Acoustic guitar” (d) Explaining “Labrador retriever”

Figure 2: Explaining an image classification prediction made by Google’s Inception network. The top 3 classes predicted are “Electric Guitar”

(p = 0.32), “Acoustic guitar” (p = 0.24) and “Labrador Retriever” (p = 0.21)

Figure 1: Explaining a document

classification prediction (logistic

regression on 20 Newsgroups,

K = 5). The classifier correctly

predicts the class ’Christianity’ with

p = 0.59. In the explanation,

words indicative (according to the

model) of ’Christianity’ are green,

while ’Atheism’ words are red.

For the task of image classification, we explain the predic-

tion of Google’s pre-trained Inception neural network [19]

on an arbitrary image (Figure 2a). Figures 2b, 2c, 2d show

the super-pixels with positive weights as explanations for

the top 3 predicted classes. What the neural network picks

up on for each of the class is very natural to humans - Fig-

ure 2b in particular provides insight as to why acoustic gui-

tar was predicted to be electric: due to the fretboard.

Explaining models
Although an explanation of a single prediction provides

some understanding into the reliability of the classifier to the

user, it is not sufficient to evaluate the model as a whole.

Even though explanations of multiple instances can be quite

insightful, these instances need to be selected judiciously,

since users may not have ample time to examine expla-

nations of a large number of instances. In this section, we

propose such a selection technique that picks a diverse,

representative set of explanations to show the user.

Formally, if gi are the weights of the explanation of predic-

tion xi (most of which are zero), X is the set of instances

(|X| = n), and k the number of instances to select, we

define the importance of feature j as wj =
√

∑n

i=1 |gij |.
Intuitively, we should pick explanations that cover all the im-

portant features. On the other hand, the set of explanations

must not be redundant in the features they show the users.

Thus we define an objective that, for any set of instances

V, |V | ≤ k, computes the total importance of the features

that appear at least once in V , i.e.

max
V,|V |≤k

m
∑

j=1

✶[∃gi∈V :gij>0]wj

This function is submodular and monotone, and thus a

greedy algorithm offers a constant-factor approximation

guarantee of 1−1/e to the optimum [9]. We use this greedy

approximation in all of our experiments.



Evaluation
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Figure 3: Recall on true

explanations for transparent

classifiers on the book dataset.

LR DT NN RF

Books

Random 14.6 14.9 14.8 14.7

Parzen 84.0 92.2 87.6 94.3

Greedy 53.7 62.7 47.4 45.0

Ours 96.6 97.8 94.5 96.2

Dvds

Random 14.2 14.6 14.3 14.5

Parzen 87.0 91.9 81.7 94.2

Greedy 52.4 66.1 58.1 46.6

Ours 96.6 97.9 91.8 96.1

Table 1: Averaged F1 score on

trusted predictions.

There are a number of natural questions that arise for eval-

uating whether explanations are useful as insights into pre-

dictions and classifiers: (1) Are the explanations faithful to

the model, (2) Can the explanations aid users in ascertain-

ing trust in predictions, and (3) Are the explanations useful

for evaluating the model as a whole. We will present prelim-

inary, synthetic experiments to address these questions.

Experiment Setup

We use two sentiment analysis datasets (books and dvds,

2000 instances each) where the task is to classify prod-

uct reviews as positive or negative [3]. We train decision

trees (DT), logistic regression with L2 regularization (LR),

and nearest neighbors (NN), all trained on bag of words as

features. We also include random forests (with 1000 trees)

trained with the mean word embedding [13] (RF), a setting

that is quite difficult to interpret. We use the implementa-

tions and default parameters of scikit-learn [16] for all meth-

ods, unless noted otherwise. We divide each dataset into

training (1600 instances) and testing (400 instances).

Along with our proposed approach (LIME), we also evalu-

ate parzen [2], for which we take the 10 features with the

highest absolute gradients. We set the hyper-parameters

for parzen and LIME using cross validation. We also evalu-

ate a greedy procedure (similar to [12]) in which we greed-

ily remove features that contribute the most until the class

changes (with a maximum of 10 features), and a random

procedure that picks 10 random features as an explanation.

Experiment 1: Are explanations faithful to the model?

We can measure faithfulness of explanations on classifiers

that are by themselves interpretable (sparse logistic regres-

sion and decision trees). For each prediction on the test

set, we generate explanations and compute how many of

the truly important features were recovered by the explana-

tions. We report the average recall on the true explanations

for the book dataset in Figure 3 (dvd dataset results are

similar). Only LIME provides a consistently high recall for

both logistic regression and decision trees. Greedy is worse

on decision trees, as changing any one feature at a time

often does not have an effect on the prediction.

Experiment 2: Trusting individual predictions

In order to evaluate trust in predictions, we first randomly

select 25% of the features to be “untrustworthy”, i.e. as-

sume that the users can identify such features and would

not want to trust them. We thus develop datasets of “trust-

worthiness” by labeling predictions a black box classifier

on the test set as “untrustworthy” if the prediction changes

when untrustworthy features are removed from the instance,

and “trustworthy” otherwise. In order to simulate users, we

assume that users deem predictions untrustworthy from

LIME and parzen explanations if the prediction from the lin-

ear approximation changes when all untrustworthy features

that appear in the explanations are removed. For greedy

and random, the prediction is mistrusted if any untrustwor-

thy features are present in the explanation.

Using this setup, we report the F1 for each explanation

method, averaged over 100 runs, in Table 1. The results

indicate that LIME dominates others (all results are signifi-

cant at p = 0.01) on both datasets, and for all of the black

box models. The other methods either achieve a lower re-

call (i.e. they mistrust predictions more than they should) or

lower precision (i.e. they trust too many predictions).

Experiment 3: Trusting models

In this experiment, we evaluate the utility of explanations

for model selection, simulating the case where a human

has to decide between two competing models with similar

accuracy on validation data. For this purpose, we add 10

artificial “noisy” features as follows. On training and vali-



dation sets (80/20 split of the original training data), each

artificial feature appears in 10% of the examples in one

class, and 20% of the examples of the other, while on the

test instances, each artificial feature appears in 10% of the

examples in each class. This recreates the situation where

the models use both the features that are informative in the

real world, and ones that are noisy and introduce spurious

correlations. We also create pairs of classifiers to compare

by randomly training two random forest classifiers with 30
trees until their validation accuracy is within 0.1% of each

other, but their test accuracy is different by at least 5%.

parzen greedy LIME
40

60

80

%
 c

o
rr

e
ct

 c
h
o
ic

e

44.7

55.2

64.3

45.8

55.5

65.5

Random instances

Submodular

(a) Book dataset

parzen greedy LIME
40

60

80

%
 c

o
rr

e
ct

 c
h
o
ic

e

47.4

61.7

67.1

48.2

64.5

70.4

Random instances

Submodular

(b) Dvd dataset

Figure 4: Choosing between two

classifiers based on trust, after

seeing k = 10 examples.
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Figure 5: Varying the number of

instances (k) for the dvd dataset.

The goal of this experiment is to evaluate whether a user

can identify the better classifier based on the features that

appear in a subset of k explanations. The simulated hu-

man marks the set of artificial features that appear in the

k explanations as untrustworthy, following which we evalu-

ate how many total predictions in the validation set should

be trusted (as in the previous section, treating only marked

features as untrustworthy). Then, we select the classifier

with fewer untrustworthy predictions, and compare this

choice to the classifier with higher test set accuracy.

We run this experiment for 800 trials for each dataset, and

present results for k = 10 in Figure 4. We see that LIME

is consistently more accurate that greedy and parzen, the

latter being no better than random (50%). We also show

the accuracy as k varies in Figure 5, where the submodular

procedure is more helpful than random on the dvd dataset.

Unfortunately submodular is not substantially better than

random selection on the books dataset; we will investigate

the reasons in future work.

Discussion
In this paper, we argue that trust is critical for human inter-

action with machine learning systems. Without an under-
standing of what a model is doing, human interaction be-

comes a leap of faith, or is based on some aggregate statis-

tic (e.g. accuracy) that may not correspond to real world

performance (like the example in Figure 1). In many sce-

narios, the lack of understanding causes machine learning

not to be trusted - and thus not used at all. Thus, a human

centered perspective on machine learning must include the

notion of trust for both individual predictions and models.

We contend that being able to explain classifier predictions

is a crucial task for building trust in machine learning. We

outline the characteristics of a good explanation system,

most importantly the ability to explain any black-box clas-

sifier and providing interpretable yet faithful descriptions.

Along with proposing a modular and extensible approach

called LIME that meets many of these criteria, we also de-

sign novel synthetic experiments that separately evaluate

the various features of explanation systems.

Motivated by these ideas, there are a number of avenues

we would like to explore in the future. Although the syn-

thetic experiments show promise both as an evaluation

platform for explanations, and for the promise of LIME as

a explanation tool, it is severely handicapped by the lack of

human experiments. We are also interested in exploring a

broader spectrum of interpretable explanations, and investi-

gate the kinds of explanations that are conducive to building

trust in machine learning systems. Finally, we are interested

in evaluation on real-world and larger datasets, where se-

lecting an appropriate subset of instances is critical.
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