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”Why Should I Trust Your IDS?”: An Explainable Deep Learning
Framework for Intrusion Detection Systems in Internet of Things

Networks

Zakaria Abou El Houda, Member, IEEE, Bouziane Brik, Member, IEEE, Lyes Khoukhi, Senior Member, IEEE

Internet of Things (IoT) is an emerging paradigm that is turning and revolutionizing worldwide cities into smart cities. However,
this emergence is accompanied with several cybersecurity concerns due mainly to the data sharing and constant connectivity of
IoT networks. To address this problem, multiple Intrusion Detection Systems (IDSs) have been designed as security mechanisms,
which showed their efficiency in mitigating several IoT-related attacks, especially when using deep learning (DL) algorithms. Indeed,
Deep Neural Networks (DNNs) significantly improve the detection rate of IoT-related intrusions. However, DL-based models are
becoming more and more complex, and their decisions are hardly interpreted by users, especially companies’ executive staff and
cybersecurity experts. Hence, the corresponding users cannot neither understand and trust DL models decisions, nor optimize their
decisions (users) based on DL models outputs. To overcome these limits, Explainable Artificial Intelligence (XAI) is an emerging
paradigm of Artificial Intelligence (AI), that provides a set of techniques to help interpreting and understanding predictions made
by DL models. Thus, XAI enables to explain the decisions of DL-based IDSs to make them interpretable by cybersecurity experts.
In this paper, we design a new XAI-based framework to give explanations to any critical DL-based decisions for IoT-related IDSs.
Our framework relies on a novel IDS for IoT networks, that we also develop by leveraging deep neural network, to detect IoT-
related intrusions. In addition, our framework uses three main XAI techniques (i.e., RuleFit, Local Interpretable Model-Agnostic
Explanations (LIME), and SHapley Additive exPlanations (SHAP)), on top of our DNN-based model. Our framework can provide both
local and global explanations to optimize the interpretation of DL-based decisions. The local explanations target a single/particular
DL output, while global explanations focus on deducing the most important features that have conducted to each made decision
(e.g., intrusion detection). Thus, our proposed framework introduces more transparency and trust between the decisions made by
our DL-based IDS model and cybersecurity experts. Both NSL-KDD and UNSW-NB15 datasets are used to validate the feasibility
of our XAI framework. The experimental results show the efficiency of our framework to improve the interpretability of the IoT
IDS against well-known IoT attacks, and help the cybersecurity experts get a better understanding of IDS decisions.

Index Terms—Internet of Things; Intrusion Detection System; Deep Learning; Explainable Artificial Intelligence; Local and Global
Explanations.

I. INTRODUCTION

INTERNET of Things (IoT) is an emerging technology that
is becoming an integral part of our everyday life [1] [2]. IoT

is shaping our future by revolutionizing worldwide cities into
smart cities [3]. IoT consists to connect and deploy billions
of devices, estimated at 75 billion IoT devices by 2025 [3],
through emergent communication technologies, to realize var-
ious applications related to multiple industries, including agri-
culture, Healthcare, factories, and transportation [2] [3].
However, with this rapid revolution, various cybersecurity
attacks are also increasing, which is mainly due to data
sharing and constant connectivity, in addition to resource-
limited nature of IoT networks [4] [5]. For instance, Mi-
rai IoT botnet attack succeeded to remotely control several
bots (or zombies), that were then used to perform large-
scale Distributed Denial-of-Service (DDoS) attacks [6]. Such
attack targeted multiple IoT devices, including IP cameras,
IoT gateways, and home routers. As results, many service
providers, Amazon and Twitter, were unavailable for several
hours [4]. Thus, these attacks are causing significant business
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losses and damage, estimated at $20 Billion (USD) in 2021 [7].
To deal with the IoT attacks, research and industrial actors
are investing to provide new intelligent solutions, improving
security of IoT networks, like our previous intrusion detection
mechanisms [8]–[10].

Thus, designing new security mechanisms becomes more
than necessary to deal with various IoT attacks, ranging from
DDoS attacks to scanning attacks. In this context, Intrusion
Detection Systems (IDS) are promising solutions to protect
IoT networks against multiple attacks. In addition, Deep
Learning (DL) algorithms are recently leveraged on top of IDS
to design intelligent IDS, optimizing clearly the detection rate
of IoT-related intrusions. Indeed, DL-based IDSs consist to
learn the signature of each IoT attack, in order to be efficiently
and timely predicted/detected by the system. Once an attack
is detected, precautionary measures should be taken by staff
(e.g., cybersecurity experts or executive staff), to deal with
such attack. However, recent DL-based IDSs are based on
Deep Neural Network (DNN) models, which are becoming
more and more complex, i.e. it is difficult to understand the
inner working of such models, especially by not-expert users
in data science. Thus, such models are provided/deployed
as black-box models. In addition, decisions made by such
models are provided to users, without any explanations or
interpretations on how and why such decisions are made.
Therefore, the corresponding users cannot neither understand
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and trust DL models decisions, nor optimize their decisions
(users), based on DL model outputs. To overcome these
limits, eXplainable Artificial Intelligence (XAI) is an emerging
paradigm of Artificial Intelligence (AI), that provides a set of
techniques to help interpreting and understanding predictions
made by DL models [11]. Thus, XAI enables to explain
the decisions of DL-based IDSs to make them interpretable
by cybersecurity experts. This also enables experts to trust
and adapt such models and hence perform their decisions
(models) [12]–[28].

In this paper, we design a novel two stages XAI-empowered
framework that uses DL-based architecture to detect IoT-based
attacks and three main XAI techniques, on the top of our
DNN-based model; the objective is to provide both local and
global explanations to optimize the interpretation of DL-based
decisions. First, we propose a novel DL-based architecture
that uses Deep Neural Networks (DNNs) to protect IoT-based
networks against the new emerging IoT-based attacks. Then,
we develop three main XAI techniques: SHapley Additive ex-
Planations (SHAP) [29], RuleFit [30], and Local Interpretable
Model-Agnostic Explanations (LIME) [31], on the top of our
proposed DL-based architecture to provide both local and
global explanations to optimize the interpretation of DL-based
decisions. The local explanations target a single/particular
DL output, while global explanations focus on deducing the
most important features that have conducted to each made
decision (e.g., intrusion detection). Hence, our framework
introduces more transparency and trust between the decisions
made by our DL-based IDS model and cybersecurity experts.
NSL-KDD and UNSW-NB15 datasets were used to validate
the feasibility of our XAI framework [32]. The experimental
results show the efficiency of our framework to improve the
interpretability of the IoT IDS against well-known IoT attacks,
and help the cybersecurity experts get a better understanding
of IDSs’ decisions.

The main contributions of this paper can be summarized as
follows:

• We propose a novel XAI-empowered framework that
uses advanced DL-based techniques and well-known XAI
techniques to provide cybersecurity experts with the abil-
ity to systematically explain local/global DL-based IDS
decisions.

• We propose a novel DL-based architecture that uses Deep
Neural Networks (DNNs) to protect IoT-based networks
against the new emerging IoT-based attacks.

• We develop three main XAI techniques, namely SHAP,
RuleFit, and LIME, on the top of our proposed DL-based
architecture, that investigates the use of both of local and
global explanations to optimize the interpretation of DL-
based decisions.

• We evaluate the performance/feasibility of our pro-
posed XAI-empowered framework using NSL-KDD and
UNSW-NB15 datasets. The experimental results show
the efficiency of our framework to improve the inter-
pretability of the IoT-based IDS against well-known IoT
attacks, and help the cybersecurity experts get a better
understanding of IDSs’ decisions.

This paper is organized as follows. Section II gives an
overview on existing related solutions. We describe our XAI-
based framework with its main components, in Section III.
Section IV gives the performance evaluation of our XAI-based
framework. Finally, section V concludes the paper.

II. RELATED WORK

In this section, we give the few existing solutions that
addressed the explainability of DL-based IDS systems [33]–
[37]. In [33], the authors addressed the challenge of how to
explain IDS in computer networks. They first leveraged deep
learning to build a DL-based IDS. Then, they designed an
XAI framework to optimize the transparency of their DL-
based IDS. The authors used NSL−KDD dataset not only
for creating the DL-based IDS, but also to validate many XAI
techniques, such as, LIME, SHAP, ProtoDash, and contrastive
explanations method.

Similarly, another XAI framework was designed using
SHAP approach, to add more transparency and explainability
to any IDS system, in [34]. The authors aimed to combine
local and global explanations to improve the interpretability.
They also built two classifiers (one class and multi-class), and
compare the interpretations of both classifiers. The NSL-KDD
dataset is used to demonstrate the feasibility of the designed
framework.

In [35], another XAI framework is designed to deal with
adversarial attacks on top of machine learning-based IDS.
The authors first built a random forest classifier to identify
intrusions in the network. Then, global explanations are as-
sociated to each classifier prediction using SHAP approach.
The performance of the framework are evaluated on hop skip
jump attack and CICIDS dataset. Moreover, the developed
machine learning-based IDS is validated against other learning
algorithms, through several metrics, including precision, recall,
F1-score, and accuracy.

Besides, the authors aimed to improve user trust against
deep learning-based IDS, by optimizing its transparency,
in [38]. To do so, the authors first trained a deep learning-based
IDS using the KDD-NSL dataset. They then implemented a
layer-wise relevance propagation (LRP) method, to generate
both offline and online interpretations. The offline explanations
give the users the most relevant input features, in detecting
each intrusion, while the online interpretations give the users
the inputs features contributing more on the detection.

In [39], the authors targeted to generate the explanations
of incorrect classifications made by deep learning-based IDS
classifiers. In addition, an adversarial approach is designed to
find the modifications of the input features, needed to correct
the classification. Moreover, such approach also enables to
show the most relevant features, resulting the incorrect classi-
fication. Thus, this approach enables to give more explanations
about the main reasons of the mis-classifications. Noting that
the designed approach is validated using NSL-KDD dataset.

The authors addressed the challenge of dynamic network
access in Software Defined Networking (SDN) era, in [40].
They built a Recurrent Neural Network (RNN) based IDS,
to detect network anomalies and generate SDN flow rules
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Fig. 1. Architecture of our XAI-Empowered Framework for IoT IDS.

to enable then dynamic network access control. In addition,
they also train an interpretable model to explain the RNN-
based model’s outcome. Based on the explanation, the au-
thors derived access control policies. In [41], the authors
designed a new autoencoder-based detection framework that
uses Convolutional Neural Network (CNN) and Recurrent
Neural Networks (i.e., LSTM), to discover attacks in Indus-
trial IoT (IIoT) networks and explain the model. The main
advantage of this framework is that it combines both LSTM
and CNN to detect both traditional attacks and new (zero-day)
attacks related to IIoT. Moreover, this framework leverages
LIME approach to provide local explanation that matches each
prediction made by the CNN-LSTM model. Although these
existing works [33]- [41] considered XAI approaches, such
as LIME and SHAPE, to interpret and explain DL-enabled
IDS; however, they focused only on shallow machine learning
algorithms, which are not complicated to interpret compared
to DL algorithms. [35], also they were designed for a general
setup, without considering the DL algorithm implemented for
IoT-based networks (i.e., IoT-based attacks) [34] [38] [39].
These existing works may not be realistic for some cases,
since the XAI model should take into account the main
features of the DL algorithm, to be able then to explain its
decisions. Moreover, most of these works did not target the
IoT networks and used the NSL-KDD dataset which does
not cover the IoT attacks, especially the emerging ones. To
overcome these limits, in this work, we designed a novel
framework that leverages RuleFit, LIME, and SHAPE as XAI
approaches, to explain and interpret a deep neural network-
based IDS for IoT networks, that we also develop in this work
by leveraging both NSL-KDD and UNSW-NB15 datasets. We
note that our framework enables not only to deduce the most
relevant features conducting to each DL-based prediction, but
also providing both local and global explanations related to
each IDS decision.

III. XAI-BASED FRAMEWORK FOR DEEP
LEARNING-BASED IDS OF IOT NETWORKS

In this section, we present our XAI-empowered framework.
First, we give an overview about the architecture of our

framework. Then, we describe our deep neural architecture
we build to detect intrusions related to the IoT networks, and
our XAI approaches we applied to interpret and explain the
outputs of our deep learning model of IDS.

A. System Architecture

Fig. 1 shows the architecture of our AI-Empowered Frame-
work for IoT IDS; it covers different IoT devices that may be
deployed in various sectors, such as agriculture, healthcare,
factories, and transportation. We first exploit sensed data by
these devices, to create deep learning model that is able to
identify/predict intrusions in such IoT networks. In addition,
the deep learning model and sensed data from the IoT net-
works are also combined and leveraged by XAI approaches,
in order to interpret and explain predictions made by our
deep learning model. In particular, we develop three different
XAI approaches: LIME, SHAPE and RuleFit, to generate
local, global, and feature importance-based explanations, re-
spectively. Thus, our framework enables to show not only how
and why predictions are made, but also how the deep learning
model works. Furthermore, our framework may target different
users, via an explanation interface, including model users and
security experts.

B. Explainable Deep Learning-based IDS for IoT Applica-
tions

First, to evaluate the efficiency of our XAI-powered frame-
work, we built two deep neural network (DNN) models with
an input layer of 122 dimensions and 49 dimensions, that
corresponds to the dimension of the input features for the NSL-
KDD and UNSW-NB15 datasets, respectively. Each DNN
architecture is composed of five hidden layers with Leaky
Rectified Linear Unit, and an output layer of two dimensions,
that corresponds to the dimension of the class label (i.e.,
Attack or Normal). This work aims to effectively explain
the decision made by this DL-based IDS, the objective is,
through these explanations, to answer this question: ”Why
should I trust your IDS?”. The emphasis is on exploring linear
and non-linear techniques, including both local and global
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explanations; it consists of three techniques, namely, RuleFit,
Local Interpretable Model-agnostic Explanations (LIME), and
SHapley Additive exPlanations (SHAP).

1) RuleFit
The RuleFit algorithm was originally designed by Friedman

et al. [30] to learn sparse linear forms (i.e., models) that
contain the interaction effects in a form of decision-making
rules. The objective is to create a simple yet interpretable
model that integrates the interactions between the features;
it learns a sparse linear model, including the original features
and new features (i.e., decision rules). RuleFit generates the
new features/rules automatically from decision trees, where
each path in the decision tree represents a decision rule. The
new features are designed to capture the interactions between
the existing features. RuleFit includes two components: (1) the
decision rules that are created based on decision trees; and (2)
it fits a sparse linear model with the original model as well as
the new ones (i.e., decision rules).

First, we use an ensemble of decisions trees to generate a
variety of meaningful decision rules, a tree ensemble can be
presented as follows:

F (x) = î0 +

M∑
i=1

îiFi(y) (1)

where M is the number of trees, î are the weights, y is the
original feature vector, and Fi(y) is the prediction function of
the ith decision tree.

Then, we create the decision rules as follows:

ri(y) = Πj∈Ti
I(yj ∈ ζji) (2)

where Ti is the set of features used in the ith decision tree, and
ζji is an interval in the range of values of the features, I(yj ∈
ζji) is 1 when yj is in this interval value and 0 otherwise.

Thus, the number of decision trees created is defined as
follows:

N =
M∑
i=1

2(ti − 1) (3)

where ti is the number of terminal node of the ith decision
tree.

Once this first phase of decision rules generation is com-
pleted, we train a sparse linear model, using the original
features and the generated rules (i.e., new features).

First, we winsorize the original features as follows, to make
them robust against outliers:

lj(yj) = min(γ+
j ,max(γ−

j , yj)) (4)

where gamma+j and gamma−j are the quantiles of the distri-
bution of the data of the feature yj .

Then, we normalize this linear term as follows:

l∗j (yj) = 0.4
lj(yj)

std(lj(yj)
(5)

Finally, we combine both type of features and train the
sparse linear model as follows:

F (x) = λ0 +

K∑
k=1

ϕkrk(y) +

J∑
j=1

λj l
∗
j (yj) (6)

where λ and ϕ is the estimated weights for the original features
and the new generated rules, receptively.

Since RuleFit is based on the Lasso, the loss function has
the following additional constraint:

({λ}J1 , {ϕ}K1 ) = argmin
{λ}J

1 ,{ϕ}K
1

n∑
m=1

L(ym, f(xm))

+ µ(

K∑
k=1

|ϕk|+
J∑

j=1

|λj |) (7)

For the original input features, the features importance score
is calculated as follows:

Ij = |λj |.std(l∗j (yj)) (8)

For the new generated features i.e., decision rules the
features importance score is calculated as follows:

Ik = |ϕk|.
√
ζk(1− ζk) (9)

Finally, the total importance score of the jth feature is
calculated as follows:

IFj(y) = Ij(y) +
∑
yj∈rk

Ik(x)/mk (10)

where mk is the number of input features constituting the
decisions rule rk.

And the global feature importance score is calculated as
follows:

IF (Y ) =

J∑
j=1

IFj(yj) (11)

Algorithm 1 shows the algorithmic representation of the
RuleFit algorithm.

Algorithm 1 RuleFit Algorithm
Input: Sequence of M Decision Trees (DTs), i = 1, ...,M
Sequence of Ti data samples {(xj , yj)}, j = 1, ..., Ti

We define a DT: F (x) = î0 +
∑M

i=1 îiFi(y)
for j ←1 to Ti do

We create the decision rules: ri(y) = Πj∈Ti
I(yj ∈ ζji)

Then, we train a sparse linear model, using the original
features and the generated rules.
Afterwards, we winsorize the original features:
lj(yj) = min(γ+

j ,max(γ−
j , yj))

Then, we normalize this linear term: l∗j (yj) = 0.4
lj(yj)

std(lj(yj)

Finally, we combine both type of features and train the
sparse linear model:
F (x) = λ0 +

∑K
k=1 ϕkrk(y) +

∑J
j=1 λj l

∗
j (yj)

Finally, we calculate the total importance score of the jth

feature:IFj(y) = Ij(y) +
∑

yj∈rk
Ik(x)/mk

end
Make final feature importance: IF (Y ) =

∑J
j=1 IFj(yj)
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2) Local Interpretable Model-agnostic Explanations
(LIME)

LIME stands for Local Interpretable Model-agnostic Expla-
nations. The main goal of LIME is to find an interpretable
model over the interpretable representation (i.e., understand-
able by humans) which is locally faithful/truthful to the
classifier. Let x ∈ Rd be the original representation of an
instance, and ler g ∈ G be an explanation model, where G is a
class of interpretable models that can be visually presented to a
user (e.g., linear model). LIME’s explanation can be obtained
by the following:

φ(x) = argmin
g∈G

{L(f, g, ωx) + Ω(g)} (12)

where f is the model used for classification, ωx is a proximity
measure/weight between the original and the new instance; the
higher the value of ωx, the more the new instances are similar
to original instances, L is the loss function that measures the
proximity between the predictions of the explanation model
and the original model, and Ω(g) is a measure of complexity
of the model g.

Thus, the objective of LIME is to train a local yet inter-
pretable model by minimizing the function L(f, g, ωx)+Ω(g).
Then, explain the prediction of an instance using he locally
computed interpretation model φ(x).

3) SHapley Additive exPlanations (SHAP)
SHAP stands for SHapley Additive exPlanations, is defined

as a well-known unified framework for the interpretation
of models. SHAP explains the predictions of an instance
by calculating the contribution of each feature to the final
decision/prediction. The contribution can be either negative or
positive. The major strength of SHAP is that it can be applied
to any model/classifier, instead of linear models/classifiers.
Rather than examining only local decisions/interpretations,
SHAP examines global interpretations by summing the input
values of features and averaging all columns/features individ-
ually. SHAP’s explanation for an instance can be obtained by
the following:

g(s) = υ0 +

N∑
i=1

υisi (13)

where s is the simplified feature, it represents the new features
that are similar to the original ones, N is the maximum size,
and υj is the Shapley value; the higher the value of υj of
feature j, the more this feature has a large contribution on the
final prediction of the model.

Finally, we select the most important features as follows:

IFj =

n∑
i=1

||υj(xi)|| (14)

where n the total number of data samples, IFj is to the average
Shapley value of the ith input feature.

IV. PERFORMANCE EVALUATION

In this work, we consider two well-known public network
security datasets, namely NSL-KDD and UNSW-NB15. The

TABLE I
PERFORMANCE METRICS OF OUR XAI-EMPOWERED FRAMEWORK AND

STATE-OF-THE-ART ML/DL-BASED MODELS USING NSL−KDDTest+

Methods Accuracy Precision Recall F1
J48 [42] 0.81 N/A N/A N/A
NB [42] 0.76 N/A N/A N/A
RF [42] 0.80 N/A N/A N/A
MLP [42] 0.77 N/A N/A N/A
SVM [42] 0.70 N/A N/A N/A
CNN [43] 0.85 0.91 0.81 0.86
ResNet architec-
ture [44]

0.79 0.91 0.69 0.79

GoogleNet archi-
tecture [44]

0.77 0.91 0.65 0.76

DNN
architecture
[45]

0.75 0.83 0.75 0.74

RNN [46] 0.83 N/A 0.83 N/A
SVM-IDS [47] 0.78 N/A 0.78 N/A
Our XAI-
empowered
framework

0.88 0.96 0.88 0.88

TABLE II
PERFORMANCE METRICS OF OUR XAI-EMPOWERED FRAMEWORK AND

STATE-OF-THE-ART ML/DL-BASED MODELS USING UNSW-NB15

Methods Accuracy TPR
Fuzziness semi-
supervised Architecture
[48]

0.86 0.85

Random Forest Architec-
ture [49]

0.93 0.92

Generalized Outlier Gaus-
sian Mixture [50]

0.95 0.94

Mixture-Hidden Markov
Model [51]

0.96 0.95

Our XAI-empowered
framework

0.99 0.99

NSL-KDD dataset contains real-world network security at-
tacks; it is an improved version of the KDD’99 dataset where
all redundant features have been removed. NSL-KDD dataset
includes the following attacks: Distributed Denial of Service
(DDoS), User to Root (U2R), Probe (Probing) and Root to
Local (R2L). The UNSW-NB15 dataset is a synthetic network
security dataset that includes more than 100 GB of network
data; it includes the following attacks: analysis, fuzzers, DoS,
backdoors, reconnaissance, generic, exploits, shellcode, and
worms. We have implemented the proposed XAI framework
using Pytorch and the XAI libraries, including SHAP [52].
First, we have encoded the categorical data (e.g., ‘proto’)
into numeric ones using one hot encoding techniques. Some
features of both NSL-KDD and UNSW-NB15 datasets (e.g.,
Source jitter (mSec) (sjit) [0;11*105]’ and ’Destination jitter
(mSec) (djit) [0;7.8*109]’) have higher values than others;
which may have an impact on the final decisions of the
model, where the model may miss out important features i.e.,
ct flw http mthd (number of flows that have the Get and Post
methods in the http service). Thus, we used standardization
technique to address this problem. Finally, we encoded the
labels of both NSL-KDD and UNSW-NB15 datasets (e.g.,
DDoS, Probe, backdoors, and Fuzzers) into numerical values.
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Fig. 3. Feature importance scores using SHAP on: a) UNSW-NB15; and b) NSL-KDD.

At the first stage, We tested the performance of our DNN archi-
tecture in terms of accuracy and F1 score. we also compared
the results obtained with the state-of-the-art schemes, using
both datasets, NSL-KDD and UNSW-NB15. Tables 1 and 2
show the results of our proposed XAI-empowered framework
and the most relevant works in the state-of-the-art; we observe
that our proposed XAI-empowered framework achieves the
highest accuracy and detection rate on both datasets. The
experimental results confirm that our proposed XAI framework
outperforms the state-of-the-art works in terms of accuracy
and F1-score on both datasets. The feature importance scores
includes the importance of the original features and the de-
cision rules where the features appears; it shows the most

relevant features/rules that have important/significant impact
on the model predictions. The proposed framework studies
the use of linear and non-linear techniques, including both
local and global explanations, to identify the most informative
features and investigate their impact on the final model’s
predictions; it consists of three techniques, namely, RuleFit,
Local Interpretable Model-agnostic Explanations (LIME), and
SHapley Additive exPlanations (SHAP).

Fig. 2 shows the important features that have the highest
scores using RuleFit method on UNSW-NB15 and NSL-
KDD datasets, respectively. For the UNSW-NB15 dataset, the
highest scoring features corresponds to the following features:
(1) sttl: which is the Source to destination time to live; (2)
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Fig. 4. Data samples distribution of features of UNSW −NB15 dataset in terms of: a) the highest scoring features using RuleFit and SHAP; and b) the
other non-irrelevant features.

ct state ttl: which is the Number of each state according to
a range of values for source/destination time to live (ttl); (3)
service: which is the protocol used e.g., http, dns, ssh; and
(4) dsport: which is the destination port number. For the NSL-
KDD dataset, the highest scoring features corresponds to the
following features: (1) src bytes: which is the number of data
bytes from source to destination; (2) service: which is the
network service of the destination host/machine e.g., http; (3)
dst bytes: which is the number of data bytes from destination
to source; and (4) hot feature: which is the number of “hot”
indicators (e.g., directory accesses). Fig. 3 shows the important
features that have the highest scores using SHAP method on
UNSW-NB15 and NSL-KDD datasets, respectively. For the
UNSW-NB15 dataset, the highest scoring features corresponds
to the following features: (1) srcip: corresponds to the Source
IP address of the source machine; (2) ct dst src ltm: corre-

sponds to the number of connections that contain the same ser-
vice and destination address in the last hundred connections;
and (3) ct dst sport ltm: corresponds to the number of con-
nections of the same destination address and the source port in
the last hundred connections. For the NSL-KDD dataset, the
highest scoring features corresponds to the following features:
(1) dst host srv count: corresponds to the feature Srv-count
for destination host; (2) count: corresponds to the number of
connections to the same host as the current connection in the
past two seconds; and (3) dst host count: corresponds to the
feature fount for the destination host. Fig. 4 shows the data
samples distribution of features of UNSW-NB15 dataset in
terms for: (a) the highest scoring features using RuleFit and
SHAP; and (b) the other non-irrelevant features, while Fig. 5
shows the data samples distribution of features of NSL-KDD
dataset in terms for: (a) the highest scoring features using
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Fig. 5. Data samples distribution of features of NSL − KDD dataset in terms for: a) the highest scoring features using RuleFit and SHAP; and b) the
other non-irrelevant features.

RuleFit and SHAP; and (b) the other non-irrelevant features.
In both figures, we observe that the most relevant features,
computed based on RuleFit and SHAP methods, respectively,
can effectively distinguish the two classes (i.e., Normal and
Attack), because the data distribution of the two classes is
completely different, while the data distribution of the two
classes is similar for the other non-relevant features, which
makes classification difficult for the IDS.

Figs. 6 and 7 show the interpretation of our DL-based
IDS on UNSW-NB15 and NSL-KDD datasets using SHAP
method, receptively. In our experiments we have examined two
observations for each dataset. Instead of examining decisions
of our DNN model locally, we examine the overall/global
feature importance of UNSW −NB15 dataset using SHAP,

we sum up shapley the input values and we average all the
columns/features individually. In the following observations,
the blue features push the prediction of an instance to be
Normal, while the red features reduce the probability for a
data sample to be Normal. Fig. 6(a) shows the first observation
using UNSW-NB15 dataset, where the data sample is an
attack and our DL-based IDS correctly predicted/detected as
an attack. In this observation, the values of the input features
are as follows: ct dst sport ltm is equal to 1.0, ct dst src ltm
is equal 1.0, and srcip is equal to 38.0. In this observa-
tion, the most contributing features are: ct dst sport ltm and
ct dst src ltm; these features drive the probability for a data
sample to be an attack. Fig. 6(b) shows the second observation
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Fig. 6. Interpretation of our DL-based IDS on UNSW-NB15 dataset with: a) ct dst sport ltm of 1.0, ct dst src ltm of 1.0, and srcip of 38.0; and b) srcip
of 36, sport of 55806, and dstip of 23
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Fig. 7. Interpretation of our DL-based IDS on NSL-KDD dataset with: a) dst host count of 180.0, count of 1.0, and dst host srv count of 167.0; and b)
dst host count of 255.0, count of 30.0, and dst host srv count of 255.0
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Fig. 8. Top 20 important features using SHAP on : a) UNSW-NB15; and b) NSL-KDD.
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Fig. 9. Local explanation of our DL-based IDS using LIME on UNSW-NB15 dataset for: a) positive scenario; and b) negative scenario.
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Fig. 10. Local explanation of our DL-based IDS using LIME on NSL-KDD dataset for: a) positive scenario; and b) negative scenario.
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using UNSW-NB15 in which the data sample is Normal and
our DL-based IDS correctly predicted this data sample as
a Normal one. In this observation, the values of the input
features are as follows: srcip is equal to 36.0, sport is equal
55806.0, and dstip is equal to 23.0. Fig. 7(a) shows the first
observation using NSL-KDD dataset in which the data sample
is Normal and our DL-based IDS correctly predicted/detected
as a Normal data sample. In this observation, the values of
the input features are as follows: dst host count is equal to
180.0, count is equal 1.0, and dst host srv count is equal to
167.0. Fig. 7(b) shows the second observation using NSL-
KDD in which the data sample is Normal and our DL-based
IDS correctly predicted/detected as a Normal data sample. In
this observation, the values of the input features are as follows:
dst host count is equal to 255.0, count is equal 30.0, and
dst host srv count is equal to 255.0. The red feature (i.e.,
dst host count) reduces the probability for a data sample to be
Normal. Therefore, such solid knowledge makes cybersecurity
experts more convinced of the decisions regarding ML/DL-
based IDS. Fig. 8 shows the best important features using
SHAP on UNSW-NB15 and NSL-KDD datasets, receptively.
For a particular instance/observation, each input feature has
either a positive or a negative contribution to the final decision.
Fig. 9 shows the local explanation of our DL-based IDS
using LIME on UNSW-NB15 dataset for (a) positive scenario;
and (b) negative scenario, while Fig. 10 shows the local
explanation of our DL-based IDS using LIME on NSL dataset
for (a) positive scenario; and (b) negative scenario.

V. CONCLUSION

In this paper, we designed a new XAI-based Framework
for intrusion detection in IoT networks. Our framework in-
tegrated first a deep neural network model to detect intru-
sions in real-time. Once this model makes decisions, our
framework leverages three different approaches of XAI (i.e.,
LIME, SHAPE, and RuleFit), to add more explainability,
transparency, and trust to the model’s decisions. Moreover,
our framework with its explainability targets two different
users: users of the deep learning model that aim to understand
and trust model’s outputs, in order to be able to optimize
their decisions, and cybersecurity experts that also aim to
understand the model’s outputs, in order to make the suitable
recommendations, especially when an intrusion is detected.
We have used both NSL-KDD and UNSW-NB15 datasets to
demonstrate the feasibility/performances of our framework;
the experimental results show the efficiency of our proposed
XAI-based Framework in not only detecting IoT-based attacks,
but also integrating more details and interpretation about how
and why such detection decisions are made by our deep
neural network model. As future work, we plan to secure
our framework against adversarial attacks that may target the
explainability module of our framework.
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