
Why Skewing Works: Learning Difficult Boolean Functions with

Greedy Tree Learners

Bernard Rosell brosell@att.com

Lisa Hellerstein hstein@cis.poly.edu

Dept. of Computer and Information Science, Polytechnic University, 5 Metrotech Center, Brooklyn, NY 11201

Soumya Ray sray@cs.wisc.edu

David Page page@biostat.wisc.edu

Dept. of Computer Sciences and Dept. of Biostatistics and Medical Informatics, University of Wisconsin, Madi-
son, WI 53706

Abstract

We analyze skewing, an approach that has
been empirically observed to enable greedy
decision tree learners to learn “difficult”
Boolean functions, such as parity, in the pres-
ence of irrelevant variables. We prove that,
in an idealized setting, for any function and
choice of skew parameters, skewing finds rele-
vant variables with probability 1. We present
experiments exploring how different parame-
ter choices affect the success of skewing in
empirical settings. Finally, we analyze a vari-
ant of skewing called Sequential Skewing.

1. Introduction

Some Boolean functions, such as parity, are difficult for
greedy decision tree learners to learn. These “difficult
functions” are such that, even given a complete dataset
(the full truth table for the function), every variable
has zero gain, according to such standard measures
as Information Gain (Quinlan, 1997) or GINI Gain
(Breiman et al., 1984). When variables irrelevant to
the target are present (as they are in real data), and
the target is a difficult function, decision tree learners
often have trouble finding the relevant variables. The
traditional approach to this problem is to use depth-
k lookahead (Norton, 1989), but this approach takes
time exponential in k.

Recently, an approach called Skewing has been pro-
posed (Page & Ray, 2003), as an alternative to looka-

Appearing in Proceedings of the 22nd International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

head, to enable greedy decision tree learners to handle
difficult Boolean functions efficiently. Skewing works
by choosing a “preferred setting” for every variable x

used in describing the examples, and a weight factor
p where 1

2 < p < 1. Each example is reweighted by p

if the value of x matches its preferred setting, and by
1− p otherwise. The final weight of an example is the
product over the weights for each variable, resulting in
a “skew” of the initial distribution. The reweighting is
repeated a small constant number of times, with dif-
ferent preferred settings chosen each time. The gain
of every variable is computed after each reweighting,
and the variable that shows high gain most often is se-
lected as the split variable. The procedure is designed
to cause variables relevant to the target function to be
selected, even when the target is difficult and many
irrelevant variables are present. Note that no prior
knowledge of which variables are relevant to the target
is required. Further, this procedure increases a stan-
dard tree learner’s runtime by only a constant factor.

While empirical results demonstrate that skewing en-
ables greedy tree learners to learn difficult functions,
there is relatively little understanding of its behavior.
In our work, we analyze skewing in an idealized setting,
where a complete dataset is available, and prove the
following result. Consider a complete dataset labeled
according to any Boolean function. If the dataset is
reweighted according to any choice of preferred set-
tings and a random weight factor p, then with proba-
bility 1 some relevant variable will have non-zero gain
on the reweighted set, while all irrelevant variables will
have zero gain. Thus, given a complete dataset, skew-
ing will lead to correct choices by a greedy tree learner.

In practice, training data consists of a random sample
of examples, rather than a truth table. We provide

Why Skewing Works: Learning Difficult Boolean Functions with Greedy Tree Learners

experiments exploring the behavior of skewing on ran-
dom samples. First, we consider the case in which a
random sample can be drawn from a chosen skewed
distribution over the truth table. Second, we consider
the case in which we are given a training sample drawn
from the uniform distribution, and can only simulate
a skewed distribution by reweighting this sample.

We also investigate “Sequential Skewing”, a variant of
the skewing algorithm (Ray & Page, 2004). Empiri-
cally, this algorithm was observed to outperform the
original algorithm on randomly chosen difficult func-
tions when large numbers of irrelevant variables were
present. Nevertheless, we show that there exist some
difficult functions where Sequential Skewing does not
cause relevant variables to show gain, regardless of the
choice of p. We characterize the difficult functions for
which the variant works, in an idealized setting, and
show that on those functions, when p is chosen ran-
domly, it works with probability 1.

A related theory paper (Mossel et al., 2003) considered
the general problem of finding relevant variables in the
presence of many irrelevant ones. Its main result is an
algorithm that applies to examples drawn from the
uniform distribution; the algorithm is based on deep
structural properties of Boolean functions. The paper
also included a short proof of a result1 similar to our
main theorem, but for random product distributions,
instead of the random skewed distributions treated in
our theorem. Since random product distributions have
different properties than random skewed distributions,
their proof does not suffice for our setting.

2. Theoretical Analysis of Skewing

In this section, we analyze skewing in an idealized set-
ting – when the available data consists of the truth
table of a Boolean function. We begin by defining
notation. Next, we show that the question of when
a variable “has gain” with respect to a function and
dataset can be viewed combinatorially. Finally, we
prove our main results.

2.1. Notation and Definitions

The integers between 1 and n are denoted by [1 . . . n],
while (1

2 , 1) denotes the open real interval from 1
2 to

1. We consider two-class learning problems, where
the features, or variables, are Boolean. Examples
are truth assignments over variables, and targets are
Boolean functions. Let f(x1, . . . , xn) be a Boolean
function that maps {0, 1}n to {0, 1}. An assignment

1The result as stated in their paper is not quite correct,
but can be fixed fairly easily.

a = (a1, . . . , an) to the variables x1, . . . , xn is an el-
ement of {0, 1}n. For a ∈ {0, 1}n and i ∈ [1 . . . n],
a(i) denotes the ith bit of a and a¬xi

denotes the as-
signment obtained from a by negating the ith bit of a.
For a, b ∈ {0, 1}n, let d(a, b) = |{i ∈ [1, . . . , n]|a(i) =
b(i)}|, the number of bits a and b have in common.

A truth table for a function f over n variables is a list of
all 2n assignments over the variables, together with the
value f(a) for each assignment a. Variable xi is a rel-
evant variable of f if there exists a ∈ {0, 1}n such that
f(a) 6= f(a¬xi

). For i ∈ [1 . . . n] and b ∈ {0, 1}, fxi←b

denotes the function on n − 1 variables produced by
“hardwiring” the ith variable of f to b. That is, fxi←b :
{0, 1}n−1 → {0, 1} such that for all a ∈ {0, 1}n−1,
fxi←b(a) = f(a1, a2, . . . , ai−1, b, ai, ai+1, . . . , an−1).

For any probability distribution D over {0, 1}n and
any A ⊆ {0, 1}n, we denote by PrD(A) the sum of the
probabilities, under D, of assignments in A. Where the
distribution D is clear from context, we write Pr(A).

A skew is a pair (σ, p) where σ ∈ {0, 1}n is an assign-
ment, and p ∈ (1

2 , 1). We refer to σ as the orientation
of the skew, and p as the weight factor.

2.2. Characterization of Gain

Learners such as C4.5 and CART induce decision trees
from a dataset. A dataset of examples from {0, 1}n

defines a probability distribution over {0, 1}n, in which
the probability of a ∈ {0, 1}n is the relative frequency
of a in the dataset, i.e. (Number of occurrences of a

in dataset)/(Number of examples in dataset). In this
section, we view a dataset as being equivalent to the
distribution it defines.

Greedy tree learners partition a dataset recursively,
choosing a “split variable” at each step. They differ
from one another primarily in their measures of
“goodness” for split variables. One such measure is
Information Gain, which we now review. For any
Boolean function f , let P = {a ∈ {0, 1}n|f(a) = 1}
and N = {a ∈ {0, 1}n|f(a) = 0}. The en-
tropy of f under a distribution D is HD(f) =
(−PrD(P) log2 PrD(P) − PrD(N) log2 PrD(N)) . For
any potential split variable xi, the entropy conditional
on xi is the weighted sum of the entropies of the
child nodes resulting from a split on xi: HD(f |xi) =
(PrD(xi = 0)HD(fxi←0) + PrD(xi = 1)HD(fxi←1)).
Then the Information Gain of xi for distribution D

and function f is ID(f |xi) = HD(f) − HD(f |xi).
Where D is understood from context, we denote
Information Gain simply by I(f |xi).

The following lemma provides a characterization of
when a variable has non-zero Information Gain un-

Why Skewing Works: Learning Difficult Boolean Functions with Greedy Tree Learners

der distribution D for a function f ; it can be shown
that the same characterization holds for a variety of
other commonly used gain functions.

Lemma 2.1 Variable xi has gain with respect to func-
tion f and distribution D (that is, ID(f |xi) > 0) if and
only if PrD(f = 1|xi = 1) 6= PrD(f = 1|xi = 0).

Proof. I(f |xi) ≥ 0, with equality iff f and xi are
independent (cf. Cover & Thomas, 1991). We show
that f and xi are independent iff PrD(f = 1|xi = 1) =
PrD(f = 1|xi = 0). Suppose f and xi are independent.
Then Pr(f = 1) = Pr(f = 1|xi = 1) and Pr(f =
1) = Pr(f = 1|xi = 0), and hence Pr(f = 1|xi =
1) = Pr(f = 1|xi = 0). Conversely, suppose Pr(f =
1|xi = 1) = Pr(f = 1|xi = 0). Then Pr(f = 0|xi =
1) = Pr(f = 0|xi = 0) also. For b ∈ {0, 1}, we can
show that Pr(f = b) = Pr(f = b|xi = 0) as follows:
Pr(f = b) = Pr(xi = 1)Pr(f = b|xi = 1) + Pr(xi =
0)Pr(f = b|xi = 0) = Pr(xi = 1)Pr(f = b|xi =
1) + Pr(xi = 0)Pr(f = b|xi = 1) = Pr(f = b|xi = 1).
Similarly, Pr(f = b) = Pr(f = b|xi = 0). Therefore f

and xi are independent. 2

In general, the value of the gain is not closely related to
the value of the difference Pr(f = 1|xi = 1) − Pr(f =
1|xi = 0), although one is zero iff the other is.

Let f be a Boolean function on {0, 1}n. Let U be
the uniform distribution on {0, 1}n. We say that
f is a difficult function if for each variable xi of f ,
IU (f |xi) = 0. By Lemma 2.1, the condition IU (f |xi)
can be replaced by the combinatorial condition that
|{a ∈ {0, 1}n | f(a) = 1 and a(xi) = 1}| = |{a ∈
{0, 1}n | f(a) = 1 and a(xi) = 0}|.

Each skew (σ, p) induces a probability distribution
D(σ,p) on the 2n assignments in {0, 1}n as follows.
Let τp : {0, 1} × {0, 1} → {p, 1 − p} be such that for
b, b′ ∈ {0, 1}, τp(b, b

′) = p if b = b′ and τp(b, b
′) = 1− p

otherwise. For each a ∈ {0, 1}n, distribution D(σ,p) as-
signs probability Πn

i=1τp(σ(i), a(i)) to a. Given a skew
(σ, p) and a function f , the gain of a variable xi with
respect to f under distribution D(σ,p) is thus equiv-
alent to the gain that is calculated by applying skew
(σ, p) (using the procedure described in Section 1) to
a dataset consisting of the entire truth table for f . We
say that variable xi has gain for (f, σ, p) if the gain of
xi with respect to f under D(σ,p) is non-zero.

2.3. Proof Idea

We are interested in the following question: When
skewing is applied to a difficult function, will it cause
a relevant variable to have non-zero gain under the
skewed distribution? In the next section, we prove

that the answer is “yes” for nearly all skews. In this
section, we describe the key ideas behind our proof.

We consider skewing a dataset consisting of the full
truth table for a Boolean function f . The goal of skew-
ing is to distinguish relevant from irrelevant variables;
a skew works when some relevant variable xi has non-
zero gain but the irrelevant ones have zero gain. A
skew gives xi non-zero gain iff the weighted fraction
of positive assignments is different for xi = 0 than for
xi = 1, under that skew (Lemma 2.1). The difference
in these fractions can be expressed as a polynomial in
the variable p, where p is the weight factor associated
with the skew. If the value of this polynomial is not
equal to 0, the variable xi has non-zero gain under the
skew. We demonstrate that for a fixed orientation, if
xi is relevant, then for almost all p, the value of the
polynomial is not 0. If xi is irrelevant, the polynomial
is identically 0.

As an example of this polynomial, consider the
Boolean function f on 5 variables whose positive as-
signments are (0, 0, 0, 1, 0), (0, 0, 1, 0, 0), (0, 0, 1, 1, 0),
and (1, 0, 0, 0, 1). Consider the skew where the pre-
ferred setting of every variable is 0 (i.e. σ =
(0, 0, 0, 0, 0)), and p is the weight factor. Then the
probabilities (weights) of the positive assignments are
Pr(0, 0, 0, 1, 0) = Pr(0, 0, 1, 0, 0) = p4(1 − p) and
Pr(0, 0, 1, 1, 0) = p3(1− p)2. Therefore, Pr(f = 1|x1 =

0) = 2p4(1−p)+p3(1−p)2

p
= 2p3(1 − p) + p2(1 − p)2,

and Pr(f = 1|x1 = 1) = p3(1 − p). The difference
Pr(f = 1|x1 = 1)−Pr(f = 1|x1 = 0) is thus a polyno-
mial in p of degree 4, which has at most 4 roots. There-
fore, if the value of p is chosen at random, then with
probability 1, Pr(f = 1|x1 = 1)−Pr(f = 1|x1 = 0) 6= 0
and x1 has non-zero gain under the skew.

Observe that in the polynomial for Pr(f = 1|x1 = 0)
(respectively, Pr(f = 1|x1 = 1)), the coefficient of each
pj(1−p)(n−1−j) is the number of positive assignments
where x1 = 0 (respectively, x1 = 1), and exactly j of
the remaining variables have the preferred setting of
0. Thus the coefficients of the pj(1 − p)(n−1−j) count
certain positive assignments, a fact we exploit in our
proof. These counts are exactly what the skewing ap-
proach is modifying in the reweighting process – in-
tuitively, skewing tries to choose favored settings and
weights so that the coefficents of the pj(1 − p)(n−1−j)

will not all be equal in the expressions for Pr(f =
1|x1 = 0) and Pr(f = 1|x1 = 1) respectively. Our
proof shows that skewing almost always succeeds in
doing this.

Why Skewing Works: Learning Difficult Boolean Functions with Greedy Tree Learners

2.4. Main Result

We now present our main result. Let x and y be vari-
ables, and for σ, a ∈ {0, 1}n, let Tσ,a(x, y) be the mul-
tiplicative term xd(σ,a)yn−d(σ,a). So, for example, if
σ = (1, 1, 1) and a = (1, 0, 0), Tσ,a = xy2. For p ∈
(1
2 , 1), Tσ,a(p, 1−p) is the probability assigned to a by

distribution D(σ,p). For σ ∈ {0, 1}n and f a Boolean
function on {0, 1}n, let gf,σ be the polynomial in x and
y such that gf,σ(x, y) =

∑

a∈{0,1}n:f(a)=1 Tσ,a(x, y).

For a ∈ {0, 1}n, let ai = (a1, . . . , ai−1, ai+1, . . . , an),
that is, ai denotes a with its ith bit removed. For
f : {0, 1}n → {0, 1} a Boolean function, j ∈ [1 . . . n],
and σ ∈ {0, 1}n, let N(f, σ, j) denote the number of
assignments a ∈ {0, 1}n such that f(a) = 1 and a has
j bits in common with σ. Note that N(f, σ, j) is the
value of the coefficient of the term xjyn−j in gf,σ.

We show that the question of whether variables with
non-zero gain exist can be viewed combinatorially.

Lemma 2.2 Let f be a Boolean function on {0, 1}n,
σ ∈ {0, 1}n be a fixed orientation, and i ∈ [1 . . . n].
If N(fxi←1, σ

i, j) = N(fxi←0, σ
i, j) for all j ∈

[1 . . . n − 1], then for all weight factors p ∈ (1
2 , 1),

xi does not have gain for (f, σ, p). Conversely,
if N(fxi←1, σ

i, j) 6= N(fxi←0, σ
i, j) for some j ∈

[1 . . . n−1], then for all but at most n−1 weight factors
p, xi has gain for (f, σ, p).

Proof. Let σ ∈ {0, 1}n be a fixed orientation.
Let f0 denote fxi←0 and f1 denote fxi←1. Define
g′(x, y) = gf1,σi(x, y) − gf0,σi(x, y). Then g′(x, y) =
∑n−1

j=0 cjx
jyn−1−j , where for all j ∈ [0 . . . n − 1],

cj = N(f1, σ
i, j) − N(f0, σ

i, j).

Let p ∈ (1
2 , 1). Under distribution D(σ,p), Pr(f =

1|xi = 0) and Pr(f = 1|xi = 1) are equal to
gf0,σi(p, 1−p) and gf1,σi(p, 1−p) respectively. Thus by
Lemma 2.1, xi has gain for (f, σ, p) iff g′(p, 1− p) 6= 0.

If N(f1, σ
i, j) = N(f0, σ

i, j) for all j ∈ [0 . . . n − 1],
then g′(x, y) is identically 0. So for all p ∈ (1

2 , 1),
g′(p, 1 − p) = 0 and xi has no gain for (f, σ, p).

If N(f1, σ
i, j) 6= N(f0, σ

i, j) for some j, then g′(x, y) is
not identically 0. We show that g′(p, 1− p), as a func-
tion of p, is not identically 0 either. By multiplying
out terms, g′(p, 1 − p) can be written as a polynomial
in p of degree at most n − 1. Let j′ be the largest
j such that N(f1, σ

i, j) 6= N(f0, σ
i, j). Then cj′ is

non-zero, and the non-zero terms of g′(x, y) have the
form cjx

jyn−1−j where j ≤ j′. Factoring out yn−1−j′

from g′(x, y), we get g′(x, y) = yn−1−j′

g′′(x, y), where

g′′(x, y) =
∑j′

j=0 cjx
jyj′−j . The last term of g′′ is

cj′xj′

, and all other terms have a non-zero power of y.
At p = 1, the polynomial g′′(p, 1 − p) is thus equal to
cj′ , which is non-zero, proving that g′′(p, 1 − p) is not

identically 0. Hence g′(p, 1−p) = (1−p)n−1−j′

g′′(p, 1−
p) is the product of two polynomials that are not iden-
tically 0, from which it follows that g′(p, 1 − p) is not
identically 0. Since g′(p, 1 − p) is a polynomial of de-
gree at most n − 1, it has at most n − 1 roots. Thus
there are at most n − 1 values of p in (1

2 , 1) such that
xi does not have gain for (f, σ, p). 2

We now prove the main theorem.

Theorem 2.1 Let f be a non-constant Boolean func-
tion on {0, 1}n. Let σ ∈ {0, 1}n be an orientation, and
let p be chosen uniformly at random from (1

2 , 1). Then
with probability 1 there exists at least one variable xi

such that xi has gain for (f, σ, p).

Proof. Assume no such variable exists. Thus, by
Lemma 2.2, for all i, j ∈ [1 . . . n], N(fxi←1, σ

i, j) =
N(fxi←0, σ

i, j).

We first show that for all i ∈ [1 . . . n], there exists
j ∈ [0 . . . n] such that N(fxi←¬σ(i), σ

i, j) > 0. Note
that N(fxi←¬σ(i), σ

i, j) > 0 precisely when there ex-
ists some assignment a which differs from σ in its
ith bit, and which agrees with σ in exactly j of its
bits. Since f is not a constant function, there exists
a ∈ {0, 1}n such that f(a) = 1. Let j = d(σi, ai).
If a(i) = ¬σ(i), then clearly N(fxi←¬σ(i), σ

i, j) > 0.
Otherwise, N(fxi←σ(i), σ

i, j) > 0, and by Lemma 2.2,
N(fxi←¬σ(i), σ

i, j) > 0 also.

Thus for all i ∈ [1 . . . n], we can define ji =
max{j | N(fxi←¬σ(i), σ

i, j) > 0}. Let i∗ = arg maxi ji

and let m = ji∗ . For example, consider f(x1, x2, x3) =
x1x2 ∨ x3 and σ = (0, 0, 0). Then ¬σ(3) = 1 and
fx3←1(0, 0) = 1. Since assignment (0, 0) has 2 bits in
common with (0, 0), which is the most possible, j3 = 2.
Thus for this f , m = 2.

Let POS(f) = |{t : f(t) = 1}|. There are two cases.

Case 1: 0 ≤ m < n − 1. By Lemma 2.2,
N(fxi∗←σ(i∗), σ

i∗ ,m) > 0 also. Thus there exists a ∈

{0, 1}n such that a(i∗) = σ(i∗), d(σi∗ , ai∗) = m, and
fxi∗←σ(i∗)(a

i∗) = 1. Since m < n − 1, there exists an
index k 6= i∗ such that a(k) = ¬σ(k). Since f(a) = 1,
fxk←¬σ(k)(a

k) = 1. However, d(σk, ak) = m + 1 so

N(fxk←¬σ(k), σ
k,m + 1) > 0, which contradicts the

definition of m.

Case 2: m = n− 1. We claim that for all a ∈ {0, 1}n,
a ∈ POS(f). This contradicts our assumption that f

is not a constant function.

The proof of the claim is by induction on r, where

Why Skewing Works: Learning Difficult Boolean Functions with Greedy Tree Learners

r = n − d(σ, a), the number of bits in which σ and
a differ. For the base case, let r = 0. The only
assignment such that n − d(σ, a) = 0 is σ itself.
We will show that σ ∈ POS(f). By the definition
of m, N(fxi∗←¬σ(i∗), σ

i∗ ,m) > 0. By Lemma 2.2,

N(fxi∗←σ(i∗), σ
i∗ ,m) > 0 also. Since m = n − 1 and

N(fxi∗←σ(i∗), σ
i∗ ,m) > 0, there exists s ∈ {0, 1}n

such that s(i∗) = σ(i∗), fxi∗←σ(i∗)(s
i∗) = 1, and

d(σi∗ , si∗) = n−1. But s(i∗) = σ(i∗) and d(σi∗ , si∗) =
n − 1 implies s = σ. Hence f(s) = 1, i.e, σ ∈ POS(f).

Now let r ∈ [0 . . . n − 2] and assume that all as-
signments differing from σ in exactly r bits are in
POS(f). Let a be an assignment that differs from
σ in exactly r + 1 bits. Let l be an index such that
a(l) = ¬σ(l); index l exists because r + 1 > 0. By the
inductive hypothesis, for every assignment u such that
n − d(σ, u) = r, u ∈ POS(f), including those u such
that u(l) = σ(l). There are

(

n−1
r

)

assignments u such
that n − d(σ, u) = r and u(l) = σ(l). All these as-
signments are in POS(f), and thus N(fxl←σ(l), σ

l, r)

=
(

n−1
r

)

. By Lemma 2.2, N(fxl←¬σ(l), σ
l, r) =

(

n−1
r

)

also. The quantity
(

n−1
r

)

equals the total number of
assignments a ∈ {0, 1}n that differ from σ in the lth bit
and in exactly r of the remaining n− 1 bits. Clearly a

is one such assignments. Hence f(a) ∈ POS(f). Since
a was an arbitrary assignment differing from σ in ex-
actly r + 1 bits, all assignments differing from σ in
exactly r + 1 bits are in POS(f). Thus, by induction,
all assigments are in POS(f), proving the claim and
the theorem. 2

With Theorem 2.1 we have shown that for any non-
constant function and any orientation σ, there exists
at least one relevant variable xi such that if p is chosen
randomly, then, with probability 1, xi has gain with re-
spect to f under D(σ,p). We note that, since our proof
uses only the property of gain given by Lemma 2.1, the
skewing technique will work for any gain measure with
that property. This includes commonly used measures
such as GINI and Information Gain.

3. Empirical Analysis of Skewing

Theorem 2.1 applies when we have a complete dataset
for a function f . However, in practice, this is unlikely
to be true. In this case, even in a noiseless situation
where examples are all labeled correctly according to
a function f , we cannot compute the exact gain of a
variable with respect to D(σ,p) defined by the skew.
We can only estimate that gain. Moreover, in practice
we cannot sample from D(σ,p). Instead, we simulate
D(σ,p) by reweighting our sample. In this section, we
present an empirical analysis designed to explore the

Table 1. Difference between maximum and minimum accu-
racy of ID3 as the orientation is varied for different sets of
difficult functions on k variables. Examples are described
by 30 variables. Training sample size is 1000 examples.

k Random Antipodal Parity
5 11.12% 20.35% 11.02%
6 16.82% 39.08% 17.60%

behavior of skewing under such conditions. We first
present experiments showing the effect of varying ori-
entation σ and weight factor p, assuming we can sam-
ple directly from distribution D(σ,p). Next, we present
results showing how the technique works in practice,
when we cannot sample from D(σ,p), but only simulate
it by skewing the input distribution.

3.1. Effect of varying σ

First, we describe experiments measuring the effect
of picking different orientations σ while keeping the
weight factor, p, constant. For these experiments, we
fix p to be 0.75. We consider difficult Boolean func-
tions of k = 5 and 6 variables, with an additional 30−k

irrelevant variables present in each example. For each
function, we perform 2k trials, one for each of 2k dis-
tinct orientations σ. These σ all have the value 1 for
the irrelevant variables, but vary over all 2k values for
the relevant variables. In each trial, we select a sample
of 1000 examples from the distribution D(σ,p) induced
by (σ, p), use standard ID3 to learn a tree from that
sample, and then test the resulting tree on a test set
of 1000 examples drawn from the uniform distribution.
For each k, we report the difference between the largest
and smallest test set accuracy obtained on each func-
tion over the 2k trials. If the choice of σ is important,
we would expect this difference to be large.

In Table 1, we report the difference between the largest
and smallest accuracy for three sets of functions. The
first column shows the difference averaged over 100
random difficult k-variable Boolean functions. The
second column shows the difference averaged over the
k-variable antipodal functions (functions having ex-
actly two satisfying assignments, a and ā). The third
column shows the difference for k-variable odd parity.

From Table 1, we observe that as σ is varied, the ac-
curacy achieved by ID3 can change dramatically, even
when the sample is drawn according to the distribution
induced by (σ, p). Therefore, the choice of σ is impor-
tant, and in fact increases in importance as n increases.
Further, some difficult functions, such as the antipo-
dal functions, show more variation than others as σ

changes. Given the full truth table of the function,

Why Skewing Works: Learning Difficult Boolean Functions with Greedy Tree Learners

 50

 60

 70

 80

 90

 100

 0.5 0.6 0.7 0.8 0.9 1

A
cc

ur
ac

y
(%

)

Value of p

Random
Antipodal

Parity

Figure 1. Accuracy as p is varied for different sets of diffi-
cult functions on 5 variables. Examples are defined on 30
variables. Training sample size is 1000 examples.

any σ will isolate the relevant variables, however, with
a small training sample and a large number of relevant
variables, this may no longer be the case. This leads
to overfitting and decreased accuracy.

When k is 4 or less, there is no difference between max-
imum and minimum accuracy for these experiments.
The difference in accuracy for k = 5 or more is the re-
sult of the relevant variables having varying amounts
of gain as σ is changed. With a small training sample,
a large number of relevant variables, and a number of
irrelevant variables, the variance in gain can translate
to a variance in accuracy. However, when these condi-
tions are not satisfied (for example, with few relevant
variables and a large sample), any σ will result in gain
that is large enough to accurately recover the target
function. For this reason, we see no difference between
maximum and minimum accuracy for k = 4.

3.2. Effect of varying p

In this section, we describe experiments that measure
the effect of picking different values of p, the weight
factor, while keeping σ fixed. We look at difficult
Boolean functions of 5 variables. We generate train-
ing sets of 1000 examples, where each example is de-
scribed by 30 variables (25 irrelevant). We draw the
examples from distributions induced by choosing σ to
be 111 . . . 1 and letting p range from 0.51 to 0.95. We
use ID3 to learn a tree from each training set, and test
each tree using a test set of 1000 examples drawn ac-
cording to the uniform distribution. We track the test
set accuracy of ID3 as the value of p changes. If the
choice of p is important, we expect some values of p to
perform better than other values.

In Figure 1, we show the accuracy as p varies for three
sets of functions. First, we show the average accu-

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

F
irs

t S
pl

it
R

el
ev

an
t (

%
)

Training Sample Size

Sampling
Skewing (30 trials)

Skewing (1 trial)
Uniform

Figure 2. Percentage of times a variable relevant to the tar-
get is selected as the first split variable in a tree, as training
set size is varied, for random difficult functions on 5 vari-
ables. Examples are described by 30 variables.

racy over a random sample of 100 difficult 5-variable
Boolean functions. Next, we show the average accu-
racy for 5-variable antipodal functions. Finally, we
show the accuracy for 5-variable odd parity.

From the figure, we observe that the accuracy of ID3
changes significantly as p varies. Values close to 0.5
or 1 result in poor accuracy. Interestingly, a value of
p around 2

3 seems to yield the highest accuracy for
all three sets of difficult functions. Determining the
reason for this phenomenon is an open problem.

3.3. Skewing versus Sampling from D(σ,p)

In this section, we describe experiments that evalu-
ate the effect of simulating D(σ,p), as done by the
skewing algorithm, versus sampling directly from it.
We consider difficult Boolean functions of 5 variables,
where examples are described by 30 variables. We vary
the training set size and compare how often the first
split chosen is relevant to the target function, for three
methods: (1) ID3 with a sample drawn according to a
uniform distribution, (2) ID3 modified to use one iter-
ation of skewing (reweighting), with a sample drawn
according to a uniform distribution, and (3) ID3 with a
sample drawn according to the distribution induced by
the skew used in (2). For comparison purposes, we also
show the behavior of using 30 iterations of skewing, as
was done in the original skewing algorithm (Page &
Ray, 2003). In this case, the skews chosen in each trial
are not related to the skew used in (2) above.

The result of this experiment is shown in Figure 2. As
expected, sampling directly from D(σ,p) allows ID3 to
almost always choose a relevant split. However, given
a uniform distribution, the first split is usually chosen
randomly (i.e. it is correct about 5

30 = 16.67% of the

Why Skewing Works: Learning Difficult Boolean Functions with Greedy Tree Learners

time). Skewing, or simulating D(σ,p), increases the
likelihood of choosing a relevant split, even if done only
once. Further, the chance of selecting a relevant split
increases as the number of skewings (reweightings) is
increased. However, even with 30 skews (which are
used in practice), there is still a drop in accuracy as
compared to sampling from D(σ,p). Finally, as one
might expect, the differences in how often a relevant
variable is chosen as the first split translate directly
into differences in test-set accuracy for these methods.

4. Analysis of Sequential Skewing

We now analyze Sequential Skewing (Ray & Page,
2004). We again consider the idealized setting in which
the dataset consists of the entire truth table.

In Sequential Skewing, the weights for a match or mis-
match against the preferred settings are not multiplied
over variables. Instead, n + 1 iterations of reweight-
ing are performed, where n is the number of variables.
On the jth iteration, examples are reweighted accord-
ing to the preferred setting of the jth variable only.
The last iteration uses the unweighted data. The vari-
able that achieves maximum gain on any of the n + 1
weightings of the data is chosen as the split variable.
For each iteration, there is a chosen variable xi, a pre-
ferred setting c for xi, and a weight factor p. We thus
define a sequential skew to be a triple (i, c, p), where
i ∈ [1 . . . n], c ∈ {0, 1}, and p ∈ (1

2 , 1). Define the dis-
tribution D(i,c,p) on {0, 1}n such that for a ∈ {0, 1}n,

D(i,c,p) assigns probability p · (1
2)n−1 to a if a(i) = c,

and (1 − p) · (1
2)n−1 otherwise. Thus D(i,c,p) is the

distribution that would be generated by applying Se-
quential Skewing, with parameters xi, c and p, to the
entire truth table.

Let f be a Boolean function on {0, 1}n. We say that
f yields pairwise independence if under the uniform
distribution on {0, 1}n, variables x1, . . . , xn are pair-
wise independent given f , i.e. Pr((xi = α) ∧ (xj =
β)|f = γ) = Pr(xi = α|f = γ) · Pr(xj = β|f = γ) for
all pairs i 6= j, and α, β, γ ∈ {0, 1}. Constant func-
tions f ≡ 1 and f ≡ 0 yield pairwise independence,
as does the parity function on n ≥ 3 variables. Other
such functions exist: suppose S ⊆ {0, 1}n is such that
the uniform distribution on S induces a pairwise in-
dependent distribution on x1, . . . , xn. The function f

such that f(a) = 1 iff a ∈ S yields pairwise indepen-
dence. Polynomial-sized sets S of this type are used
in derandomization.

We say that variable xj that has gain for f under dis-
tribution D(i,c,p) if ID(f |xj) > 0. By Lemma 2.1, xj

has gain for f under distribution D(i,c,p) iff PrD(f =

1|xj = 1) 6= PrD(f = 1|xj = 0). The following the-
orem shows that, in our idealized setting, Sequential
Skewing works except when applied to functions that
yield pairwise independence. By Theorem 2.1, stan-
dard skewing has no such limitation.

Theorem 4.1 Let f be a difficult Boolean function on
{0, 1}n and let c ∈ {0, 1}. Let p be chosen uniformly at
random from (1

2 , 1). If the function f yields pairwise
independence, then for all j ∈ [1 . . . n], xj has no gain
under D(i,c,p). Conversely, if f does not yield pairwise
independence, then for some j ∈ [1 . . . n], xj has gain
for D(i,c,p) with probability 1.

Proof. Let f be a difficult function. Let i ∈ [1 . . . n]
and c ∈ {0, 1}. Assume c = 1. The proof for c = 0 is
symmetric. Consider skew (i, c, p), where p ∈ (1

2 , 1).

Let j ∈ [1 . . . n]. Let r1 = |{a ∈ POS(f) | a(i) = c ∧
a(j) = 1}|, and s1 = |{a ∈ POS(f) | a(i) 6= c∧ a(j) =
1}|. Similarly, let r0 = |{a ∈ POS(f) | a(i) = c ∧
a(j) = 0}|, s0 = |{a ∈ POS(f) | a(i) 6= c ∧ a(j) = 0}|.

Under D(i,c,p), if j = i, then since c = 1, Pr(f = 1|xj =

1) = r1

(

1
2

)n−1
and Pr(f = 1|xj = 0) = s0

(

1
2

)n−1
. If

j 6= i, Pr(f = 1|xj = 1) = (r1p + s1(1 − p))
(

1
2

)n−2

and Pr(f = 1|xj = 0) = (r0p + s0(1 − p))
(

1
2

)n−2
.

The difference Pr(f = 1|xj = 1)−Pr(f = 1|xj = 0) is a
linear function in p. If i 6= j, this function is identically
zero iff r1 = r0 and s1 = s0. If it is not identically 0,
then there is at most one value of p ∈ (1

2 , 1) for which it
is 0. If i = j, the function is identically zero iff r1 = s0.
Also, for i = j, r0 = 0 and s1 = 0 by definition.

In addition, since f is a difficult function, r1 + r0 =
s1 + s0. If i = j, then Pr(f = 1|xj = 1) − Pr(f =
1|xj = 0) is therefore identically zero and xi has no
gain under D(i,c,p). If j 6= i, then xj has no gain under
D(i,c,p) iff r1 = r0 = s1 = s0. This latter condition is
precisely the condition that Pr(xi = α ∧ xj = β|f =
γ) = Pr(xi = α|f = γ) Pr(xj = β|f = γ) under the
uniform distribution on {0, 1}n, for all α, β, γ ∈ {0, 1}.
If this condition holds for all pairs i 6= j, then f yields
pairwise independence, and no variable xj has gain
for D(i,c,p). Otherwise for some i 6= j, xj has gain for
D(i,c,p) for all but at most 1 value of p. 2

5. Bounds on Difficult Functions

It is natural to ask how many n-variable Boolean func-
tions are difficult, since these functions actually need
skewing. The asymptotic behavior of this number (as
a function of n) is unknown. However, the number of
difficult functions on n variables has been computed
for n ≤ 6 in previous work (Palmer et al., 1992).

Why Skewing Works: Learning Difficult Boolean Functions with Greedy Tree Learners

A lower bound of 22n−1

is implicit in that work and
can be shown as follows. Let f be a Boolean func-
tion on {0, 1}n such that for all a ∈ {0, 1}n, f(a) = 1
iff f(ā) = 1, where ā is the bitwise complement of

a. There are 2n−1 pairs {a, ā}, and hence 22n−1

such
functions, all of them difficult. We prove the following
upper bound.

Theorem 5.1 The number of difficult functions on n

variables is at most 22n−n.

Proof. With each a ∈ {0, 1}n, associate the variable
yβ(a), where β(a) is the integer represented by a if we
interpret a as a binary number. Given a Boolean func-
tion f on {0, 1}n, for all a ∈ {0, 1}n, let yβ(a) = f(a).
Thus f can be viewed as a truth assignment to vari-
ables y0, . . . , y2n−1. Function f is difficult iff for all
j ∈ [1 . . . n], the number of assignments a such that
f(a) = 1 and a(j) = 1 equals the number of assign-
ments a such that f(a) = 1 and a(j) = 0. This con-
dition can be expressed as a system of n linear equa-
tions over the variables y0, . . . , y2n−1. For example, for
n = 2, one of the equations is y1 + y3 − y0 − y2 = 0,
which specifies that the number of a ∈ {0, 1}n such
that f(a) = 1 and a(2) = 1 equals the number of
a ∈ {0, 1}n such that f(a) = 1 and a(2) = 0.

The system can be written in matrix form as yA = 0,
where y is the row vector [y0, . . . , y2n−1], 0 is a row
vector of 0’s of length n, and A is the 2n × n matrix
defined as follows. For each a ∈ {0, 1}n, let a′ be
obtained from a by writing a as a row vector, and
changing each 0 in a to −1. Then for all j ∈ [0 . . . 2n−
1], row j of A is equal to a′, where a is such that
j = β(a). The system yA = 0 is satisfied by a 0/1
assignment to y iff the function corresponding to y is
difficult.

Consider the n rows of A corresponding to assignments
containing exactly one 1. These rows are linearly inde-
pendent. If we assign 0 or 1 to each of the 2n −n vari-
ables yi not corresponding to one of these n rows, then
there exists a unique way to extend the assignment to
the remaining n variables so as to satisfy yA = 0; how-
ever, the extension may not be 0/1. Thus the number
of 0/1 solutions to yA = 0 is upper bounded by 22n−n,
the number of 0/1 assignments to the variables yi. 2

We note that since the number of difficult functions
for n = 3 is 18, the above upper and lower bounds are
not tight even for n = 3.

6. Conclusion

In this work, we have analyzed the technique of skew-
ing in an idealized setting. In this setting, we show

that the technique will almost always succeed at dis-
covering relevant variables when the target function is
difficult for greedy tree learners. We have provided an
empirical analysis that complements the theory in the
case that we have a small sample from the full truth ta-
ble. We show a similar theoretical result for Sequential
Skewing. Our results provide an initial understanding
of why and when skewing is effective. However, much
remains to be done to fully understand the capabili-
ties and limitations of this technique. One important
extension of this work is to develop a theoretical anal-
ysis of the case where a random sample is drawn from
the uniform distribution and the sample is reweighted
using the skewing procedure. We are also interested in
knowing for which functions polynomial-size samples
suffice, assuming few relevant variables.

Acknowledgements

The second author was supported by NSF grants CCR-
9877122 and ITR-0205647 and by the Othmer Insti-
tute for Interdisciplinary Studies. The third author
was supported by NIH Grant 1R01 LM07050-01 and
by grants from the University of Wisconsin Graduate
School.

References

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J.
(1984). Classification and regression trees. Wadsworth
International Group.

Cover, T. M., & Thomas, J. A. (1991). Elements of in-
formation theory. Wiley Series in Telecommunications.
New York, N.Y.: Wiley-Interscience.

Mossel, E., O’Donnell, R., & Servedio, R. A. (2003). Learn-
ing juntas. Proceedings of the 35th Annual Aymposium
on the Theory of Computing (pp. 206–212).

Norton, S. (1989). Generating better decision trees. Pro-
ceedings of the Eleventh International Joint Conference
on Artificial Intelligence (pp. 800–805). Los Altos, CA:
Morgan Kaufmann.

Page, D., & Ray, S. (2003). Skewing: An efficient alterna-
tive to lookahead for decision tree induction. Proceedings
of the 18th International Joint Conference on Artificial
Intelligence. Morgan Kaufmann, San Francisco, CA.

Palmer, E. M., Read, R. C., & Robinson, R. W. (1992).
Balancing the n-cube: a census of colorings. J. Algebraic
Combin., 1, 257–273.

Quinlan, J. (1997). C4.5: Programs for machine learning.
Kaufmann.

Ray, S., & Page, D. (2004). Sequential skewing: An im-
proved Skewing algorithm. Proceedings of the 21st In-
ternational Conference on Machine Learning. Morgan
Kaufmann, San Francisco, CA.

