
Why STM can be more than a Research Toy

Aleksandar Dragojević1 Pascal Felber2 Vincent Gramoli1 2 Rachid Guerraoui1

1EPFL, Switzerland
2University of Neuchâtel, Switzerland

Abstract
Software Transactional Memory (STM) promises to sim-
plify concurrent programming without requiring specific
hardware support. Yet, STM’s credibility lies on the extent
to which it can leverage multi-cores to outperform sequen-
tial code. A recent CACM paper [8] questioned however the
ability of STMs to provide good performance and suggested
their confinement to a research toy.

This paper revisits those conclusions through the most to
date extensive comparison of STM performance to sequen-
tial code. We evaluate a state-of-the-art STM system, Swis-
sTM, on a wide range of benchmarks and two different mul-
ticore systems. We dissect the inherent costs of synchroniza-
tion as well as the overheads of compiler instrumentation
and transparent privatization.

Our results show that an STM with manually instru-
mented benchmarks and explicit privatization outperforms
sequential code by up to 29 times on SPARC with 64 concur-
rent threads and by up to 9 times on x86 with 16 concurrent
threads. Indeed the overheads of compiler instrumentation
and transparent privatization are substantial, yet they do not
prevent STM from generally outperforming sequential code.

Keywords Software Transactional Memory, Performance

1. Introduction
While multicore architectures are becoming the norm in re-
cent and upcoming CPUs, concurrent programming remains
a difficult task. The transactional memory (TM) paradigm
simplifies parallel programming by enabling the program-
mers to focus on high-level synchronization concepts (i.e.,
atomic blocks of code) while ignoring the low-level imple-
mentation details.

Hardware transactional memory (HTM) has already
shown promising results for leveraging parallelism [39].
However, HTMs are so far limited as they can only handle
transactions of limited size [10, 26], or require some system
events or CPU instructions to be executed outside transac-
tions [10, 32]. While there have certainly been attempts to
address these issues (e.g., [4, 6, 34]), TM systems that are
fully implemented in hardware are unlikely to become com-
mercially available in the near future. It is more likely that

future deployed TMs will be hybrid TMs that will contain a
software and a hardware component.

Software Transactional Memory (STM) [24, 42] avoids
limitations of HTM by implementing TM functionality fully
in software, and is already freely available (e.g., [3,11,14,18,
23,35]). Yet, STMs introduce noticeable runtime overheads:

1. Synchronization costs. Each read (or write) of a mem-
ory location from inside a transaction is performed by
a call to an STM routine for reading (or writing) data.
With sequential code, these accesses are performed by a
single CPU instruction. STM read and write routines are
significantly more expensive than corresponding CPU in-
structions as they, typically, have to maintain bookkeep-
ing data about every access. Most STMs check for con-
flicts with other concurrent transactions, log the access,
and in case of a write, log the current (or old) value of
the data, in addition to reading or writing the accessed
memory location. Some of these operations use expen-
sive synchronization instructions and access shared meta-
data, which further increases their costs. All of this re-
duces single-threaded performance when compared to se-
quential code.

2. Compiler over-instrumentation. To use an STM, pro-
grammers need to insert STM calls for starting and end-
ing transactions in their code and replace all memory ac-
cesses from inside transactions by STM calls for read-
ing and writing memory locations. This process, called
instrumentation, can be manual, when the programmers
manually replace all memory references with STM calls,
or it can be performed by an STM compiler. With a com-
piler, programmers only need to specify which sequences
of statements have to be executed atomically, by enclos-
ing them in transactional blocks. The compiler gener-
ates code that invokes appropriate STM read/write calls.
While using an STM compiler significantly reduces pro-
gramming complexity, it can degrade performance of re-
sulting programs (when compared to manual instrumen-
tation) due to over-instrumentation [8, 15, 47]. Basically,
the compiler cannot precisely determine which instruc-
tions indeed access shared data and hence has to instru-
ment the code conservatively. This results in unnecessary

1 2009/10/15



Model Instrumentation Privatization
STM-ME manual explicit
STM-CE compiler explicit
STM-MT manual transparent
STM-CT compiler transparent

Table 1. STM Programming models

calls to STM functions, reducing the performance of the
resulting code.

3. Transparent privatization. Making certain shared data
private to a certain thread is known as privatization. Pri-
vatization is typically used to allow non-transactional ac-
cesses to some data, either to improve performance by
avoiding costs of STM calls when accessing private data
or to support legacy code. Using privatization with un-
modified STM algorithms (that use invisible reads) can
result in various race conditions [44]. There are two dif-
ferent approaches to avoiding such race conditions: (1) a
programmer marks transactions that privatize data, so the
STM can safely privatize data only for these transactions
or (2) the STM ensures that all transactions safely pri-
vatize data. We call the first approach explicit and the
second transparent. Explicit privatization places addi-
tional burden on the programmer, while transparent pri-
vatization incurs runtime overheads that can be high [47].
In particular, with explicit privatization no transaction
pays any additional cost if it does not use privatization,
while with transparent privatization all transactions are
impacted. This cost can be high, especially in cases when
no data is actually being privatized.

Several research papers have conveyed the scalability
of STM with the increasing number of threads on various
benchmarks e.g., [2, 3, 5, 7, 11–14, 22, 25, 27, 29, 30, 33, 35,
36,38,40,43,46]. Most of this work, however, does not com-
pare STM to sequential code, thus ignoring the fundamental
question of whether STM can be a viable option for actually
speeding up the execution of applications.

Two notable exceptions are [7] and [8]. In [7] STM
is shown to outperform sequential code in most STAMP
benchmarks, but only using a hardware simulator. Recently,
[8] shows that with real hardware STM performs worse than
sequential code, and argues that STM is only a “research
toy”. These findings are based on experiments with a subset
of the STAMP benchmark suite with specific configurations
and one micro-benchmark, all using up to 8 threads.

The goal of our work is to compare STM performance to
sequential code using (1) a larger set of benchmarks and (2) a
real hardware that supports higher levels of concurrency.
To this end, we experimented with a state-of-the-art STM
algorithm, SwissTM [14], running three different STM-
Bench7 [21] workloads, all ten workloads of the STAMP
(0.9.10) benchmark suite and four micro-benchmarks, evalu-

ating STM performance on both large and small scale work-
loads. We also consider two hardware platforms—a Sun Mi-
crosystems UltraSPARC T2 CPU machine (referred to as
SPARC in the remainder of the text) supporting 64 hardware
threads and a 4 quad-core AMD Opteron x86 CPU machine
(referred to as x86 in the remainder of the text) supporting
16 hardware threads. This constitutes the most to date perfor-
mance comparison of STM to sequential code both in terms
of used benchmarks and hardware architectures. The goal
is to really determine whether current state-of-the-art STMs
can outperform sequential code and, thus, promise to speed
up actual real-world code in the near future.

To be exhaustive we consider all combinations of pri-
vatization and compiler support for STM (summarized in
Table 1). Our results (summarized in Table 2) show that
STM-ME outperforms sequential code in all the benchmarks
on both hardware configurations, except high contention
write-dominated STMBench7 workload on x86 (1 out of
17 workloads); by up to 29 times on SPARC with 64 con-
current threads and by up to 9 times on x86 with 16 con-
current threads. Compiler over-instrumentation does reduce
STM performance, but does not impact its scalability. STM-
CE outperforms sequential code in all STAMP benchmarks
with high contention and in all but one micro-benchmark
(1 out of 14 workloads); by up to 9 times with 16 concur-
rent threads on x86. Support for transparent privatization im-
pacts STM scalability and performance more significantly,
but STM-MT still outperforms sequential code in all bench-
marks on SPARC and in all but two high contention STM-
Bench7 workloads, one high contention STAMP benchmark
and one micro-benchmark on x86 (3 out of 17 workloads).
STM-MT outperforms sequential code by up to 23 times on
SPARC with 64 concurrent threads and 5 times on x86 with
16 threads. Even when both transparent privatization and
compiler instrumentation are used (and even though we used
relatively standard techniques for both), STM still performs
well, outperforming sequential code in all but two high con-
tention STAMP benchmarks and one micro-benchmark (3
out of 14 workloads), by up to 5 times with 16 concurrent
threads on x86.

To summarize, our experiments show that STM indeed
outperforms sequential code in most configurations and
benchmarks, offering already now a viable paradigm for
concurrent programming. These results are important as they
support initial hopes about the good performance of STM,
and motivate further research in the field.

Our results contradict these of [8] and we believe that
reasons for this are three-fold: (1) STAMP workloads used
in [8] present higher contention than the default STAMP
workloads, (2) we use different hardware configurations, and
(3) we used SwissTM [14], which has higher performance
than TL2 which was used in [8].

Indeed there are various programming issues with the
use of STM (e.g., ensuring weak or strong atomicity, se-

2 2009/10/15



Speedup STM-ME STM-CE STM-MT STM-CT
Hardware Hw threads avg min max avg min max avg min max avg min max
SPARC 64 9.1 1.4 29.7 - - - 5.6 1.2 23.6 - - -
x86 16 3.4 0.54 9.4 3.1 0.8 9.3 1.8 0.34 5.2 1.7 0.5 5.3

Table 2. Summary of STM speedup over sequential code.

mantics of privatization, support for legacy binary code,
etc). However, the alternative concurrency programming ap-
proaches like fine-grained locking or lock-free techniques
are not easier to use. Such comparisons have been discussed
in [18, 19, 22, 24, 41] and are outside of the scope of this pa-
per.

The rest of the paper is laid out as follows. The next
section details our evaluation settings. The following four
sections present and discuss the experimental results for all
four variants of SwissTM. The final section concludes. In the
appendix we provide data from experiments with other state-
of-the-art STMs that further support our main conclusions.

2. Evaluation settings
In this section, we overview SwissTM implementation, as
well as the benchmarks and hardware we used for our exper-
imental evaluation.

2.1 SwissTM
Synchronization algorithm. SwissTM [14] is a word-
based STM that uses a variant of two-phase locking for con-
currency control. It uses invisible (optimistic) reads and re-
lies on a time-based scheme to speed up read-set validation,
similarly to [11, 35]. By using lazy read/write conflict de-
tection SwissTM reduces the number of unnecessary aborts
due to false read/write conflicts. By detecting write/write
conflicts eagerly, it avoids wasted work in transactions that
are almost certain to abort. This conflict detection scheme
is known as mixed invalidation [45]. SwissTM uses de-
ferred updates. The contention management scheme under-
lying SwissTM aborts conflicting transaction that performed
less work by using a shared counter to establish a total order
among transactions, similarly to Greedy [20], but avoids up-
dates to the shared counter for short transactions, resulting
in a two-phase contention management scheme. This design
was carefully chosen to provide good performance across a
wide range of mixed workloads, as demonstrated in [14].

Privatization. We implemented privatization support in
SwissTM using a simple validation barriers scheme de-
scribed in [44]. To ensure safe privatization, each thread, af-
ter committing a transaction T , waits for all other concurrent
transactions to detect the changes to shared data performed
by T . Basically, the thread waits for all concurrent threads to
commit, abort or validate before executing application code
after the transaction.

1 foo() {
2 atomic {
3 x = 1;
4 foo 1();
5 ...
6 }
7 }
8 foo 1() {
9 y = 1;

10 foo 2();
11 ...
12 }
13 foo 2() {
14 ...
15 }

Figure 1. An example of an atomic code block.

Compiler instrumentation. We used Intel’s C/C++ STM
compiler [3, 33] for generating compiler instrumented
benchmarks.1 The compiler simplifies the job of a program-
mer who only has to mark atomic blocks of code. For ex-
ample, in Figure 1, the programmer only marks the code in
function foo as transactional, and the compiler instruments
the code in foo, but also in invoked functions foo 1 and
foo 2.

2.2 Benchmarks
STMBench7. STMBench7 [21] is a synthetic STM bench-
mark that models realistic large-scale CAD/CAM/CASE
workloads. STMBench7 workloads consist of a large num-
ber of different operations (from very short, read-only op-
erations to very long ones that modify large parts of the
data structure). Based on the number of operations that mod-
ify certain data, STMBench7 defines three different work-
loads, with different amount of contention: read-dominated
(10% write operations), read/write (60% write operations)
and write-dominated (90% write operations). The main char-
acteristics of STMBench7 is that it uses a data structure and
transactions that are larger than in other typical STM bench-
marks and is, thus, very challenging for STM implementa-
tions.

STAMP. STAMP [7] is an STM benchmark suite that con-
sists of 8 different applications representative of real-world
workloads. We give a short description of STAMP applica-

1 Intel’s C/C++ STM compiler only generates x86 code thus we were not
able to use it for our experiments on SPARC.

3 2009/10/15



Benchmark Description
bayes bayesian networks structure learning
genome gene sequencing
intruder network intrusion detection
kmeans partition-based clustering
labyrinth shortest-distance maze routing
ssca2 efficient graph construction
vacation travel reservation system emulation
yada Delaunay mesh refinement

Table 3. STAMP applications

Workload Parameters
bayes -v32 -r4096 -n10 -p40 -i2 -e8 -s1

genome -g16384 -s64 -n16777216

intruder -a10 -l128 -n262144 -s1

kmeans high -i random-n65536-d32-c16.txt -m15

-n15 -t0.00001

kmeans low -i random-n65536-d32-c16.txt -m40

-n40 -t0.00001

labyrinth -i random-x512-y512-z7-n512.txt

ssca2 -s20 -i1.0 -u1.0 -l3 -p3

vacation high -n4 -q60 -u90 -r1048576 -t4194304

vacation low -n2 -q90 -u98 -r1048576 -t4194304

yada -a15 -i ttimeu1000000.2

Table 4. STAMP workloads

tions in Table 3. STAMP applications can be configured with
different parameters to define different workloads. In our
experiments, we use 10 workloads defined in the STAMP
0.9.10 distribution (Table 4). We choose STAMP because it
offers a range of workloads and has been widely used to eval-
uate TM systems.

Micro-benchmarks. To evaluate low-level overheads of
STMs, such as costs of synchronization and logging, with
smaller-scale workloads, we use four micro-benchmarks
from [18]. The benchmarks implement an integer set us-
ing different data structures: (1) hash table, (2) linked list,
(3) red-black tree and (4) skip list. Every transaction exe-
cutes a single lookup, insert or remove of a randomly cho-
sen integer from the set. Initially, the data structures are filled
with 216 elements chosen among a range of 217 values. Dur-
ing the experiments, 5% of the transactions are insert opera-
tions, 5% are remove operations, and 90% are search opera-
tions.

Privatization. None of the benchmarks we use requires
privatization, which means that we measure the worst case:
namely, supporting transparent privatization only incurs
overheads, without the performance benefits of reading and
writing privatized data outside of transactions as in [28].

2.3 Hardware
We used the following system configurations:

• Sun Microsystems UltraSPARC T2 with 32GB mem-
ory running Solaris 10. This machine has a single Ul-
traSPARC T2 CPU that consists of 8 cores, each multi-
plexing 8 hardware threads, for a total of 64 supported
hardware threads.
• AMD Opteron at 2.2GHz with 8GB memory running

Linux kernel 2.6.22.19. This machine has four quad-core
CPUs for a total of 16 supported hardware threads.

2.4 Experimental methodology
We repeated the execution of each experiment multiple times
(at least five times) to reduce the variance in the results. We
report averages from these runs.

2.5 Availability
SwissTM, STMBench7 and the code required to run
SwissTM with other benchmarks are available at
http://lpd.epfl.ch/site/research/tmeval.

The micro-benchmark suite we used is available at
http://lpd.epfl.ch/gramoli/estm.

3. STM-ME Performance
Figure 2 depicts STM-ME (manual instrumentation with
explicit privatization) speedup over sequential, non-
instrumented code on SPARC. Values above x-axis mean
that the STM version is faster, and below that it is slower
than the sequential code. The figure shows that STM
outperforms sequential code on all used benchmarks, by up
to 29 times on vacation low benchmark. It scales up to
64 threads (the number of supported hardware threads) on
STMBench7 read, STMBench7 read/write, vacation,
genome, kmeans low and ssca2 workloads. Although
the performance stays the same or degrades from 32 to
64 threads on other benchmarks, STM has good overall
performance on all used benchmarks. The data also shows
that the less contention the workload exhibits, the more
benefit we can expect from STM. For example, STM
outperforms sequential code by more than 11 times on read
dominated workload of STMBench7, and less than 2 times
for write dominated workload of the same benchmark.

It is interesting to look at the number of concurrent
threads that STM-ME requires to outperform sequential
code. On SPARC, already with 2 concurrent threads, STM is
faster than sequential code in 8 out of 17 considered work-
loads. With 4 threads this number raises to 14 workloads
and with 8 STM-ME does not outperform sequential code
only in linked list micro-benchmark. With 16 or more
threads, STM is faster than sequential code in all considered
workloads.

We would like to point out that while STM-ME outper-
forms sequential code in all the benchmarks, some of the
achieved speedups are not very impressive (e.g. 1.4 times
with 64 threads on ssca2 benchmark). This just confirms

4 2009/10/15



0 

2 

4 

6 

8 

10 

12 

14 

SB
7 R
ea
d 

SB
7 R
ea
d/
W
rit
e 

SB
7 W

rit
e 

Ba
ye
s 

Ge
no
m
e 

Int
ru
de
r 

Km
ea
ns
 H
igh
 

Km
ea
ns
 Lo
w 

La
by
rin
th
 

Ss
ca
2 

Va
ca
@o
n H
igh
 

Va
ca
@o
n L
ow
 

Ya
da
 

Ha
sh
ta
ble
 

Lin
ke
d L
ist
 

Rb
tre
e 

Sk
ipl
ist
 

Sp
ee
du

p 
  1 

2 

4 

8 

16 

32 

64 

17 24  20 29  16 

Figure 2. STM-ME performance with SPARC

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

SB
7 R
ea
d 

SB
7 R
ea
d/
W
rit
e 

SB
7 W

rit
e 

Ba
ye
s 

Ge
no
m
e 

Int
ru
de
r 

Km
ea
ns
 H
igh
 

Km
ea
ns
 Lo
w 

La
by
rin
th
 

Ss
ca
2 

Va
ca
@o
n H
igh
 

Va
ca
@o
n L
ow
 

Ya
da
 

Ha
sh
ta
ble
 

Lin
ke
d L
ist
 

Rb
tre
e 

Sk
ipl
ist
 

Sp
ee
du

p 
 

1 

2 

4 

8 

16 

Figure 3. STM-ME performance with 16 core x86

that STM, while showing great promise for some types of
concurrent workloads, is not the best solution for all of them.

On x86 (Figure 3), STM clearly outperforms sequen-
tial code in all workloads, except in the challenging write

dominated STMBench7 workload. This workload consists
of 90% operations that write some data, which results in
very high contention. Performance gain when compared to
sequential code is lower than on SPARC (up to 9 times on

5 2009/10/15



x86 compared to 29 times on SPARC). The reasons for this
are two-fold: (1) all threads execute on the same chip with
SPARC, so the costs of inter-thread communication is lower
and (2) sequential performance of a single thread on SPARC
is much lower.

On x86, STM-ME outperforms sequential code in 3 out
of 17 workloads with 2 threads, and in 13 workloads with 4
threads. STM-ME is faster than sequential code in 16 work-
loads (all but STMBench7 write) with 8 and 16 threads.

To sum up, STM-ME scales well on both SPARC and x86
architectures. The absolute obtained performance is higher
than sequential performance in all but one case. Further-
more, STM-ME outperforms sequential code in 13 out of 17
workloads already with 4 concurrent threads on both SPARC
and x86. Thus, our results clearly show that STM-ME algo-
rithms do scale and perform well in different settings.

Contradicting earlier results. The results of [8] indi-
cate that STMs do not perform very well on three of the
STAMP applications that we also have used: (1) kmeans,
(2) vacation, and (3) genome. In our experiments STM has
good performance on all three. In particular, STM-ME out-
performs sequential code on all three benchmarks on both
SPARC and x86 machines.

We believe reasons for such considerable difference be-
tween STM performance in our experiments and [8] are
three-fold:

1. Workload characteristics. After getting the details of ex-
perimental settings of [8] from the authors, we noticed
that their experiments did not use the default STAMP
workloads. Configurations used in [8] significantly in-
crease the contention in all three STAMP benchmarks,
by reducing the size of the shared data in kmeans and
vacation and reducing the fraction of read-only trans-
actions in genome. Speculative approaches to concur-
rency, such as STM, do not perform well with very high
contention workloads, which is confirmed by our exper-
iments, in which STM has the lowest performance in
very high contention benchmarks (e.g., kmeans high
and STMBench7 write).
To evaluate the impacts of workload characteristics on
the performance, we ran STAMP workloads from [8] on a
two quad-core CPU Xeon machine to evaluate the effects
of different workload configurations on a machine that
is similar (with exception of hyper-threading) to the one
used in the other study (Figure 4). STM-ME performance
is indeed lower than with the default STAMP parameters,
but STM-ME outperforms sequential code in all three
workloads.
The performance we observed differs from the perfor-
mance of [8] in several respects: (1) STM-ME outper-
forms sequential code in vacation with 8 threads, while
it is slower than sequential code in the same bench-
mark in experiments of [8], (2) STM-ME scales well in

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 

Genome [8]  Kmeans [8]  Vaca/on [8] 

Sp
ee
du

p 

1 

2 

4 

8 

Figure 4. STM-ME on 8 core x86 with STAMP workloads
from [8]

vacation promising to keep improving performance as
more cores are added, while it stops scaling at 4 threads in
results from [8] and (3) STM-ME outperforms sequential
code in genome by about 4.5 times with 8 threads (com-
pared to about 2.5 times in [8]).

2. Different hardware. We used hardware configurations
with the support for more hardware threads—64 and
16 hardware threads in our experiments compared to 8
in [8]. This lets STM perform better as there is more par-
allelism at the hardware level to be exploited.
Also, our x86 machine does not use hyper-threading2

while the one used in [8] uses a quad-core hyper-
threaded CPU. Hardware thread multiplexing in hyper-
threaded CPUs can degrade performance when compared
to the machine supporting the same number of hardware
threads without multiplexing.
We ran the default STAMP workloads and the workloads
from [8] on a machine with two single-core Xeon CPUs
hyper-threading turned on (Figure 5) to evaluate impact
of hyper-threading on performance. These results con-
firmed that hyper-threading indeed impacts the perfor-
mance (and also scalability) of STM-ME. This (partially)
explains performance difference with up to 8 threads
when compared to [8].

3. More efficient STM. We believe that part of the perfor-
mance difference comes from a more efficient STM im-
plementation. The results of [14] suggest that SwissTM
has better performance than TL2, which has comparable
performance to IBM STM in [8].

To further evaluate STM performance, we also exe-
cuted experiments with TL2 [11], McRT-STM [3] and
TinySTM [35]. We were provided with the Bartok STM [1,

2 Running multiple hardware threads on a single CPU core is also called
hyper-threading on Intel’s CPUs.

6 2009/10/15



0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

2 

Ge
no
m
e 

Ge
no
m
e [
8]
 

Km
ea
ns
 H
igh
 

Km
ea
ns
 Lo
w 

Km
ea
ns
 [8
] 

Va
ca
5o
n H
igh
 

Va
ca
5o
n L
ow
 

Va
ca
5o
n [
8]
 Sp

ee
du

p  1 

2 

4 

Figure 5. STM-ME on x86 with 2 CPUs and hyper-
threading

23] performance results on a subset of STAMP by Tim Har-
ris from Microsoft Research. For clarity of presentation we
present the resulting graphs in the appendix. All of these ex-
periments confirm our general conclusions about good STM
performance on a wide range of workloads.

Further optimizations. In some of the workloads we used,
performance degrades when too many concurrent threads are
used. A solution to this problem would be to change the
thread scheduler so it does not run more concurrent threads
than is optimal.

Programming model. While using STM with explicit pri-
vatization and manual instrumentation yields very good per-
formance, it also exposes a programming model that is not
trivial to use, as it requires significant effort for manual in-
strumentation and care about explicitly dealing with priva-
tization. As a result, STM-ME might be considered too te-
dious and error prone for use in most applications, and might
be appropriate only for smaller applications or performance
critical sections of the code. In the following, we discuss the
cost of transparent privatization (Secion 4) and compiler in-
strumentation (Sections 5 and 6).

4. STM-MT Performance
The validation barriers scheme that we use for ensuring pri-
vatization safety requires frequent communication between
all threads in the system and can degrade performance due
to the time threads spend waiting for each other and the in-
creased number of cache misses. A similar technique is al-
ready known to significantly impact performance of STM
in certain cases [47], which our experiments confirm. It is
worth repeating that none of our benchmarks uses privatiza-
tion, so transparent privatization only impacts performance,
without providing any benefit.

We show performance of STM-MT (manual instrumenta-
tion with transparent privatization) with SPARC in Figure 6.

SPARC x86
Threads Min Max Avg Min Max Avg

1 0 0.06 0 0 0.45 0.08
2 0.02 0.47 0.16 0.03 0.58 0.29
4 0.03 0.59 0.26 0.06 0.64 0.4
8 0.03 0.66 0.32 0.08 0.69 0.48

16 0 0.75 0.35 0.17 0.85 0.51
32 0 0.77 0.34 - - -
64 0 0.8 0.35 - - -

Table 5. STM-MT overheads (1− perfST M−MT

perfST M−ME
)

The figure conveys that transparent privatization impacts the
performance of STM significantly, but that STM-MT still
outperforms sequential code in all benchmarks.

The performance is, however, lower—STM-MT outper-
forms sequential code by up to 23 times compared to 29
times with STM-ME, and by 5.6 times on average compared
to 9.1 times with STM-ME. The performance impact we ob-
served confirms the results of [47].

Also, STM-MT requires more threads to outperform se-
quential code than STM-ME, as it performs better than se-
quential code in all workloads only with 64 threads. With 2
threads it is faster than sequential code on 5 workloads out
of 17, with 4 threads on 11 workloads, with 8 threads on
13. With 16 and 32 threads STM-ME outperforms sequen-
tial code on all workloads but STMBench7 read/write and
STMBench7 write.

Our experiments show that performance for some of the
workloads is not impacted at all (e.g. ssca2), while the over-
heads can be as high as 80% (e.g. vacation low, yada).
Also, in general, overheads increase with the number of con-
current threads, thus impacting both performance and scal-
ability of STM. Table 5 summarizes the overheads of trans-
parent privatization with SPARC.

We repeat the same experiments with x86 ma-
chine. The results are depicted in Figure 7. The data
confirms that STM-MT has lower performance than
STM-ME. Transparent privatization overheads reduce
STM performance below performance of sequential code
in 4 benchmarks—STMBench7 read/write, STMBench7
write, kmeans high and hashtable. On the first two
benchmarks, the performance of STM-ME was close to se-
quential performance and transparent privatization reduces it
enough to make it lower. The case of hashtable is more in-
teresting as STM-ME performs quite well on it. We believe
that transparent privatization cost is high on hashtable be-
cause of the cache contention for shared privatization meta-
data induced by small transactions.

Similarly to experiments on SPARC, STM-MT requires
more threads to outperform sequential code on x86 than
STM-ME. STM-MT outperforms sequential code in only 1
workload out of 17 with 2 threads and in 8 workloads with
4 threads. With 8 threads STM-MT is faster than sequential

7 2009/10/15



0 

2 

4 

6 

8 

10 

12 

14 

16 

SB
7 R
ea
d 

SB
7 R
ea
d/
W
rit
e 

SB
7 W

rit
e 

Ba
ye
s 

Ge
no
m
e 

Int
ru
de
r 

Km
ea
ns
 H
igh
 

Km
ea
ns
 Lo
w 

La
by
rin
th
 

Ss
ca
2 

Va
ca
@o
n H
igh
 

Va
ca
@o
n L
ow
 

Ya
da
 

Ha
sh
ta
ble
 

Lin
ke
d L
ist
 

Rb
tre
e 

Sk
ipl
ist
 

Sp
ee
du

p 

1 

2 

4 

8 

16 

32 

64 

18 23 

Figure 6. STM-MT performance with SPARC

0 

1 

2 

3 

4 

5 

6 

SB
7 R
ea
d 

SB
7 R
ea
d/
W
rit
e 

SB
7 W

rit
e 

Ba
ye
s 

Ge
no
m
e 

Int
ru
de
r 

Km
ea
ns
 H
igh
 

Km
ea
ns
 Lo
w 

La
by
rin
th
 

Ss
ca
2 

Va
ca
@o
n H
igh
 

Va
ca
@o
n L
ow
 

Ya
da
 

Ha
sh
ta
ble
 

Lin
ke
d L
ist
 

Rb
tre
e 

Sk
ipl
ist
 

Sp
ee
du

p 

1 

2 

4 

8 

16 

Figure 7. STM-MT performance with 16 core x86

code in 14 and and with 16 threads in 12 out of 17 workloads
we used.

Our experiments show that privatization overheads can be
as high as 80%. It also confirms that the transparent priva-

tization overheads increase with the number of threads and
that they have higher performance impact with workloads
consisting of short transactions (like the micro-benchmarks
we used). Overheads of transparent privatization are higher

8 2009/10/15



on our four-CPU x86 machine than on SPARC, mainly due
to higher costs of inter-thread communication. The over-
heads of transparent privatization with x86 are summarized
in Table 5.

To sum up, while the impact of transparent privatization
can be significant, STM-MT can still scale and perform well
on a wide range of applications. In particular, STM-MT out-
performs sequential code on 13 out of 17 workloads with 8
concurrent threads on both SPARC and x86. Our conclusion
is, furthermore, that reducing costs of cache coherence traf-
fic by having more cores on a single chip reduces the costs
of transparent privatization, resulting in better performance
and scalability.

Further optimizations. It is known that the technique we
used for ensuring privatization safety in STM does im-
pact scalability and performance significantly in certain
cases [47]. Two recent proposals [27, 31] aim to improve
scalability of transparent privatization by employing par-
tially visible reads. Partially visible reads allow writers to de-
tect that some other transactions are reading memory words
that the writers are updating and thus allow them to wait only
for conflicting readers, if there are any, to ensure transparent
privatization safety. By making readers only partially visible,
the cost of reads is reduced, compared to fully visible reads,
and the scalability of privatization support is improved. To
implement partially visible readers, [31] uses timestamps,
while [27] uses a variant of SNZI counters [17]. The main
advantage of the approach used in [27] over the one in [31]
is that [27] does not use centralized privatization meta-data
which improves scalability significantly.

Programming model. We believe that while supporting
transparent privatization relieves programmers of some is-
sues, it might not be absolutely needed in an STM system.
It seems that privatizing a piece of data is a conscious de-
cision made by a programmer rather than an accident. This
means that explicitly marking privatizing transactions would
not require too much additional effort from the programmer.
If this is indeed the case, it would allow for much less expen-
sive explicit privatization support in STM implementations.

5. STM-CT Performance
Compiler instrumentation usually replaces more memory
references by STM load and store calls than strictly nec-
essary, resulting in the reduced performance of generated
code (this is known as over-instrumentation [8,15,47]). Ide-
ally, the compiler would only replace memory accesses with
STM calls when they reference some shared data. However,
the compiler does not have (1) information about all uses of
variables in the whole program and (2) semantical informa-
tion about variable use, which is typically available only to
the programmer (e.g., which variables are private to some
threads or which are read-only). This is why the compiler,
conservatively, generates more STM calls than necessary.

Threads Min Max Avg
1 0 0.45 0.16
2 0.1 0.58 0.35
4 0.12 0.64 0.41
8 0.11 0.69 0.47

16 0.17 0.86 0.52

Table 6. STM-CT overheads with x86 (1− perfST M−CT

perfST M−ME
)

Unnecessary STM calls reduce performance because they
are more expensive than the CPU instructions.

We present STM-CT (compiler instrumentation with
transparent privatization) speedup over sequential code in
Figure 8.3 Despite high overheads of transparent priva-
tization and compiler over-instrumentation, STM-CT out-
performs sequential code in all workloads but intruder,
kmeans high and rbtree.

However, it requires higher thread counts to outperform
sequential code than STM-MT for the same workloads.
STM-CT is faster than sequential code only on 1 out of 14
workloads with 2 threads (genome). With 4 threads STM-
CT outperforms sequential code on 5 workloads, and with
8 threads on 8 workloads. STM-CT is faster than sequential
code in all but 4 workloads with 16 threads.

As expected, the overheads of STM-CT are higher than
the overheads of STM-MT. The overheads can be as high
as 80% (on hashtable and rbtree), but also as low as
20% (on ssca2 and linked list). Table 6 summarizes the
overheads of STM-CT when compared to STM-ME.

Programming model. STM-CT exposes a simple pro-
gramming model by using both compiler instrumentation
and transparent privatization. As a drawback, its perfor-
mance is significantly worse than the performance of STM-
ME or STM-MT. If our intuition with respect to transparent
privatization being unnecessary is correct, then it is worth
investigating a slightly weaker programming model—STM
variant that uses compiler instrumentation and explicit pri-
vatization.

6. STM-CE Performance
We present STM-CE (compiler instrumentation with explicit
privatization) speedup over sequential code in Figure 9.4 The
figure shows that STM-CE outperforms sequential code in
all benchmarks but kmeans high. However, it scales well
on kmeans high and promises to outperform sequential
code with additional hardware threads.

STM-CE outperforms sequential code with fewer threads
than both STM-MT and STM-CT. It performs better than
sequential code in 4 out of 14 workloads already with 2

3 The data we present here is only for x86 and it does not include STM-
Bench7 workloads, due to the limitations of the STM compiler we used.
4 The data we present here is only for x86 and it does not include STM-
Bench7 workloads, due to the limitations of the STM compiler we used.

9 2009/10/15



0 

1 

2 

3 

4 

5 

6 

Ba
ye
s 

Ge
no
m
e 

Int
ru
de
r 

Km
ea
ns
 H
igh
 

Km
ea
ns
 Lo
w 

La
by
rin
th
 

Ss
ca
2 

Va
ca
<o
n H
igh
 

Va
ca
<o
n L
ow
 

Ya
da
 

Ha
sh
ta
ble
 

Lin
ke
d L
ist
 

Rb
tre
e 

Sk
ipl
ist
 

Sp
ee
du

p 

1 

2 

4 

8 

16 

Figure 8. STM-CT performance with 16 core x86

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Ba
ye
s 

Ge
no
m
e 

Int
ru
de
r 

Km
ea
ns
 H
igh
 

Km
ea
ns
 Lo
w 

La
by
rin
th
 

Ss
ca
2 

Va
ca
<o
n H
igh
 

Va
ca
<o
n L
ow
 

Ya
da
 

Ha
sh
ta
ble
 

Lin
ke
d L
ist
 

Rb
tre
e 

Sk
ipl
ist
 

Sp
ee
du

p  1 

2 

4 

8 

16 

Figure 9. STM-CE performance with 16 core x86

threads. 5 With 4 threads STM-CE outperforms sequential
code in 10 workloads and with 8 and 16 threads on 13
workloads (all but kmeans high).

5 This is better even than STM-ME, but only due to slight variations in the
collected data.

The overheads of compiler over-instrumentation remain
around 20% for all workloads but kmeans where they are
about 40%. Also, on some workloads (labyrinth, ssca2
and hashtable) compiler instrumentation does not intro-
duce significant overheads and the performance of STM-ME

10 2009/10/15



Threads Min Max Avg
1 0 0.42 0.16
2 0 0.4 0.17
4 0 0.4 0.11
8 0 0.47 0.11

16 0 0.44 0.17

Table 7. STM-CE overheads with x86 (1− perfST M−CE

perfST M−ME
)

and STM-CE is almost the same. It is interesting to note
that the overheads of compiler instrumentation remain ap-
proximately the same for all thread counts, conveying that
compiler instrumentation does not impact STM scalability.
Table 7 summarizes overheads introduced by the compiler
instrumentation.

To summarize, the additional overheads introduced by
compiler instrumentation remain acceptable as performance
is worse than sequential in only one of the tested work-
loads. Moreover, with only 4 threads STM-CE outperforms
sequential code on 10 out of 14 workloads we experimented
with.

Further optimizations. A great deal of recent work fo-
cuses on leveraging compiler optimization to improve per-
formance of compiler instrumented STM applications. We
briefly describe some of this work here.

In [33], optimizations that replace full STM load and
store calls with specialized, faster versions of the same
calls are described. For example, some STMs can perform
fast reads of memory locations that were previously accessed
for writing inside the same transaction. While the compiler
we used supports these optimizations, we did not implement
the lower cost STM barriers in SwissTM yet. Compiler data
structure analysis (DSA) is used in [37] to optimize the code
generated by Tanger STM compiler. The optimization pro-
posed identifies special types of data partitions at compile
time, which allows it to use better suited forms of concur-
rency control than the generic STM algorithm. For example,
read-only partitions are identified, and no concurrency con-
trol is required when accessing read-only data.

Several optimizations have been proposed in context
of Java [3] that eliminate transactional accesses to im-
mutable data and data allocated inside current transaction.
Bartok-STM [23] uses flow-sensitive inter-procedural com-
piler analysis and runtime log filtering to identify objects
allocated in the current transaction and eliminate transac-
tional accesses to them. In [16] dataflow analysis is used
to eliminate some unnecessary transactional accesses. These
approaches are more effective than what our compiler does
because they are implemented in the context of managed lan-
guages.

Programming model. We believe (as well as others [9])
that the STM compiler is crucial for an STM system to be
easy-to-use. Furthermore, if the programmers could indeed

use explicit privatization easily enough, STM-CE is the pro-
gramming model that is both easy to use and has a reason-
able performance in a wide range of scenarios. This means
that STM-CE could be used for real-world systems in the
near future.

7. Conclusion
Our experimental results show that an STM can outperform
sequential code across a wide range of workloads and on two
different multi-core architectures. Our conclusions signifi-
cantly differ from a recent study [8], which expressed strong
doubts about STM performance. Whereas we do not argue
that STMs are a silver bullet for general purpose concurrent
programming, our results suggest that STM is already now
usable for some types of applications. Current research on
improving STM performance would only improve matters,
and could only widen the range of applications in the near
future. Also, research in Hybrid TM that aims at combining
hardware and software implementations of transactions will
benefit from achievements in the STM area.

Even though we believe STM is a mature research topic
there is still room for improvements. For example, static
segregation of memory locations depending on whether they
are shared or not can minimize compiler instrumentation
overhead, partially visible reads can improve privatization
performance and reduction of accesses to shared data can
enhance scalability.

Acknowledgments
We are grateful to Tim Harris for running the Bartok-STM
experiments on the Intel Xeon machine, to Calin Cascaval
for providing us with the experimental settings of [8] and
to Yang Ni for running experiments with McRT-STM that
in part confirmed our speculations about the impact of
hyper-threading. We also would like to thank Hillel Avni,
Derin Harmanci, Michał Kapałka, Patrick Marlier, Maged
Michael and Mark Moir for fruitful discussions and com-
ments. This research is funded by the FP7 Integrated Ap-
proach to Transactional Memory on Multi-and Many-core
Computers (VELOX) project (ICT-216852) supported by
the European Commission.

References
[1] M. Abadi, T. Harris, and M. Mehrara. Transactional memory

with strong atomicity using off-the-shelf memory protection
hardware. In PPoPP ’09.

[2] A.-R. Adl-Tabatabai, C. Kozyrakis, and B. E. Saha. Unlock-
ing concurrency: Multicore programming with transactional
memory. ACM Queue, 4(10), Dec 2006.

[3] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy,
B. Saha, and T. Shpeisman. Compiler and runtime support
for efficient software transactional memory. In PLDI ’06.

[4] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson,
and S. Lie. Unbounded transactional memory. In HPCA ’05.

11 2009/10/15



[5] M. Ansari, C. Kotselidis, I. Watson, C. Kirkham, M. Luján,
and K. Jarvis. Lee-tm: A non-trivial benchmark suite for
transactional memory. In ICA3PP ’08.

[6] J. Bobba, N. Goyal, M. D. Hill, M. M. Swift, and D. A.
Wood. Tokentm: Efficient execution of large transactions
with hardware transactional memory. In ISCA ’08.

[7] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun.
STAMP: Stanford transactional applications for multi-
processing. In IISWC ’08.

[8] C. Cascaval, C. Blundell, M. M. Michael, H. W. Cain, P. Wu,
S. Chiras, and S. Chatterjee. Software transactional memory:
why is it only a research toy? Commun. ACM, 51(11):40–46,
2008.

[9] L. Dalessandro, V. J. Marathe, M. F. Spear, and M. L.
Scott. Capabilities and limitations of library-based software
transactional memory in c++. In Transact ’07.

[10] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early expe-
rience with a commercial hardware transactional memory
implementation. In ASPLOS ’09.

[11] D. Dice, O. Shalev, and N. Shavit. Transactional locking II.
In DISC ’06.

[12] D. Dice and N. Shavit. Tlrw: Return of the read-write lock.
In Transact ’09.

[13] D. Dice and N. Shavit. What really makes transactions faster?
In Transact ’06.

[14] A. Dragojevic, R. Guerraoui, and M. Kapalka. Stretching
transactional memory. In PLDI ’09.

[15] A. Dragojevic, Y. Ni, and A.-R. Adl-Tabatabai. Optimizing
transactions for captured memory. In SPAA ’09.

[16] G. Eddon and M. Herlihy. Language support and compiler
optimizations for STM and transactional boosting. In ICDCIT
’07.

[17] F. Ellen, Y. Lev, V. Luchangco, and M. Moir. Snzi: scalable
nonzero indicators. In PODC ’07.

[18] P. Felber, V. Gramoli, and R. Guerraoui. Elastic transactions.
In DISC’09.

[19] D. Grossman. The transactional memory / garbage collection
analogy. SIGPLAN Not., 2007.

[20] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a theory of
transactional contention managers. In PODC ’05.

[21] R. Guerraoui, M. Kapalka, and J. Vitek. STMBench7: A
benchmark for software transactional memory. In EuroSys
’07.

[22] T. Harris and K. Fraser. Language support for lightweight
transactions. In OOPSLA ’03.

[23] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing
memory transactions. In PLDI ’06.

[24] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III.
Software transactional memory for dynamic-sized data
structures. In PODC ’03.

[25] M. Herlihy, M. Moir, and V. Luchangco. A flexible
framework for implementing software transactional memory.

In OOPSLA ’06.

[26] M. Herlihy and J. E. B. Moss. Transactional memory:
architectural support for lock-free data structures. SIGARCH
Comput. Archit. News, 21(2):289–300, 1993.

[27] Y. Lev, V. Luchangco, V. Marathe, M. Moir, D. Nussbaum,
and M. Olszewski. Anatomy of a scalable software
transactional memory. In Transact ’09.

[28] L. D. M. L. Scott, M. F. Spear and V. J. Marathe. Delaunay
triangulation with transactions and barriers. In IISWC ’07.

[29] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Adaptive
software transactional memory. In DISC ’05.

[30] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisen-
stat, W. N. Scherer III, and M. L. Scott. Lowering the over-
head of software transactional memory. In Transact ’06.

[31] V. J. Marathe, M. F. Spear, and M. L. Scott. Scalable tech-
niques for transparent privatization in software transactional
memory. In ICPP ’08.

[32] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood. Logtm: Log-based transactional memory. In HPCA
’06.

[33] Y. Ni, A. Welc, A.-R. Adl-Tabatabai, M. Bach, S. Berkowits,
J. Cownie, R. Geva, S. Kozhukow, R. Narayanaswamy,
J. Olivier, S. Preis, B. Saha, A. Tal, and X. Tian. Design
and implementation of transactional constructs for c/c++. In
OOPSLA ’08.

[34] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional
memory. In ISCA ’05.

[35] T. Riegel, P. Felber, and C. Fetzer. Dynamic performance
tuning of word-based software transactional memory. In
PPoPP ’08.

[36] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algorithm
with eager validation. In DISC ’06.

[37] T. Riegel, C. Fetzer, and P. Felber. Automatic data partition-
ing in software transactional memories. In SPAA ’08.

[38] T. Riegel, C. Fetzer, and P. Felber. Time-based transactional
memory with scalable time bases. In SPAA ’07.

[39] C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E. Ramadan,
B. Aditya, and E. Witchel. TxLinux: using and managing
hardware transactional memory in an operating system. In
SOSP ’07.

[40] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. Cao Minh,
and B. Hertzberg. Mcrt-stm: a high performance software
transactional memory system for a multi-core runtime. In
PPoPP ’06.

[41] N. Shavit and D. Touitou. Software transactional memory. In
PODC ’95.

[42] N. Shavit and D. Touitou. Software transactional memory.
Distributed Computing, Special Issue, 10:99–116, 1997.

[43] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer,
D. Grossman, R. L. Hudson, K. F. Moore, and B. Saha.
Enforcing isolation and ordering in stm. SIGPLAN Not.,
42(6):78–88, 2007.

12 2009/10/15



[44] M. F. Spear, V. J. Marathe, L. Dalessandro, and M. L. Scott.
Privatization techniques for software transactional memory.
In PODC ’07.

[45] M. F. Spear, V. J. Marathe, W. N. Scherer III, and M. L.
Scott. Conflict detection and validation strategies for software
transactional memory. In DISC ’06.

[46] M. F. Spear, A. Shriraman, L. Dalessandro, S. Dwarkadas,
and M. L. Scott. Nonblocking transactions without indirec-
tion using alert-on-update. In SPAA ’07.

[47] R. M. Yoo, Y. Ni, A. Welc, B. Saha, A.-R. Adl-Tabatabai,
and H.-H. S. Lee. Kicking the tires of software transactional
memory: why the going gets tough. In SPAA ’08.

A. Performance of other STMs
In this appendix, we provide scalability data for several other
STMs that further support our conclusions.

A.1 TinySTM

0 

2 

4 

6 

8 

10 

12 

14 

Ba
ye
s 

Ge
no
m
e 

Int
ru
de
r 

Km
ea
ns
 H
igh
 

Km
ea
ns
 Lo
w 

La
by
rin
th
 

Ss
ca
2 

Va
ca
<o
n H
igh
 

Va
ca
<o
n L
ow
 

Ya
da
 

Sp
ee
du

p 

1 

2 

4 

8 

16 

32 

64 

19  23 

Figure 10. TinySTM performance with SPARC

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Ba
ye
s 

Ge
no
m
e 

Int
ru
de
r 

Km
ea
ns
 H
igh
 

Km
ea
ns
 Lo
w 

La
by
rin
th
 

Ss
ca
2 

Va
ca
<o
n H
igh
 

Va
ca
<o
n L
ow
 
Ya
da
 

Ha
sh
ta
ble
 

Lin
ke
d L
ist
 

Rb
tre
e 

Sk
ipl
ist
 

Sp
ee
du

p  1 

2 

4 

8 

16 

Figure 11. TinySTM performance with 16 core x86

Sequential speedup of TinySTM both SPARC and x86
is depicted in Figures 10 and 11. We used manually instru-
mented benchmarks with version of TinySTM that supports

explicit privatization. TinySTM scales well and outperforms
sequential code in all STAMP benchmarks on SPARC. On
x86 machine, it outperforms sequential code in all bench-
marks but kmeans high.

A.2 TL2

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

Ba
ye
s 

Ge
no
m
e 

Int
ru
de
r 

Km
ea
ns
 H
igh
 

Km
ea
ns
 Lo
w 

La
by
rin
th
 

Ss
ca
2 

Va
ca
<o
n H
igh
 

Va
ca
<o
n L
ow
 

Ya
da
 

Sp
ee
du

p  1 

2 

4 

8 

Figure 12. TL2 performance with 8 core x86

Sequential speedup of x86 TL2 version on STAMP
benchmarks is depicted in Figure 12. We used manually in-
strumented STAMP benchmarks with version of TL2 that
supports explicit privatization. The data supports our case as
all applications (except bayes which exhibits highly varying
execution times) scale well. Also, the only application for
which TL2 does not outperform sequential code, although it
comes close, with 8 threads is yada.

A.3 McRT STM

0 

1 

2 

3 

4 

5 

6 

Ba
ye
s 

Ge
no
m
e 

Int
ru
de
r 

Km
ea
ns
 H
igh
 

Km
ea
ns
 Lo
w 

La
by
rin
th
 

Ss
ca
2 

Va
ca
<o
n H
igh
 

Va
ca
<o
n L
ow
 

Ya
da
 

Sp
ee
du

p  1 

2 

4 

8 

Figure 13. McRT STM C/C++ performance on STAMP
with 8 core x86

The data showing sequential speedup of Intel’s McRT
C/C++ STM for STAMP applications is shown in Fig-
ure 13. We use a STM-CT version of the STM as this
is the only version we had access to. The figure supports

13 2009/10/15



our previous experiments with STM-CT—although the per-
formance suffers significantly from privatization and over-
instrumentation overheads STM-CT still outperforms se-
quential code in several workloads. Still McRT STM with
eight threads is able to outperform sequential code in several
benchmarks.

A.4 Bartok STM

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

Genome  Labyrinth  Vaca1on High  Vaca1on Low 

Sp
ee
du

p 

1 

2 

4 

8 

Figure 14. Bartok-STM performance with 8 core x86

Figure 14 depicts scalability of Bartok STM [1, 23] on a
subset of STAMP benchmarks when run on two quad-core
Intel Xeon 5300-series CPUs.6 STAMP applications were
ported to C# in the way described in [1]. The figure shows
that both the scalability and the performance of Bartok STM
are quite good. Except for labyrinth benchmark, perfor-
mance scales to the number of available hardware threads
(performance drop with labyrinth might be due to stop-
the-world GC the runtime uses). Also the STM outperforms
sequential code already with two threads in all benchmarks.

6 The results were kindly provided by Tim Harris from Microsoft Research.

14 2009/10/15


