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Abstract— Recent advances in Machine Learning (ML) have
profoundly changed many detection, classification, recognition
and inference tasks. Given the complexity of the battlespace,
ML has the potential to revolutionise how Coalition Situation
Understanding is synthesised and revised. However, many issues
must be overcome before its widespread adoption. In this paper
we consider two — interpretability and adversarial attacks. Inter-
pretability is needed because military decision-makers must be
able to justify their decisions. Adversarial attacks arise because
many ML algorithms are very sensitive to certain kinds of input
perturbations.

In this paper, we argue that these two issues are conceptually
linked, and insights in one can provide insights in the other. We
illustrate these ideas with relevant examples from the literature
and our own experiments.

Index Terms—interpretability, interpretable machine learning,
deep learning, adversarial machine learning, adversarial exam-
ples, explainable AI, AI alignment, internet of battlefield things

I. INTRODUCTION

Recent advances in machine learning (ML), particularly

deep learning (DL), have begun to have a profound impact in

many areas of decision-making [1]. Within military operations,

ML has the potential to revolutionize the way in which

Situational Awareness (SA) is developed and revised [2]: by

fitting parameter values of flexible and general models directly

to data, it is possible to create algorithms that can be far more

accurate and capable than those using features engineered

directly by humans. These advantages are extremely important

in new war fighting concepts, such as the Internet of Battlefield

Things (IoBT) in which the battlefield is populated by multiple

agents [3], [4] which collect many types of hard and soft data.

However, before ML can be applied to IoBT and CSU,

many challenges must be overcome. In this paper we consider

two: interpretability and adversarial examples. Interpretability

is required because military decision-makers must be able to

provide reasoned justifications for their decisions. Therefore,

the ML systems must a provide level of explanation to support

* rtomsett@uk.ibm.com

this justification. Adversarial examples arise because many ML

systems can exhibit sensitivities which means that a carefully

crafted input can cause them to make mistakes [5]–[7].

Although interpretability and adversarial examples are not

often considered together, we argue that they are concep-

tually linked, and that research into one has the potential

to provide valuable insights into the other. The existence

of adversarial examples illustrates that ML models do not

learn input mappings and class boundaries that align with our

intentions as model builders, despite the model performing

well at the given task. Adversarial examples could thus be

used to better understand a model’s decision surfaces and

feature representations. Improving interpretability will allow

us to improve model alignment through a better understanding

of how best to design and train the model, as well as helping to

spot mistakes by providing explanations for model decisions.

This should allow us to build models that are more robust to

adversarial examples.

Our contributions are as follows: in Section II we introduce

the motivating example of SA in a military coalition operation.

In Sections III and IV, we survey the literature related to

interpretability and adversarial examples respectively, devel-

oping specific ideas with reference to the coalition context.

Following these discussions, we develop our central thesis

which links the two concepts. In Section V we propose

how adversarial examples could be employed to improve ML

interpretability, while in Section VI we consider how inter-

pretability techniques could be employed to improve defences

against adversarial examples, illustrating our ideas with some

preliminary experimental results. Conclusions are drawn in

Section VII.

II. COALITION SITUATIONAL UNDERSTANDING IN THE

INTERNET OF BATTLEFIELD THINGS

The work in this paper is motivated by the need to develop

Coalition Situational Understanding (CSU) in the Internet of

Battlefield Things (IoBT). The IoBT vision is illustrated in

Fig. 1, which shows three collaborating coalition partners



(blue, green and yellow). In the IoBT vision, the future

battlefield is populated by multiple smart machines which

can act as agents. Agents can be of different types. These

include sensors, munitions, weapons, vehicles, robots, and

human-wearable devices. They can sense, communicate, and

collaborate with one other and with human warfighters [3],

[4]. The data from these different agents must be combined to

create SU. This SU must be formed at two levels: within each

coalition partner, and amongst all the coalition partners. There

are numerous challenges in achieving this. These include

source bias, heterogeneous data, soft data, different policies

for data sharing and access, and variable mutual trust impose

information flow constraints and affect data quality, on which

the ML models and SU are based [8]. Placing these challenges

within a coalition setting makes these issues even harder, when

different partners might not even agree on the ontological

description of the battlefield.

Fig. 1. Conceptual illustration of the Internet of Battlefield Things. The
environment is populated by a large number of disparate agents. These in-
clude sensing and inference systems which continually distribute information
between one another and human operators. Figure adapted from [8].

Military decision-makers must be able to provide reasoned

justifications for their decisions; therefore, ML systems must

provide a suitable level of explanation for their outputs to

facilitate reasoning. In other words, the ML systems must be

in some sense interpretable. In a military coalition, model in-

terpretability between coalition partners is especially important

for engendering trust; indeed, a specific level of interpretability

may be required by the coalition’s information-sharing policies

[2].

The distributed setting of the IoBT also provides adver-

saries with opportunities to interrupt the operation of the

network [3]. For example, in Fig. 1 the adversaries (purple

stars) could attack a network by injecting fake sensor data,

corrupt information flowing between agents, or even perform

offline attacks by corrupting training data and classifiers. What

makes this risk particularly important is that malicious actors

can craft inputs that are explicitly designed to cause a ML

model to make errors – so-called adversarial examples [5]–

[7]. Adversarial examples are often imperceptible to human

operators, but can cause an ML model to reach an incorrect

decision, often with an arbitrarily high degree of confidence.

These mistakes can affect all three levels in Endsley’s SA

model [9]. At Level 1 (perception), ML models might be used

to recognize patterns or detect anomalies; mistakes at this level

will impact Level 2 SA, comprehension – also referred to as

Situational Understanding (SU) – as inference will be made

using misleading inputs. ML systems may also be employed

at this level, and could make mistakes even if the inputs from

Level 1 contain none. The same reasoning applies to Level 3

SA (projection). Adversarial examples could thus prove hugely

detrimental to SA.

In the rest of this paper, we explore the concept of in-

terpretability and the use of adversarial examples, bearing in

mind the IoBT conceptual model and how different methods

and techniques will help towards our goal of AI alignment in

coalition operations.

III. INTERPRETABLE MACHINE LEARNING

A. What is interpretability?

The past few years have seen a boom in ML interpretabil-

ity research [10]. Despite this increased research activity,

interpretability still does not have an agreed-upon (formal

or informal) definition. Researchers tend to use their own

intuitions to decide what interpretability means, or what an

explanation should look like [11]. Papers that ostensibly ad-

dress interpretability therefore tackle a diverse set of different

problems.

Lipton proposed a taxonomy for interpretability to help

address this issue [12]. This provides a vocabulary to assist in

the comparison and evaluation of interpretable ML research.

He proposed two high-level categories: techniques to improve

model transparency (which “connotes some sense of under-

standing the mechanism by which the model works” [12]),

and methods for providing post-hoc explanations for model

decisions. Transparency is further divided into simulatability

(whether a human can feasibly reproduce the model output

given its input and knowledge of the model internals), decom-

posability (whether the model components and parameters are

intuitively explicable), and algorithmic transparency (whether

we understand why and how the learning algorithm works).

Post-hoc interpretability is divided into text explanation (the

model provides a textual description of why it made a par-

ticular decision), visualization (displaying what the model has

learned visually), localization (explaining what a decision de-

pends on in the vicinity of a particular input), and explanation

by example (showing examples in the training data the model

considers closest to the current input). Lipton’s taxonomy is

both intuitive and useful, and we have adopted it to help

structure our prior work in this area [10], [13].

Doshi-Velez and Kim provided further insights into the no-

tion of interpretability, arguing that “the need for interpretabil-

ity stems from an incompleteness in the problem formalization,

creating a fundamental barrier to optimization and evaluation”



[14]. They provide a complementary taxonomy to that of [12],

focusing on how interpretability can be evaluated. We discuss

the evaluation of model interpretability in the next section.

B. Metrics for interpretability

The performance of an ML model on some task is defined

using a set of standard metrics. For example, classifiers can

be judged on their ability to generalize by measuring their

accuracy when classifying held-out test data. We can then

estimate that the classifier will perform with that level of

accuracy when deployed (assuming no distributional shift).

No metrics are currently agreed upon for assessing a model’s

interpretability. This is unsurprising given the lack of a com-

mon definition of interpretability, but developing metrics and

standardized tests can stimulate research progress by providing

quantitative comparison points for different approaches, in a

similar way to how large standardized datasets such as MNIST

[15], CIFAR10/CIFAR100 [16], and ImageNet [17] spurred

progress in computer vision research.

Doshi-Velez and Kim’s “taxonomy of interpretability evalu-

ation” [14] may help towards the definition of interpretability

metrics. They take a human-centric approach to evaluation,

defining tasks that measure human performance or judgments,

either directly or indirectly:

• Application-grounded evaluation: evaluate model inter-

pretability by assessing whether, and by how much, it

improves human performance on the application task.

This is the most difficult kind of assessment to conduct.

• Human-grounded evaluation: evaluate model inter-

pretability using a simplified task, such as a binary

forced-choice experiment (where users are asked to

choose the better of two model explanations). This kind

of assessment is easier to set-up and may be performed

by non-experts, widening the pool of potential partici-

pants. However, it provides a context-free measure of

interpretability, which may not transfer to a particular

application.

• Functionally-grounded evaluation: evaluate model inter-

pretability against a formal definition that acts as a proxy

for human-based assessment. This kind of assessment

is the easiest and cheapest to conduct, but relies on

the availability of a useful, appropriate definition to test

against.

The approaches suggested in [14] for performing relevant

functionally-grounded evaluation rely on using formal inter-

pretability definitions inferred from the results of previous

human-subject experiments, so some element of human judg-

ment is still built in to the evaluation. This is consistent with

the authors’ definition of interpretability: “the ability to explain

or to present in understandable terms to a human.” Dhurand-

har et al. generalize this view by proposing a definition of

interpretability that does not depend on human judgment, and

so lends itself to formal evaluation via metrics [18]. They

define interpretability relative to a target model (TM). This

model could be a human, but crucially does not have to be.

They call this δ-interpretability: a model is δ-interpretable

if it “can somehow convey information to the TM that will

lead to improving its performance ... for the task at hand”

[18]. More formally, if, after receiving information I from

procedure PI , the expected error of the TM is less than or

equal to δ times the TM’s expected error prior to receiving

I , then PI is δ-interpretable. δ thus becomes a metric of

interpretability. A δ of 1 implies that the procedure PI adds

nothing to the interpretability of the model it is attempting to

explain to the TM, and interpretability improves as δ → 0.

Using the taxonomy in [14], this is a kind of application-

grounded evaluation if the TM is a human, and if we can

formally define an error function on the human’s task.

Defining interpretability in relation to non-humans could be

extremely useful in any multi-agent setting, but particularly in

the context of CSU in the IoBT. In this case, communication

between agents from different coalition partners occurs under

information flow constraints. These include structural aspects,

such as data storage capacity and network coverage, band-

width, and stability, as well as policy constraints that govern

what data is allowed to be exchanged. An agent may pass

information to another agent via a δ-interpretable process that

conforms to coalition policies, and/or reduces data transfer re-

quirements compared with directly transmitting training data.

The effectiveness of knowledge-sharing between differently

structured models – even models that perform different tasks

– can be quantified and compared using δ-interpretability,

stimulating progress in this challenging research area. δ-

interpretability has the potential to provide a new approach

for sensor and resource management as well.

C. Interpretability and uncertainty

Intuitively, a model’s uncertainty in its output seems an

important quantity, both for the model users (to make decisions

based on its output), and for model trainers (to understand how

well the model has characterized the problem space). In the

former case, an analyst might make quite different actions

depending on whether the model was certain or uncertain

in its output (we could quantify whether sharing uncertainty

information leads to better actions using the framework of

δ-interpretability described above). In the latter case, high

uncertainty in the output for a particular input region indicates

to the model trainer that the system should be trained with

more data points close to this input region. Kapoor et al. use

this approach to improve classifier performance when only a

small amount of training data is available [19].

In classification tasks, most models provide a numerical out-

put between 0 and 1 for each known class, and a classification

is made by selecting the class with the highest output. These

values can be interpreted as the model’s level of confidence

that the input belongs to each class. However, for this interpre-

tation to hold true, the model must be appropriately calibrated:

the confidence scores should reflect the true likelihoods that

the model is correct. For example, if a model predicted class

A for 100 examples with confidence 0.8, we expect 80 of

those classifications to be correct [20]. While some classes of

model generally produce well-calibrated output probabilities



[21], recent work has shown that modern NN architectures

with many/wide layers are generally poorly calibrated, tending

towards over-confidence [20]. This has serious implications

for the interpretation of confidence scores from such models:

they do not mean what we intuitively think they mean. Simple

methods are shown to improve DNN calibration [20], and

should be implemented and the model calibration tested before

presenting confidence scores to users.

Confidence scores provide the probability of class member-

ship, given an input and the learned model. This still leaves

us to account for uncertainty in the input data and uncertainty

in the model parameters, both of which might be useful for

improving model interpretability. If we know a model has

only had access to highly uncertain data, or has only been

trained on a small amount of data so is unsure of its parameter

estimates, our interpretation of the model’s output will likely

be different than if we knew the model had been trained on

large quantities of high quality data. Many popular ML models

do not provide this information, including modern DNNs.

Probabilistic methods such as Gaussian processes (GPs) are

an obvious exception [22]. A GP learns a distribution over

functions conditioned on the training data, and estimates the

distribution mean and variance at a given test point. The

variance naturally decreases around the training data, leaving

high variance (i.e. high uncertainty) in regions of input space

far away from the training data.

We illustrate this graphically in Fig. 2. We generated non-

linearly separable data for a 2-class classification problem and

trained three models using 200 training points: a shallow NN

with 1 hidden layer made up of 2 tanh units, a DNN with

3 hidden layers made up of 32, 16 and 8 rectified linear

units respectively, and a Gaussian process classifier with radial

basis function kernel. Each model is approximately as accurate

as the other on held-out test data (accuracy 0.9), but they

exhibit different confidence scores over the input space (the

black-white gradient). The shallow NN has a region of low

confidence (shaded grey) that appears unrelated to the actual

data distribution – rather it is an artifact of the network archi-

tecture, and disappears as we increase the number of hidden

units. The DNN outputs high confidence scores across input

space, except very close to the decision boundary, while the

GP’s confidence varies from high to low over the input space

depending on the distance from the training data. Because

the GP also estimates variance, we can specify a confidence

interval on its output and define decision boundaries on each

side of this interval (see dashed lines in Fig. 2). Inputs that

are assigned different labels by these two decision boundaries

can then be rejected as belonging to an unknown class, or

highlighted for further inspection by a human. We will return

to this idea in section VI.

Even if a model provides confidence scores and uncertainty

estimates, it is not immediately clear how best to present

those values to humans as we are generally poor at reasoning

with probabilities and randomness. Examples of the negative

impacts of this trait are provided in [23], which describes

how even highly trained medical professionals are liable to

reason irrationally about probabilistic intervention outcomes.

Suitable presentation of uncertainty information that genuinely

improves model interpretability is therefore an important line

of research.

IV. ADVERSARIAL EXAMPLES

A. What are adversarial examples?

Adversarial ML is the study of attacks on, and defenses for,

ML systems. Such attacks are possible whenever an opponent

has access to a model’s input data. The field originally arose in

the area of spam email filtering [24]–[26]: as spam classifiers

became more successful at identifying junk emails, spammers

started to change their email contents to include words or

images that made them more likely to be classified as non-

spam. More recently, concern has arisen regarding the potential

to fool even highly accurate non-linear classifiers like DNNs.

This concern follows from results on image classifiers showing

that tiny alterations to the input images – often imperceptible

to humans – can lead to incorrect classifications [5] [27] (such

images are now often called “adversarial examples”). These

results have serious implications for safety-critical systems that

rely on ML.

Several different kinds of attack are possible on ML models,

which Huang et al. [7] classify along three axes:

• Influence: the attack could manipulate the training data (a

causative attack), or it could probe a trained model (an

exploratory attack)

• Security violation: the attack could cause the system to

wrongly classify an input (an integrity violation), could

render the system useless or unavailable (an availability

violation), or could obtain private information from the

model (a privacy violation)

• Specificity: the attack could could be targeted towards a

specific subset of inputs, or indiscriminate – designed to

degrade performance on a wide range of inputs

This taxonomy provides a useful vocabulary for describing

and grouping different adversarial ML studies. For instance,

a denial-of-service attack on the infrastructure running a

classifier is an exploratory attack causing an indiscriminate

availability violation, while adversarial examples for image

classifiers (as described above) can be causative (see e.g. [28]

but are more usually exploratory attacks that cause integrity

violations and can be targeted or indiscriminate. The recent

explosion in research on adversarial examples in particular

has led Yuan et al. to augment Huang et al.’s terminology,

developing an additional taxonomy just for this subset of

attacks [6].

Classifiers are not the only models susceptible to adver-

sarial examples. Kos et al. demonstrate attacks on generative

models that use perturbed inputs to manipulate the learned

latent space, causing the model to produce poor quality input

reconstructions [29]. Lin et al. demonstrate two attacks against

reinforcement learning: strategically timed attacks that reduce

an agent’s reward using a low number of perturbations, and

enchanting attacks that lure an agent towards a specified target



Fig. 2. Confidence and uncertainty information provided by different classifiers. Left: training data for a binary classification problem. Dark circles are in class
1, light triangles in class 2. Middle-left: shallow, narrow NN output after training, with decision boundary indicated as solid cyan line. Black/white gradient
indicates output confidence score over input space (solid black: 100% likely to be class 1, solid white: 100% likely to be class 2). Middle-right: deep, wide
NN output after training. Right: Gaussian process output after training. Dashed lines show decision boundaries estimated using the 95% confidence range for
the output mean, calculated using the output variance of the Gaussian process over the input space.

state [30]. While attacks against other kinds of models are

important to consider, we will focus the remainder of our

discussion on adversarial examples for classifiers, as these

have been the most widely studied.

B. Adversarial examples in the real world

Despite a plethora of proposed attacks using adversarial

examples, it remains unclear how practical many of them

would be to implement against real-world ML systems. Early

work on email spam detection was motivated by actual

spam attacks; however, adversarial examples against image

classifiers were discovered while studying the sensitivity of

DNNs to input perturbations, not their vulnerability to attacks

[5], [26], so the practicality of the attacks is often not a

consideration. Additionally, while spammers work with purely

digital information that can be arbitrarily manipulated before

being sent, many classifiers identify items that exist in the

physical world via a digital representation of that item, such

as a camera image or audio recording. Often the only way

to implement an attack against a model will be to alter the

item in the physical world, as the adversary will not have

access to the model’s digital input directly. Understanding the

susceptibility of different ML systems to physical adversarial

examples is thus particularly pertinent for the IoBT, where

many ML models receive data from a wide variety of physical

sensors.

Recent work has shown the success of adversarial exam-

ples in real-world computer vision systems. Evtimov et al.

developed a method of fooling traffic sign classifiers, as might

be implemented in self-driving vehicles, using either life-

size printouts of adversarially perturbed signs, or by applying

graffiti-like modifications to existing signs [31]. Their attacks

fooled traffic sign classifiers even when using frames extracted

from videos in drive-by tests at different speeds. A related at-

tack against traffic sign classifiers was developed by Sitawarin

et al., though their approach perturbs circular advertisements

and logos to be wrongly identified as traffic signs [32].

Brown et al. take another approach, generating a circular

2D image (an “adversarial patch”) that can be printed and

attached to physical objects to trick classifiers [33]. The

generated image is highly salient for a particular class, and

is likely to fool a classifier even if it only takes up a small

percentage of the total image, and even when disguised to

look innocuous to humans. This approach does not attempt

to minimize the image perturbation, but only considers the

possibility of implementing the attack in the physical world.

The patch is also tested for transferability, and shown to work

reasonably effectively on classifiers it was not optimized to

deceive. Athalye et al. demonstrate another impressive attack

using 3D-printed objects with an adversarial texture applied,

successfully fooling a classifier with pictures of the objects

taken from a wide variety of angles, poses, and different

lighting conditions [34].

Despite these worrying possibilities, there is some evidence

that real-world attacks might be more difficult to implement

against object detection models, as opposed to classifiers.

Lu et al. showed that the technique described in [31] did

not trick standard object detectors despite fooling classifiers,

demonstrating that testing attacks on classifiers as proxies for

object detection models is not valid in general [35]. Physi-

cally implementing robust attacks against object detectors is

theoretically more difficult, as they need to be effective in the

face of a broad range of parametric distortions [35]. We also

note that, during (limited and preliminary) testing of publicly

available image classification API demos (Google Vision [36],

IBM Watson Visual Recognition [37], Microsoft Computer

Vision [38]), we found it difficult to fool the default demo

classifiers using the adversarial patch from [33] unless we

covered a significant portion of the image, suggesting that the

transferability of the attack may be limited. Further research

is needed into the real-world feasibility of attacks, especially

in domains other than vision such as audio/speech recognition

[39].

C. Adversarial examples in the coalition context

The military coalition setting described above provides new

avenues for attacks on ML systems (denoted by the star-

headed, purple arrows in Fig. 1). Agents in the IoBT collect



data through a variety of sensors using different modalities

(e.g. visible light, infrared, sound, vibration). Agents may

share their data or model parameters to improve their collective

performance, which opens them up to causative (aka poison-

ing) attacks if the shared information is tainted by adversarial

perturbations. Tainted information may come from a malicious

agent masquerading as a friendly one or from a friendly agent

that has been compromised in some way (e.g. by malware).

New attacks or defenses may be possible by using multi-

modal data to build models. Incorrect classification on per-

turbed inputs in one modality may be mitigated against by

considering multiple modalities simultaneously. However, as

is known from prior work on data/decision fusion, it is by no

means assured that the use of multimodal data will always

result in improved classification, and indeed attacks may be

possible that rely on a model’s use of multi-modal data

specifically.

It is also conceivable that new attacks might exist in this

setting – for example, using a causative attack on one agent’s

model such that their performance is not affected, but when

they exchange knowledge with a second agent, that second

agent’s performance is degraded. One compromised agent

could thus be used to poison many further agents, without

itself noticing that it was compromised.

In addition to new attacks, new defenses against adversarial

examples may arise that take advantage of the coalition’s

distributed architecture. For example, ensemble effects could

be exploited to add robustness against adversaries. Distributed

adversarial learning is, to our knowledge, only just beginning

to be explored [40], [41], [42], so these and other related

questions remain open.

V. USING ADVERSARIAL EXAMPLES TO IMPROVE

INTERPRETABILITY

The existence of adversarial examples is understandably

concerning, particularly in cases where ML is heavily relied

upon. However, when these model failures do occur, it may

be possible to use what we learn from them to improve

model interpretability. Examining a system’s failures can often

be more enlightening than studying its successes; looking at

examples of failure could lead to an improved understanding

of how a model works and why it fails, or at the very least

give a better idea of its weaknesses and improve the ability

to predict when it will fail. Indeed, the original study on

adversarial examples for DNNs generated such examples to

improve understanding of how DNNs responded to small input

perturbations [5].

Exploring examples of when humans make mistakes as a

way of better understanding how the brain works is a common

approach in cognitive neuroscience, and various methods have

been developed. Ritter et al. evaluated whether some of these

methods can be applied to ML research [43]. In particular,

they chose an analysis which is used to explain how children

learn word labels for objects, and they applied this analysis

to DNNs. They found that DNNs demonstrated a bias to

categorizing objects by shape rather than by colour. This same

bias has also been observed in humans. This work “leads the

way to the study of artificial cognitive psycology” [43], and

provides a case for using the study of “adversarial” examples

in human behaviour (for example, visual illusions) to broaden

how we study adversarial examples and interpretability in

DNNs. However, this approach is limited to explaining ML

models designed to replicate human capabilities.

Using adversarial examples to improve understanding of

DNNs was studied more directly in [44], which uses gen-

erated adversarial images to explore internal representations

of DNNs. In one experiment, for example, they show that

high-level neurons that ostensibly represent high level concepts

present in the training data also respond strongly to an array

of different image contents in adversarially perturbed images.

Additionally, they find that the high-level feature representa-

tions of adversarial images are detectably different from those

of unperturbed images. Their findings from this method contra-

dict previous conclusions about these internal representations,

which demonstrates that using adversarial examples in the

context of interpretability can lead to new understanding. They

use this knowledge to develop an adversarial training method

that improves the consistency of representations between real

and adversarial images. They argue that their approach im-

proves the interpretability of the trained DNN, as the network’s

representations are more closely aligned to high-level concepts

due to the adversarial training.

Ross and Doshi-Velez developed a method to defend against

adversarial examples that also has the effect of improving

the DNN’s interpretability [45]. They train DNNs with input

gradient regularization, which reduces the amount that small

changes in input can alter the network’s output. Their method

is effective against a wide variety of different attacks, but also

has a side-effect: attacks designed specifically to fool DNNs

trained with input gradient regularization are more likely to

be rated as reasonable by humans than other attacks. In other

words, such networks are still vulnerable, but the adversarial

examples must appear more similar to the adversarial target

class for them to be fooled.

VI. IMPROVING INTERPRETABILITY TO DEFEND AGAINST

ADVERSARIAL EXAMPLES

Adversarial examples are typically generated by adding

bounded noise over the entire input such that the perturbation

is imperceptible to the human observer. The effect of the

added noise is magnified as the input is projected onto the

latent spaces, corresponding to the hidden layers in the model,

leading to incorrect classification at the output layer. This

motivates our hypothesis that interpretability, i.e., semantic

visibility into the representations of the hidden layer, can

inform the presence of adversarial perturbations in the input

data.

To validate the hypothesis, we performed some simple

experiments combining adversarial examples and state-of-the-

art interpretability techniques. Saliency mapping methods are

used to explain image classifier outputs in terms of their input

pixels [46]–[48], but have not been designed with adversarial



examples in mind. We tested the robustness and sensitivity

of these techniques (in particular deep Taylor decomposition

[49]) to adversarial examples. We trained a convolutional

NN for classification of the MNIST handwritten digit dataset

[15]. We then perturbed the images by adding bounded noise

generated by Carlini and Wagner’s method [50] with different

perturbation measurements (l0−norm, l2−norm, l∞−norm)

to create adversarial examples. These examples were then used

to generate heat maps using the deep Taylor decomposition

technique [49]. Some examples from these initial experiments

are shown in Fig. 3.

Fig. 3. Three types of adversarial perturbation on an MNIST digit. The origi-
nal digit is a 7 (top-right). Top row: Carlini l0, middle row: Carlini l2, bottom
row: Carlini l∞, with corresponding deep Taylor decomposition heatmaps as
explanations. Left-most and center-left columns show digits perturbed to be
classified as a 6, and corresponding deep Taylor decomposition explanations,
respectively. Center-right and right-most columns show digits perturbed to be
classified as an 8, and corresponding deep Taylor decomposition explanations,
respectively.

We observed that, besides the heat maps being quite dif-

fused, there are no clear, specific anomalies that can be used

to detect an attack. In other words, while the saliency map does

change for each kind of attack, it does not appear to provide

reliable visible markers differentiating between normal and

adversarial examples. This could be because current saliency

map generation techniques are not sensitive enough to detect

the presence of the diffused noise in the adversarial examples,

especially when focused solely at the input layer. In future,

we would like to design interpretability techniques that could

intercept the activation of neurons at the hidden layers of the

network to detect representational anomalies indicative of ad-

versarial examples. Visualizing the features that are being used

by the NN for the decision, could identify irregularities and

hence identify an attack. Furthermore, current interpretability

techniques are not resilient to adversarial examples and need

to be hardened to handle such attacks [51].

Finally, uncertainty information may be used to help defend

against attacks. If an adversarially perturbed image is far away

from the training data in feature space, as seems likely given

the findings in [44], then the classifier’s output uncertainty

will be relatively high. Referring back to figure 2, an attack

would likely push a data point across the decision boundary,

but probably not past the 95% confidence decision boundary of

the other class. Data points in this region would be classified

differently by the decision boundaries on either side of the

95% confidence interval over the GP’s output mean, and

this discrepancy could be used as a rejection criterion, or to

flag the data to a human for further inspection. These data

points may not be adversarial – they could be outliers, or

be from a class that the classifier was not trained on, so

this approach should improve the general robustness of the

classifier. This style of approach was explored for GPs in [52],

Bayesian DNNs in [53] and hybrid DNN-GPs (a DNN with

a GP instead of the standard softmax as the output layer) in

[54]. In all three articles, the authors showed that the model

output uncertainty for adversarial examples was higher than for

unperturbed inputs. This indicates that models able to represent

their own uncertainty are promising candidates for defending

against adversarial examples.

VII. CONCLUSION

In this paper, we have described the problems of ML model

interpretability and susceptibility to adversarial examples, why

these problems are particularly pertinent for future military

coalition operations, and why exploring the links between the

two areas might prove fruitful for solving the problems posed

in each. Some pioneering studies have begun to investigate

these links, but we anticipate many further insights remain to

be gleaned from the joint exploration of these problems.
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