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SUMMARY

There is overwhelming evidence from the CfA redshift survey that the distribution of
galaxies in the Universe obeys a scaling law on length scales less than ~ 5k~ Mpc.
Despite this scale invariance, the Universe is not well represented by a homogeneous
fractal on these scales. The dependence of the correlation length r, with sample depth
and luminosity is studied.

We present a method based on the minimal spanning tree for determining the
Hausdorff dimension, Dy, of a point distribution. The technique is applied in order to
find the Hausdorff dimension of the CfA redshift survey. The obtained value is
Dy=2.1x0.1. The correlation dimension differs from this value, D,=1.310.1,
therefore the Universe is not well characterized by only one exponent: it is not a
simple fractal. It is a more complex structure, a multifractal.

1 INTRODUCTION invariance in general does not imply that the Universe is such

It is thought that the initial conditions for galaxy formation
can be described by a scale-free power spectrum extending
over many decades in scalelength. The scaling invariance is
only broken by the galaxy formation process itself, when
baryonic material is converted into luminous material. It is
quite reasonable to ask whether there is still any evidence for
this primordial scaling, and over what range of scales this
applies.

There are two aspects to the problem. The distribution of
the gravitating material must tend to a finite average density
when averaged over large volumes. This is a fundamental
tenet of the standard cosmology, and to abandon this would
involve coping with other problems like the homogeneity and
isotropy of the microwave background radiation. The
distribution of the luminous material will reflect that of the
gravitating material, but it need not be the same (indeed, we
know that the mass-to-light ratio is scale dependent). It is
true, however, that any scaling invariance in the distribution
of luminous material must eventually break down as we get
to the largest scale on which the Universe will look homoge-
neous. There cannot be any ‘lacunarity’ (Mandelbrot 1982),
if we are to remain consistent with the standard model. We
shall show the evidence for this breakdown of scaling,

Even if we find the range of scales on which there is some
kind of scaling invariance, we should ask what is the nature
of that invariance. The most simple scaling invariance is of
the kind exemplified by homogeneous fractals. Scaling

a fractal. Evidence for more complex scaling has been intro-
duced by Jones et al. (1988) who show that the notion of the
simple fractal is not supported by the available data. The
appropriate scaling concept is the multifractal (Mandelbrot
1974; Frisch & Parisi 1985; Halsey et al. 1986).

Recently, different authors have been arguing about the
probable fractal structure of the large-scale distribution of
galaxies. Whereas some people claim that ‘the spatial dis-
tribution of galaxies can be described as a simple fractal’
(Coleman, Pietronero & Sanders 1988), others ‘can see no
hope for a pure renormalizable fractal universe’ (Peebles
1988, 1989). In this paper we shall pursue the agument on
the basis of the available data on the three-dimensional
distribution of galaxies.

2 DEFINITIONS

The definition of a fractal given by Mandelbrot (1977) is
simple: a fractal is a set which has Hausdorff dimension
strictly larger than the topological dimension. The Hausdorff
dimension is well defined (Falconer 1985) for every set &
by considering for each given value ¢ > 0, all possible cover-
ings of & formed by sets with diameters ¢;<¢. Let us call
this family of coverings, I'},. The Hausdorff S-dimensional
outer measure of &7 is defined for each =0 by

HP(s7 )=lim inf ). &”. (1)

e-0 v
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This measure is only non-trivial for uncountable sets.
(Without this condition, the infinum requirement makes the
p-dimensional outer measure zero!) Now the Hausdorff
dimension of % , Dy( %/ ) is defined as follows

HA( )= if B< Dyy(# ) and HA( )=0if B> Dys( 7 ).
(2)

This definition is a mathematical one due to Hausdorff
(1919), but it is clearly not applicable to finite sample realiza-
tions of fractals. The goal is to estimate with confidence the
dimensionality of the support of the point distribution, using
only the data from the point set.

A second definition of a fractal, more qualitative than the
previous one, but probably more useful, is the following: ‘a
fractal is a set which looks similar to itself at every scale’.
This property leads to a scale invariance, and this has some-
thing to do with the standard statistical analysis of the spatial
distribution of galaxies, the two-point spatial correlation
function, &(r). This function represents the excess probability
over a random distribution to find a galaxy at distance r from
a given one. The power-law expression found for &(r) is
(Davis & Peebles 1983)

E(r)= (1)_7, y=1.7710.04, (3)

ry

which implies that the second-order intensity function is
scale invariant. &(r) is related to the radial distribution func-
tion g(r) by

&(r)+1=g(r), (4)

where pg(r)4r? dris the mean number of galaxies lying in a
shell of thickness dr at distance rfrom any given one (0 being
the number density). In a Poisson process g(r)=1.

If g(r) is a power law, g(r)=Ar"*">. The exponent D, is
the so-called correlation dimension, and D,=3—y. This
number is not always equivalent to the fractal or capacity
dimension defined by

D0=limlog N(r)zdlog N(r)’ (5)

o log(1/r) dlog(1/r)
where N(r) is the number of occupied cells when a disjoint
partition of cells of size r has been performed. (D, has been
the most popular estimator of the Hausdorff dimension Dy.)
For homogeneous fractals D= D,, but in general and in the
case of our interest, the spatial distribution of galaxies, the
equality does not hold. What actually happens (Jones et al.
1988) is the inequality D, < D,,.

Now we are able to give an operational definition of a
fractal, by saying that a fractal is a set for which D, or D, or
both have constant values over a broad range of scales; in
other words, this quantity is scale-independent within a
certain scaling region.

The problem is that the small amount of data available in
galaxy redshift catalogues makes it difficult to estimate D,
with reasonable accuracy. It is therefore better to work with
&(r) or D,. We will return to the subject of D later.

3 THE DATA SAMPLE

The data samples we study are all drawn from the Center for
Astrophysics (CfA) galaxy redshift survey (Huchra et al.

1983). The survey we use is complete down to apparent
magnitude mz=14.5 over a limited area of sky covering
0> 0° and b=40° in the northern hemisphere. For absolute
magnitude-limited subsamples, we investigate the range of
scales where the observational data accord well with fractal
behaviour. Different tests have been applied for this purpose.

We use the ten complete subsamples listed in Table 1. The
limiting volume for each subsample is given in the table,
together with the faintest absolute magnitude to which the
subsample is complete. The absolute magnitude limit
Mg*=-05-51log V., (km s71) for my=14.5. M}™
decreases with increasing sample volume. Velocities have
been corrected as in Einasto et al. (1984). This includes solar
motion, Virgocentric flow, peculiar velocities due to galaxy
clusters and relativistic effects (Harrison 1974). [We use a
distance scale based on the Hubble constant (H,= 100 km
s~ Mpc~!)]

4 SPATIAL CORRELATION ANALYSIS
4.1 Radial density

We have studied the density n(r) in concentric volumes
centred in our Galaxy, as a function of the radius, 7. In a
fractal object embedded in a three-dimensional euclidean
space, the density decreases from any arbitrary point as
n(r)rP~3 where D<3 is the fractal dimension (de Vau-
couleurs 1970; Mandelbrot 1982). In Fig. 1, the solid line
shows how n(r) changes with the distance r, for a volume
completed subsample with depth V,,,=10000 km s~! and
absolute magnitude limit Mz = —20.5. The dotted line is
the best fit to fractal behaviour in the range where the power
law is significant. Beyond a certain distance, one can appre-
ciate a clear breakdown in the fractal behaviour and the
density tends to be roughly constant on much larger scales.
The average density for galaxies with absolute magnitude
Mz—20.5is3.6 X 107* b3 Mpc 3.

4.2 Power law shapes

The second test we have performed in order to investigate
the linear scaling range has been the study of the radial
correlation function g(r). In Fig. 2, we have plotted log g(r)
versus r for the sample S65 (open circles). The power-law
behaviour (dotted line) can be appreciated for small values of
r, but clearly it breaks away for values larger than r;~5h~!
Mpc. Clearly the scaling region is substantially less than the
whole range plotted on the x-axis of Fig. 2, 204! Mpc. For

Table 1. Sample specifications and results.

Sample  Vmin ~ Vmax M  n.gal T v D,

535 1,700 3,500 -18.22 353
540 1,700 4,000 -18.51 389
545 1,700 4,500 -18.77 379
550 1,700 5,000 -18.99 372
555 1,700 5,500 -19.20 353
560 1,700 6,000 -19.39 342
565 1,700 6,500 -19.56 359
S70 1,700 7,000 -19.73 377
S75 1,700 7,500 -19.86 413
580 1,700 8,000 -20.02 384

3.97+0.06 1.69+0.03 1.39+0.07
4.11+0.06 1.74+0.03 1.37+0.04
478+£0.08 1.68+0.03 1.37+0.05
4.88+0.09 1.69+0.03 1.39+0.07
498+£0.12 167+0.03 1.34+0.12
520£0.13 1.724+0.04 1.31+0.16
583+0.11 1.88+0.03 1.16%+0.11
6.38+£0.15 1.77+£0.08 1.30+0.12
8.12+£0.15 1.76+0.02 1.15+0.19
7.39+0.16 1.81+£0.03 1.19+0.16

All the subsamples have been drawn from the CfA redshift survey.
This catalogue is complete down to apparent magnitude m,=14.5.
The errorsin ry, y and D, are statistical.
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r>r, g(r)—1 very quickly, ruling out the simple fractal
behaviour on such scales.

We have calculated D, by fitting the relation g(r)ec 7”2
in the range r,<r<r,, where r, is the mean distance
between nearest neighbour points and r, is the greatest range
over which a power-law fit to the data seems significant. In
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Figure 1. The radial number density in concentric volumes (solid
line). The dotted line shows the homogeneous fractal behaviour,
while the dashed line is the expected constant density for a Poisson
distribution with the same number of galaxies. At small distances,
the distribution seems to be well represented by a fractal model, but
at much larger scales, the behaviour of n(r)is consistent with homo-
geneity.
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Figure 2. The structure function g(r)=1+&(r), plotted as a
function of linear scale r. The dotted line is the best-fit power law to
the data (S65) on scales r <5k~ ! Mpc, where a power law seems to
be a reasonable approximation to the function. There is no question
of this, or any other power law being a reasonable representation of
the g(r) beyond this range of scales. The open circles and asterisks
represent different procedures for the edge corrections (see text).
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Table 1 we have listed the values of D, for all the sub-
samples. D, takes values around 1.15-1.4 in agreement with
the ones reported in Coleman et al. (1988). However, we
disagree with the scaling range where the invariance is valid.
Our figure shows clearly that the scaling range is much less
broad than is claimed by Coleman et al. (1988). These
authors used a particular method of surmounting the
problem of the edge correction: when counting pairs of
galaxies at separation r, they remove from the average those
galaxies which have distances to the boundary of the sample
less than r+ dr; therefore, in their computation of g(r) the
sample is not uniformly selected. In fact, for large values of ,
only a small number of galaxies are taken into account as
centres of the counting shells. In any case, we have also
tested their method of calculating g(r). The results are
plotted with asterisks in Fig. 2. Although the uncertainties
are larger using this procedure for the border correction, the
behaviour of g(r) does not differ too much from the results of
the calculation done using the standard method (Davis &
Peebles 1983; open circles). In any case the departure of the
simple fractal model is clearly appreciated.

In Fig. 3 we show the two-point correlation functions &(r)
for some of these samples. We show a typical slope y that can
be assigned to such two-point spatial correlation functions
on the assumption that they are indeed power laws over
some range of scales. y values are listed in Table 1 for these
subsamples. One can see that D, = 3 — y for each sample.

4.3 Amplitudes

The so-called correlation length, 7, is the scale at which the
correlation function falls to unity &(ry)=1. (r, is really a
normalization parameter, but conventional abuse dictates
that it be referred to as a correlation length.) The estimated
(Davis & Peebles 1983) value of r, for the observational data
(CfA)is ry=15.4+0.3h~! Mpc. It is interesting that the upper
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Figure 3. The correlation function &(r) plotted as a function of
scale 7 on a log-log plot. The samples are reasonable fits to the
simple power law shown on scales r<5h~! Mpc. The different
normalizations for the curves is the basis of the argument that the
Universe is a fractal. However, the phenomenon is most probably
due to the luminosity dependence of the galaxy clustering process.
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cut-off for fractal behaviour is approximately this correlation
length, r;~ r;.

It has been argued that the correlation length increases
with the depth of the sample for complete volume-limited
samples drawn from an apparent magnitude-limited survey
(Einasto, Klypin & Saar 1986; Davis et al. 1988). We have
repeated this calculation with our ten subsamples obtaining
basically the same qualitative result as the previous authors.
[Note that we are using the same catalogue as Einasto et al.
(1986), so the agreement is not surprising.] The increase of r,
with sample depth is shown in Table 1 (see also Fig. 3).

Notice that these results are not in disagreement with the
value obtained by Davis & Peebles (1983) of r,~ 5.4 for a
sample, drawn from the CfA catalogue, with 1002~! Mpc
depth. In fact, their sample was not a volume-limited one and
they used a selection function in the normalization of the
correlation function. This permits them to surmount the
problem of missing fainter galaxies (My> —18.5) at large
distances (r>40h~! Mpc). Instead, our S-subsamples are
volume-limited, which means that they are intrinsically
brighter if they are deeper. In this type of sample there is no
question about the increase of r, with the sample depth.
There are two possible interpretations of this fact.

(i) If all the samples had the same clustering properties,
and the distribution of galaxies were well represented by a
simple fractal, a linear increase of r, with the sample depth
would be completely natural (Pietronero 1987). The data are
not really good enough to say whether or not the increase is
linear as expected in this case.

(i) The second interpretation lies in the fact that clustering
properties of galaxies may not be independent of luminosity.
Such luminosity segregation is a natural consequence of the
galaxy formation process. See for example the N-body
simulations of cold dark matter universes (White et al. 1987).

Recently, it has been argued (Davis ez al. 1988; Hamilton
1988; Dominguez-Tenreiro & Martinez 1989) using differ-
ent techniques, that brighter galaxies are more strongly
correlated than fainter galaxies. If the clustering properties
change with luminosity, the increase of r, with depth may be
a fingerprint of such a segregation, because in volume-limited
samples the deeper the sample, the brighter are the galaxies
init.

In order to choose between these two interpretations, we
can consider subsamples of the volume S80 (Mz< —20.02),
taken at different depths. From the luminosity point of view,
all these subsamples are equivalent and now we can study the
behaviour of r, without the luminosity bias. In this case it has
been shown (Martinez, Portilla & Jones, in preparation) that
7, is no longer a linearly increasing function of the sample
depth. In fact the value of r, is rather constant over a large
range of velocity limits. The effect of the local density fluctu-
ations is also very important in the behaviour of the correla-
tion length. This result adds support to the view that the
second hypothesis above is the correct one.

5 HAUSDORFF DIMENSION

We have seen that there is a scaling range, where D, is
roughly constant, that implies fractal behaviour, but we still
do not know the real value of the Hausdorff dimension Dy,
which can be different from D,. In this section we have tried

to measure the Hausdorff dimension Dy, of the samples. As
has been already reported (Jones et al. 1988), box-counting
algorithms are not the best ones for measuring Dy directly.
The estimator used here for Dy depends on the minimal
spanning tree (MST) (Barrow, Bhavsar & Sonoda 1983;
Martinez et al. 1989). The minimal spanning tree of a point
process is the graph connecting all the points in the process
(without closed loops) with minimal length. The algorithm
goes as follows: we take Ny points (galaxies) randomly
selected from the sample, and we calculate in this set of
points the lengths of the MST branches, {/;};Z], m=Ng—1.
The moments of those distances are related to the Hausdorff
dimension, in a way equivalent to that given by Badii & Politi
(1984), by using the nearest neighbour distances.

Mz

HY 7 )=

1

1i(m)=K(B)m' =", (6)

1

The fixed point of the function h(8), A(Dy)= Dy, is a rather
good estimator of the Hausdorff dimension. This statement
can be easily proved by simple inspection of the definition of
the Hausdorff dimension given in equation (2), if

B

Y., = =] —-——- = ﬂ—-»oo 1 — 00
B<Dy=>h(B)>p=>1 h(ﬂ)>0 H if m , (7)
and equivalently

< B B -

DH=>h 2] —-—- = - — 00,

B> (B)<B=>1 h(ﬁ)<0 H'-0if m (8)

In Fig. 4 we show the behaviour of 4(f) for the subsample
S80 and for a Poisson distribution with the same number of
objects in the same volume. In the first case (the CfA sub-
sample) the fixed point is Dy; ~ 2 while in the case of a Poisson
distribution, the fixed point is Dy; ~ 3, as would be expected.

The mean value obtained for-the observed samples is
Dy;=2.110.1. The estimation of the Hausdorff dimension is
independent of the absolute magnitude limit. The value
obtained by means of the minimal spanning tree method is in
agreement with other estimates obtained using different
algorithms (Saar 1989).

The difference between Dy and D, is a key piece of
information on the degree of inhomogeneity of the fractal
measure on the set. This difference tells us that the set is not
completely characterized by its main dimension; instead it
needs more careful attention because it is a multifractal
(Martinez et al. 1989).

6 CONCLUSIONS

The power-law scaling behaviour of the distribution of
galaxies on scales r<5h~! Mpc is a remarkable fact of
cosmology, established by numerous analyses of both three-
dimensional and projected galaxy distribution data. The fact
that the Universe tends towards global homogeneity and
isotropy on very large scales is also evident in these data
samples, and that fact alone speaks most strongly against any
suggestion that the Universe resembles a fractal on arbi-
trarily large scales. The dependence of clustering on galaxy
morphology and luminosity makes this analysis a little
delicate, but we believe that we have handled it correctly.
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Figure 4. The Hausdorff dimension is obtained by means of the
minimal spanning tree as the fixed point of the function A(B8). This
value is ~ 3 for a Poisson distribution and ~ 2 for the real catalogue
of galaxies. This result shows that the main contribution to the
dimensionality of the large-scale distribution of galaxies are the
sheet-like structures.

We have shown here, with an analysis of the best three-
dimensional data available, that the structure on scales less
than 5h~! Mpc is more complex than the homogeneous
fractal structure. We show how, despite the relatively small
size of the data sample, the minimal spanning tree construc-
tion provides a robust estimate of the dimensionality dis-
tribution. In the scaling range, the correlation dimension
D,=13%0.1 differs from the Hausdorff dimension
Dy =2.1%0.1, ruling out homogeneous fractal models. The
value of around 2 obtained for the Hausdorff dimension
shows that the dimensionality of the Universe is sheet-like, in
agreement with a ‘bubble’ universe (de Lapparent, Geller &
Huchra 1986). Even in the power-law scaling domain
(r<5h~! Mpc) it is possible to show that the data can be
represented as a multifractal, rather than a simple fractal
(Jones et al. 1988; Martinez et al. 1989).
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