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Abstract
Linear bilevel optimization problems have gained increasing attention both in the-
ory as well as in practical applications of Operations Research (OR) during the last 
years and decades. The latter is mainly due to the ability of this class of problems to 
model hierarchical decision processes. However, this ability makes bilevel problems 
also very hard to solve. Since no general-purpose solvers are available, a “best-prac-
tice” has developed in the applied OR community, in which not all people want to 
develop tailored algorithms but “just use” bilevel optimization as a modeling tool for 
practice. This best-practice is the big-M reformulation of the Karush–Kuhn–Tucker 
(KKT) conditions of the lower-level problem—an approach that has been shown to 
be highly problematic by Pineda and Morales (2019). Choosing invalid values for M  
yields solutions that may be arbitrarily bad. Checking the validity of the big-Ms is 
however shown to be as hard as solving the original bilevel problem in Kleinert et al. 
(2019). Nevertheless, due to its appealing simplicity, especially w.r.t. the required 
implementation effort, this ready-to-use approach still is the most popular method. 
Until now, there has been a lack of approaches that are competitive both in terms 
of implementation effort and computational cost. In this note we demonstrate that 
there is indeed another competitive ready-to-use approach: If the SOS-1 technique 
is applied to the KKT complementarity conditions, adding the simple additional 
root-node inequality developed by Kleinert et al. (2020) leads to a competitive per-
formance—without having all the possible theoretical disadvantages of the big-M  
approach.
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1  The big‑M reformulation: convenient but error‑prone

We consider linear bilevel problems of the form

where Ψ(x) denotes the set of optimal solutions of the x-parameterized linear 
program

with c ∈ ℝ
n , d, f ∈ ℝ

m , A ∈ ℝ
k×n , B ∈ ℝ

k×m , a ∈ ℝ
k , C ∈ ℝ

�×n , D ∈ ℝ
�×m , and 

b ∈ ℝ
� . In this setting, the upper-level player (or leader) anticipates the optimal 

reaction y of the lower-level player (or follower). The set of optimal solutions Ψ(x) 
is not a singleton if the follower is indifferent for a given x . In this case, Problem (1)  
establishes the so-called optimistic solution, i.e., the leader may select the solu-
tion y ∈ Ψ(x) that is the most favorable one for the upper-level problem; see Dempe 
(2002). In general, bilevel problems are intrinsically nonconvex due to their hier-
archical structure and even linear bilevel problems  (1) are known to be strongly 
NP-hard; see Hansen et al. (1992). Although specialized techniques for this prob-
lem class exist, the “best-practice” still is the well-known mixed-integer single-level 
reformulation that relies on big-M values; see, e.g., Baringo and Conejo (2011), 
Garces et al. (2009), Baringo and Conejo (2011), Wogrin et al. (2011), Kazempour 
et  al. (2011, 2012), Kazempour and Conejo (2012), Jenabi et  al. (2013), Wogrin 
et  al. (2013), Pozo et  al. (2013), Pisciella et  al. (2016), Maurovich-Horvat et  al. 
(2015), Morales et al. (2014), Jaber Valinejad (2015), and the references therein for 
bilevel optimization problems in the field of power systems that are tackled with the 
classic big-M approach.

1.1  The method

This single-level reformulation is derived as follows. First, the lower-level problem (2) 
is replaced by its necessary and sufficient Karush–Kuhn–Tucker (KKT) conditions. 
This yields the mathematical program with complementarity constraints (MPCC) 

(1)min
x∈ℝn,y∈ℝm

c⊤x + d⊤y s.t. Ax + By ≥ a, y ∈ Ψ(x),

(2)max
y

f ⊤y s.t. Dy ≤ b − Cx,

(3a)min
x,y,𝜆

c⊤x + d⊤y

(3b)s.t. Ax + By ≥ a, Cx + Dy ≤ b,

(3c)𝜆 ∈ ΩD ∶= {𝜆 ≥ 0 ∶ D⊤
𝜆 = f },

(3d)𝜆
⊤(b − Cx − Dy) = 0,
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in which Constraint (3c) denotes dual feasibility and (3d) are the KKT complemen-
tarity conditions of the lower-level problem. Next, the complementarity conditions 
are replaced by the mixed-integer reformulation

with sufficiently large big-M constants MP and MD . Problem (3) as well as the 
mixed-integer reformulation  (4) have been mentioned first by  Fortuny-Amat and 
McCarl (1981). The advantage of this approach for OR practitioners is obvious: The 
single-level problem (3) in which the complementarity conditions (3d) are replaced 
by (4) can be easily implemented and the resulting model can be solved without fur-
ther ado by standard mixed-integer solvers. However, this approach has some severe 
issues.

On the one hand, choosing the big-M constants too small can result in suboptimal 
solutions of Problem (1) as shown in Pineda and Morales (2019). Their counter-
example also shows that the loss of optimality can be arbitrarily large in terms of 
the resulting objective function values. Unfortunately, many works do not discuss 
the selection of the constants at all or use trial-and-error procedures without any 
guarantee that the derived values yield a correct reformulation; see, e.g., the ref-
erences compiled in Pineda and Morales (2019). Recently, it is shown in Kleinert 
et al. (2019) that verifying the correctness of given big-M values is as hard as solv-
ing the original bilevel problem, which is strongly NP-hard in general. Thus, unless 
valid big-M constants can be derived from problem-specific knowledge as it is done, 
e.g., in Böttger et al. (2021); Kleinert and Schmidt (2019) or Siddiqui and Gabriel 
(2013), the stated mixed-integer reformulation cannot be expected to yield correct 
results. On the other hand, large values of MP and MD may cause numerical insta-
bilities. In the extreme case, too large values can indeed yield “solutions” that are 
actually infeasible for the original bilevel problem due to the products in (4) of very 
large constants and binary variables that are relaxed up to a certain tolerance by 
mixed-integer solvers. We illustrate the impact of different values for MP and MD in 
the following computational study.

1.2  Performance and reliability evaluation

We first briefly describe the computational setup that we use throughout this work 
as well as the details of our evaluation procedure. All computations in this and the 
remaining sections are carried out on a compute cluster with Xeon E3-1240 v6 
CPUs at 3.7 GHz and 32 GB RAM; see Regionales Rechenzentrum Erlangen (2020) 
for more details. The code used for the computational studies in this work is imple-
mented in C++-11 and has been compiled with GCC  7.3.0. All optimization prob-
lems are solved by CPLEX 12.10.

For the evaluation of the computational results, we mainly use performance pro-
files according to Dolan and Moré (2002). For every test instance  i, we compute 
ratios ri,s = ti,s∕min{ti,s ∶ s ∈ S} , where S is the set of solution approaches under 
consideration and ti,s is the running time required by approach s ∈ S for instance i. 

(4)b − Cx − Dy ≤ MP(1 − u), � ≤ MDu, u ∈ {0, 1}� ,
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Each performance profile plot in this work shows the percentage of instances 
(y-axis) for which the performance ratio ri,s of approach s is within a factor � ≥ 1 
(log-scaled x-axis) of the best possible ratio.

For our analysis we use the linear bilevel instances described in Kleinert and 
Schmidt (2020). All of these instances stem from relaxing the integrality condi-
tions of mixed-integer bilevel instances from the literature. We denote the various 
instance classes along with a reference to its original mixed-integer test set and rel-
evant characteristics in Table 1. For our analysis, we clean up this instance set in the 
following way. We exclude 353 instances that can be solved by any of the methods 
tested in this work in less than 5 s. In addition, we exclude 26 instances that cannot 
be solved by any of the tested methods within the time limit of 1 h. This yields a 
total number of 698 instances in the cleaned test set I .

We are now ready to compare the big-M approach for the choices 
M = MD = MP ∈ {104, 105, 106} . For better readability, we refer to the three instan-
tiations by BigM-4, BigM-5, and BigM-6. As just discussed, the big-M approach 
may deliver wrong “solutions” in case the value M is chosen too small or “too 
large”. The latter may result in infeasible points because the lower-level comple-
mentarity may in fact not be fulfilled due to numerical tolerances. In order to cir-
cumvent this behavior, we tightened the integer feasibility tolerance of CPLEX to 
10−9 . An ex-post evaluation of the complementarity conditions revealed that with 
this setting, all solutions fulfill every complementarity condition up to a tolerance 
of 10−6 . Thus, we consider these solutions to be feasible. In contrast, too small val-
ues for M may produce suboptimal solutions. Therefore, we run the following sanity 
check for every instance in I  . Let Fs

i
 be the objective value of the best feasible solu-

tion, i.e., the best upper bound, and let Fs
i
 be the best lower bound found by approach 

s ∈ {BigM-4, BigM-5, BigM-6} for instance  i ∈ I  . We set unavailable values to 
+∞ and −∞ , respectively. Further, let F∗

i
 and F∗

i
 be the best upper and lower bound 

found by a provably correct solution approach. We will consider this provably cor-
rect approach as a black box for the moment and discuss it in more detail in the next 
section. We then check for every instance i and approach s, if

hold. If this is not the case, we consider instance  i as not solved by s. Out of the 
698 instances in I  , this happened 29 times for BigM-6, 50 times for BigM-5, and 
147 times for BigM-4.

Figure 1 shows two performance profiles of the running times of the methods BigM-4,  
BigM-5, and BigM-6. The left performance profile is based on those 377  instances  
in I that all three methods solve. Apparently, a lower big-M value is beneficial w.r.t. the 
running time and BigM-4 dominates the other two methods. Thus, there is an incen-
tive to choose a small value of M. However, the picture changes, if we consider the 
549 instances in I  that at least one of the three methods solves; see Fig. 1 (right). It 
can be seen that BigM-6 solves the largest number of instances among the three tested 
approaches. To be more specific, BigM-6 solves 524, BigM-5 solves 503, and BigM-4 
solves 411 instances. The reason is, as discussed above, that for a smaller value of M, 
the ex-post optimality check fails more often. This results in more instances counted as 

Fs
i
≥ F∗

i
and Fs

i
≤ F∗

i
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not solved. Note that there is, however, no dominance across the three methods w.r.t. 
the solved instances. There are 18 instances that BigM-5 solves but BigM-6 does not 
and 21 instances that BigM-4 solves but BigM-5 does not. Consequently, although it is 
not the fastest method, from a practical point of view, BigM-6 is the best choice. This 
is in line with results of a comparison of various values for M on a different test set in 
Pineda et al. (2018). We recap however that even BigM-6 produces 29 “solutions” that 
are indeed not optimal.

2  The SOS1 reformulation: a lame duck?

Another way to solve the MPCC (3) is to omit the complementarity conditions  (3d) 
initially and then branch on them instead.

2.1  The method

A first sketch of this approach has been proposed by Fortuny-Amat and McCarl (1981) 
and a more detailed evaluation along with first numerical results can be found in Bard 
and Moore (1990). A modern and convenient way to apply this method is to exploit 
special ordered sets of type 1 (SOS1). Such sets are introduced in Beale and Tomlin 
(1970) and require that at most one variable of a set of variables takes a nonzero value. 
With this, the complementarity conditions (3d) can be rephrased as follows:

This technique is proposed in a more general MPCC context in Siddiqui and Gabriel 
(2013) and used in a bilevel context in Pineda et  al. (2018). We highlight that it 
is big-M-free and fairly easy to implement. Modern mixed-integer solvers handle 
SOS1 constructs by automatically reformulating it to the mixed-integer formula-
tion  (4) if provably correct bounds on si and �i are available or by branching on  
si and �i otherwise. In this way, the benefits of using a highly evolved mixed-integer 

(5)si = (b − Cx − Dy)i, {si, �i} is SOS1, i = 1,… ,�.

Fig. 1  Performance profile of running times of the big-M-based methods for the instances in I  that all 
three methods solve (left) and at least one method solves (right)



1 3

Why there is no need to use a big‑M in linear bilevel… Page 7 of 12     3 

solver can be exploited, while the correctness of the obtained solutions is guaran-
teed—in contrast to the approach stated in Sect. 1. However, the theoretical worst-
case complexity is the same for both approaches. We label this big-M-free method 
as SOS1 and evaluate its performance in comparison to BigM-6 in the following.

2.2  Performance evaluation

All results presented in this section follow the setup described in Sect.  1.2. Fig-
ure 2 shows a performance profile of the running times of BigM-6 and SOS1 on the 
566 instances that at least one of the two methods solves. It can be seen that BigM-6 
is the fastest method for more than 50% of the instances (see the leftmost point of the 
solid curve). In addition, it solves around 90% of the instances (see the rightmost point 
of the solid curve), although some “solved” instances are considered as not solved due 
to the ex-post optimality check described in Sect. 1.2. The valid black box used in this 
optimality check is exactly the SOS1-based approach. According to Fig. 2, BigM-6 can 
be considered the distinct winner approach, which is in line with the analysis in Pineda 
et al. (2018). Overall, this justifies why the big-M approach equipped with a large con-
stant M is chosen instead of SOS1 in a lot of applications of OR.

3  The game changer: valid inequalities

The results presented up to this point only re-iterate folklore knowledge: Although it 
has its downsides, the big-M approach is the method of choice in practical linear bilevel 
optimization.

This section aims to change this thinking. We show that adding a simple inequal-
ity to the MPCC (3) changes the results drastically. This inequality has been proposed 
recently in Kleinert et al. (2020) and exploits the strong-duality condition of the fol-
lower problem. We briefly summarize its derivation in the following. For any leader 
decision x , the dual follower problem is given by

min
𝜆

𝜆
⊤(b − Cx) s.t. 𝜆 ∈ ΩD = {𝜆 ≥ 0 ∶ D⊤

𝜆 = f }.

Fig. 2  Performance profile of 
running times of the methods 
BigM-6 and SOS1 for the 
instances in I  that at least one 
method solves



 T. Kleinert, M. Schmidt 

1 3

    3  Page 8 of 12

For every lower-level primal-dual feasible point (y, �) , weak duality

holds. Thus, strong duality can be enforced by

This is a bilinear constraint with products of primal leader variables  x and dual 
follower variables � . However, one can derive a linear valid inequality from it by 
replacing each term Ci⋅x with an upper bound C+

i
≥ Ci⋅x ; see Kleinert et al. (2020). 

This yields the inequality

in which C+ denotes the vector of upper bounds C+
i
 . The linearization of the bilinear 

term 𝜆⊤Cx in (6) can be seen as a special case of a McCormick inequality McCor-
mick (1976) as discussed in Kleinert et  al. (2020). Of course, other techniques to 
deal with these bilinearities are possible as well such as spatial branching Horst and 
Tuy (2013) or other iterative approaches based on convex optimization, see, e.g., 
Constante-Flores et al. (2022). The bounds required in (6) can be obtained, e.g., by 
exploiting variable bounds on x or by solving auxiliary linear problems

see also Kleinert et  al. (2020). This requires the joint feasible set 
{(x, y) ∶ Ax + By ≥ a, Cx + Dy ≥ b} of the upper and lower level to be bounded, 
which is the case for every tested instance in our instance set  I  . Although solv-
ing the additional auxiliary LPs  (7) can be done in polynomial time in general, it 
might be time consuming in practice. However, it has been shown in Kleinert et al. 
(2020) to pay off to add Inequality (6) to the SOS1 reformulation of Problem (1). A 
preliminary computational analysis revealed that this strategy is also very effective 
for the BigM-6 approach. Consequently, 688  instances in I  are solved by at least 
one of the two methods BigM-6-R and SOS1-R compared to 566 for the methods 
BigM-6 and SOS1. More precisely, BigM-6-R solves 642 instances compared to 
524 instances solved by BigM-6 and SOS1-R solves 615 instances compared to 421 
instances solved by SOS1. Note that the “R” denotes that the valid inequality (6) has 
been added at the root node. In more detail, this means that the problem solved by 
the BigM-6 method is Problem (3) with (3d) replaced with (4) and the additional 
constraint (6). The SOS1 method solves Problem  (3), extended by (6), with (3d) 
replaced with (5).

Figure  3 shows a performance profile that compares the running times of 
BigM-6-R and SOS1-R on the 688 instances that at least one method solves. We 
observe several interesting aspects. First, the SOS1-based approach is the faster 
method for over 65% of the instances (see the leftmost point of the dashed curve). 
This is very much in contrast to the results without the valid inequality. Second, 
the reliability advantage of the big-M-based approach decreases significantly. 

f ⊤y ≤ 𝜆
⊤b − 𝜆

⊤Cx

f ⊤y ≥ 𝜆
⊤b − 𝜆

⊤Cx.

(6)f ⊤y ≥ 𝜆
⊤b − 𝜆

⊤C+,

(7)max Ci⋅x s.t. Ax + By ≥ a, Cx + Dy ≥ b,
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BigM-6-R solves 73  instances that SOS1-R cannot solve within the time limit, 
but SOS1-R also solves 46 instances that BigM-6-R cannot solve.

According to Fig. 3, the only reason for choosing BigM-6-R over the SOS1-
based approach is that it “solves” more instances. However, this is a very ambiv-
alent statement, because there is always the possibility that the “solutions” 
obtained by big-M-based methods are simply wrong due to a too small or too 
large value for M . In contrast, we highlight that the SOS1-based method either 
provides the correct optimal solution or terminates with a suboptimal solution 
and a trustworthy optimality gap. In fact, if we look at the 73 instances that only 
BigM-6-R solves, it turns out that the objective function values of the solutions 
provided by the SOS1-based solver always exactly match the objective function 
value of the “globally optimal” solutions provided by BigM-6-R.

4  Practical implications for linear bilevel optimization

The results presented in this note indicate the following. In general, the big-M 
approach is faster and “solves” more instances, especially if the value of M can 
be chosen small. Thus, whenever one is able to determine valid values of M, e.g., 
based on problem-specific knowledge, then one should use the big-M approach. 
On the other hand, if one does not have such problem-specific knowledge, one 
really should not use the big-M approach. In this note, we showed that there is 
also no need anymore to use it: The SOS1 approach equipped with the discussed 
root-node inequalities lead to comparable results on our test set. Moreover, this 
extended SOS1 approach is also easy to implement and, especially in the light of 
the validity of the obtained results, the small amount of extra work is worth the 
effort. To sum up, we hope that these results will change the “best-practice” in 
applied linear bilevel optimization and thus will lead to more trustworthy results 
of bilevel models in OR applications.

Fig. 3  Performance profile of 
running times of the methods 
BigM-6-R and SOS1-R for the 
instances in I  that at least one 
method solves
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