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Abstract

Aquatic biomonitoring has become an essential task in Europe and many other regions

as a consequence of strong anthropogenic pressures affecting the health of lakes, rivers,

oceans and groundwater. A typical assessment of the environmental quality status, such

as it is required by European but also North American and other legislation, relies on

matching the composition of assemblages of organisms identified using morphological

criteria present in aquatic ecosystems to those expected in the absence of anthropo-

genic pressures. Through decade-long and difficult intercalibration exercises among

networks of regulators and scientists in European countries, a pragmatic biomonitoring

approach was developed and adopted, which now produces invaluable information.

Nonetheless, this approach is based on several hundred different protocols, making
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it susceptible to issues with comparability, scale and resolution. Furthermore, data

acquisition is often slow due to a lack of taxonomic experts for many taxa and regions

and time-consuming morphological identification of organisms. High-throughput

genetic screening methods such as (e)DNA metabarcoding have been proposed as

a possible solution to these shortcomings. Such “next-generation biomonitoring”, also

termed “biomonitoring 2.0”, has many advantages over the traditional approach in

terms of speed, comparability and costs. It also creates the potential to include new bio-

indicators and thereby further improves the assessment of aquatic ecosystem health.

However, several major conceptual and technological challenges still hinder its imple-

mentation into legal and regulatory frameworks. Academic scientists sometimes tend to

overlook legal or socioeconomic constraints, which regulators have to consider on a

regular basis. Moreover, quantification of species abundance or biomass remains a sig-

nificant bottleneck to releasing the full potential of these approaches. Here, we highlight

the main challenges for next-generation aquatic biomonitoring and outline principles

and good practices to address these with an emphasis on bridging traditional disciplin-

ary boundaries between academics, regulators, stakeholders and industry.

1. STATE AND FATE OF AQUATIC ECOSYSTEMS

The decline of biodiversity and ecosystem functioning in aquatic sys-

tems has direct effects on human well-being through alteration of ecosystem

services (Millennium Ecosystem Assessment, 2005; Mulder et al., 2015;

V€or€osmarty et al., 2010; WWF, 2016). It is caused by many human activ-

ities, in particular pollution, habitat degradation, flowmodification, overex-

ploitation and the spread of invasive species as well as the direct and indirect

effects of climate change (Dudgeon et al., 2006). To counteract the degra-

dation of aquatic ecosystems, various pieces of legislation and associated mit-

igation and restoration strategies have been put into place, ranging from

global initiatives such as the Convention on Biological Diversity (CBD,

1992), through European Union directives such as the Water Framework

Directive (WFD, Directive 2000/60/EC), the Marine Strategy Framework

Directive (MSFD, Directive 2008/56/EC), the Groundwater Directive

(GWD, Directive 2006/118/EC) or the Habitats Directive (Directive

92/43/EEC), to a multitude of national, regional (including transboundary)

and local programmes. All these require data on the condition of aquatic

ecosystems. In most cases, these data are not restricted to environmental var-

iables but also include biological data to measure ecosystem integrity and

health for rivers, lakes, wetlands, estuaries and oceans (Birk et al., 2012;

Borja et al., 2010, 2016; Hawkins et al., 2000). In a legal context, such assess-

ments are expected to be performed in a recurrent and standardised fashion
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across those states that ratified the legislation, so that baselines can be

established and responses to environmental change are consistent among

participants. The biomonitoring programmes for aquatic ecosystems range

from simple recording of presence (or abundance) of individual species to

sophisticated multilayer programmes involving multiple organismal groups,

often representing the result of many years of intense dialogue and regular

adjustments. But now, novel genetic tools are emerging, which could rev-

olutionise how we assess and document our environment and communicate

the results (Bohmann et al., 2014; Bourlat et al., 2013; Deiner et al., 2016;

Hajibabaei et al., 2011; Kermarrec et al., 2013; Taberlet et al., 2012;

Valentini et al., 2016; Vasselon et al., 2017a;Woodward et al., 2013). Some-

times termed “biomonitoring 2.0” (Baird and Hajibabaei, 2012; Woodward

et al., 2013) or “next-generation monitoring” (Bohan et al., 2017; Valentini

et al., 2016), these approaches are increasingly applied in academic studies

(Fig. 1). However, outside academia, they have yet to play a significant role

in local to large-scale formal bioassessment programmes. The only exception

are a few initiatives working on the detection of single rare/endangered or

Fig. 1 Growing number of almost exclusively academic genetic biomonitoring studies

as revealed by a web of science analysis. The search string “((“*monitoring” OR

“*assessment”) AND (“*water” OR “marine” OR “aquatic” OR “lake” OR “stream” OR

“ocean” OR “river” OR “catchment”) AND (“molecular” OR “genetic” OR “DNA”) AND

(“identif*” OR “characteri*” OR “*barcod*”) AND (“PCR” OR “NGS” OR “HTS” OR

“sequenc*”))” was applied on 02.01.2018. http://dnaqua.net.
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invasive alien species, such as the Great Crested Newt in the United King-

dom (Biggs et al., 2015), the Asian carp species in the Great Lakes (Jerde

et al., 2013) and programmes aimed at detecting invasive species in Switzer-

land (M€achler et al., 2014). The higher organisational levels of communities,

food webs and ecosystems have been largely ignored.

We argue that the current situation is not only the result of technical con-

straints but also largely due to the consequence of a substantial information

gap between academic and regulatory communities, in part driven by the

fear of difficult, complex and costly adaptations of well-established monitor-

ing programmes (Friberg et al., 2011). The tremendous progress made in the

past few years has largely gone unnoticed among a large user group due to a

communication gap between disjunct communities and as a consequence of

deeply rooted national traditions (Kelly et al., 2015). In fact, rigorous DNA-

based biomonitoring studies dealing with real monitoring data and questions

of intercalibration are still lacking: sustainable interdisciplinary networks

are clearly needed to identify and establish state-of-the-art biomonitoring

strategies, and to cover understudied yet important ecosystems such as

groundwater.

In this review, we (i) provide a brief introduction to the history of aquatic

biomonitoring programmes, (ii) highlight the main impacts of novel genetic

methods on aquatic ecosystem assessments, (iii) describe the key technolog-

ical and conceptual challenges preventing their use in biomonitoring

programmes to date and (iv) introduce the recently established DNAqua-

Net COST Action (European Cooperation in Science and Technology),

which aims to bridge the gap between science and application in using

DNA-based methods in biomonitoring.

2. ADVANCEMENT OF AQUATIC BIOMONITORING
WITH A FOCUS ON EUROPE

Aquatic biomonitoring can be dated back to at least the mid-19th cen-

tury. Between 1870 and 1930, marine and lake biological stations prolifer-

ated across Western Europe and North America (Bont, 2015; Egerton,

2014), forming an important, yet largely academic network to study marine

and freshwater biodiversity over time. However, these networks were typ-

ically restricted to one or a few ecosystems per country (Bont, 2015). Fur-

thermore, the approach to assess and study ecosystems varied greatly due to

the lack of regular interaction among researchers and practitioners in the

predigital information age. Aquatic biomonitoring in its strict sense of
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identifying changes in response to human pressures over time only started

in earnest in the early 20th century, when we learned that organic pollu-

tion of water bodies negatively impacted inland water ecosystems and

thereby affected human well-being (Butcher, 1946). One of the first bio-

assessment protocols to be applied was the Saprobic System for running

waters, an approach that dates back to the mid-19th century (widely

Cohn, 1853), although its use for rivers started in the early 20th century

(Kolkwitz and Marsson, 1902, 1908, 1909). More sophisticated measures

to quantify the condition of aquatic ecosystems were developed over the

following decades specifically to assess the degree of organic pollution by

using benthic invertebrates, as well as introducing bacteria, ciliates and dia-

toms as new indicator groups (Sládeček, 1965). Unfortunately, and partly

due to difficulties in peer-network communication, many of these

methods remained country-specific and there were few examples of larger

scale integration.

During the late 1960s, pollution in the United States became such a

problem that the CleanWater Act (CWA; United States, 1972), a milestone

of environmental legislation, was passed in 1972. The CWA requires each

US state to reach clearly defined water quality standards with respect to

chemical, physical and biological factors. Although there was a federal

law to control aquatic pollution, the CWA of 1972 can be regarded as a

starting point for worldwide national and international environmental

legislation.

Marine monitoring in a stricter sense started later than in freshwater

ecosystems, i.e. during the 1970s, when environmental degradation in

marine ecosystems became more apparent in a number of developed coun-

tries. Around that time, the theoretical basis of the response of marine com-

munities to human disturbance started to be better understood (Pearson and

Rosenberg, 1978): in the 1980s and 1990s, researchers used biomonitoring

data to develop well-defined numerical methods with the goal to detect and

reflect stress in those communities (Gray and Elliott, 2009). Their work

resulted in methods and indicators that went beyond the application of clas-

sical saproby-based indices (see Karr, 1991 for freshwater ecosystems) and

included primary (i.e. abundance, richness and biomass) and derived struc-

tural variables (i.e. diversity indices, abundance and biomass ratios and even-

ness indices) (e.g. Diaz et al., 2004; Gray and Elliott, 2009). This also

included a conceptual shift from “bioindication,” i.e., measuring the mag-

nitude of pollution using specific indicator taxa—to a more systemic

approach assessing ecosystem integrity.
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In Europe, the WFD and some of its more local precursors built on

these ideas as it pushed for the development of standardised protocols and

the use of multiple organismal groups to assess the ecological status of dif-

ferent biological elements. The WFD encouraged regulators to move away

from measuring and assessing the magnitude of individual stressors and

looked towards developing more integrated assessments of aquatic ecosys-

tems by identifying the disparity between the observed and the expected

status of a water body. At the core of the WFD-compliant assessment

methods lies the definition of type-specific reference condition, against

which the observed community is compared. This can be done either by

comparing the values of biotic metrics or alternatively through prediction

systems (Moss et al., 1987). Furthermore, the WFD stipulates which

organism groups are to be monitored for the individual aquatic ecosystem

types: i.e. phytoplankton, attached plants and algae, benthic invertebrates

and fish. At the end of the 1990s, and especially after 2000, a plethora of

methods, also metaphorically described as an “adaptive radiation of

assessment methods” (Kelly et al., 2015), were published and implemented,

often piecemeal, in European countries. Today, these add up to more

than 300 national methods for the WFD alone (Birk et al., 2012). In reality,

however, a larger subset of those are adaptations of more generally appli-

cable methods, which individual European countries favoured rather

than standardised Europe-wide methods, accounting for particular taxa,

stress combinations and river or lake types abundant and relevant to

their respective countries. Still, differences between countries with similar

water bodies may be regarded to some extent as a reflection of the

specific national traditions, rather than the sole result of scientific evidence

per se (Kelly et al., 2015). In essence, all these methods have similar targets:

(i) to quantify the environmental state and difference from reference

conditions, and (ii) to identify the causes of degradation as important

background information from which appropriate management measures

can be derived.

While the methods differ between aquatic ecosystem types, countries

and organismal groups (“biological quality elements”, BQEs), there are

broad similarities in the general steps of the assessment workflow and all

approaches rely on traditional morphological taxonomy. The typical six

steps of bioassessment programs are shown in Fig. 2. Step 1: Samples are

obtained from aquatic ecosystems using taxon-specific gear and methods

(e.g. kick-nets, plankton-samplers, electrofishing). Step 2: These samples

are processed in the field or lab and in Step 3 identified to the required
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Fig. 2 Overview of the typical workflow used in aquatic bioassessment (Steps 1–6, left;

boxes with green headers): (1) samples are collected in the field, usually independently

for each “biological quality element” (BQE), (2) sorted or subsampled in the lab, (3)
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or possible taxonomic level, which can be species (usually for fish, diatoms,

macrophytes and some cases for macroinvertebrates) or genus to family

level. The generated taxa lists are used in Step 4 for bioassessment, typically

calculating biotic indices. Here, the taxa lists are linked to information

on their ecological preferences using either taxonomic or functional

(i.e. bioecological traits) information (e.g. Schmidt-Kloiber and Hering,

2015) to calculate metrics. Those can either be used individually or in

combination (e.g. into multimetric indices), or via prediction systems that

just compare taxa lists to reference conditions without calculating indices

(Apoth�eloz-Perret-Gentil et al., 2017; Cordier et al., 2017). The results

are used in Step 5 to identify the ecological/environmental status (Borja

et al., 2012) by calculating the statistical distance of the observed values

from values expected in reference conditions (i.e. the “high” status). While

Steps 1–4 vary among countries, intercalibration procedures guaranteed

the comparability of the ecological status classes used in different countries.

Finally, in Step 6, the assessment results are used to inform management

decisions, in particular for water bodies not meeting the desired “good

ecological status”.

With respect to the classical workflow shown (Fig. 2), we argue that

next-generation aquatic biomonitoring based on genetic data could substan-

tially improve several of the six steps in bioassessment and contribute to a

better management of aquatic ecosystems.

identified using morphological traits of the BQEs to produce taxa lists. (4) The actual

assessment is performed using the taxa lists obtained and by comparing them to

expected communities for the water body type studied (horizontal lines), according

to “reference” conditions. (5) The assessment leads to an assignment of an ecological

quality class. (6) Assessment results are interpreted. In case of a greater than permitted

mismatch with reference conditions (e.g. less than “good” ecological quality status for

the WFD) appropriate measures have to be taken in order to improve ecological status.

Genetic data can be used in the process in different ways using either amplicon

(metabarcoding, middle column) or whole-genome shotgun sequencing (WGS) meta-

genomics data (right column). The data produced by both DNA-based approaches

can be used to query obtained Operational Taxonomic Units (OTUs) against reference

databases in order to produce taxa lists and continue with the traditional assessment

(without abundance data). However, it is also possible to avoid the assignment of

OTUs to Linnaean taxonomy but assign OTUs independent of their classification to

environmental conditions either using training data (supervised machine learning) or

through environmental correlations (unsupervised machine learning). Through this

approach, a much broader set of biota can be used to derive novel indices for environ-

mental assessment. http://dnaqua.net.
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3. A DNA-BASED NEXT GENERATION OF AQUATIC
BIOMONITORING?

3.1 Revolutions in Sequencing Technology Drive
Academic Progress

Today, we are witnessing a revolution in the field of genomics. The intro-

duction of new high-throughput sequencing (HTS) platforms allows for the

analysis and identification not only of individual specimens but also of whole

communities. High-throughput amplicon sequencing, commonly termed

DNA metabarcoding (Taberlet et al., 2012), is an example of how technol-

ogy initially developed for applications in the fields of medicine, forensics

and microbiology is now being adapted to advance environmental monitor-

ing (Staats et al., 2016). Today’s HTS machines such as Illumina’s NovaSeq

are capable of producing billions of sequences in a single run, making it pos-

sible to analyse hundreds of samples in parallel and to identify hundreds of

species per sample each. However, such an explosion challenges current ana-

lytical protocols due to the increase of computation load, and suggests that a

move towards high performance computing (HPC) could be relevant. The

number of academic studies that utilise high-throughput genetic bio-

assessment is increasing at an accelerating rate (Fig. 1). Perhaps unsurpris-

ingly, given the different logistical challenges involved in biomonitoring,

the first attempt to extend this academic work into applied biomonitoring

happened in Canada: The Canadian Aquatic Biomonitoring Network

(CABIN) has to monitor a huge number and a vast area of water bodies cov-

ering over 9million km2, with considerably fewer human resources and

more limited taxonomic baseline data than is the case for most European

countries. Consequently, in order to ensure sustainable monitoring of

Canada’s aquatic ecosystems, several different approaches using genetic

data have been suggested and are now in regular use (Baird and Hajibabaei,

2012; Gibson et al., 2015; Hajibabaei et al., 2011; Hajibabaei et al., 2016)

to improve speed, resolution, costs and comparability in cooperation between

CABIN and WWF (World Wildlife Fund).

3.2 Metabarcoding and Other Genetic Approaches for
Bioassessment

The methods proposed represent an extension to the classical DNA

barcoding approach (Hebert et al., 2003), moving from identifying single

specimens, where the question is “what species is this?”, to describing com-

munity composition of mixed taxon samples, where the question is “what

10 Florian Leese et al.
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species are there?”. These mixed samples can take various forms including

bulk invertebrate or biofilm samples (“biodiversity soup” sensu Yu et al.,

2012) and mixed-species DNA extracted from water or sediment

(¼environmental or “eDNA”). In short, eDNA or DNA of bulk samples

is extracted and subjected to one of a number of different molecular

approaches (see Fig. 3). DNA metabarcoding (Taberlet et al., 2012) prob-

ably represents the most widely tested and validated approach to date for

processing mixed taxon samples. Over the last decade, metabarcoding and

metagenomic studies have led to an enormous increase in the amount of

available genetic data for organisms, communities and habitats (e.g. Bik

et al., 2012; de Vargas et al., 2015; Elbrecht and Leese, 2017; Radom

Metagenomics

Whole-genome

sequencing

Mitogenomics

Mitogenome

enrichment

Marker Hybridisation

probesamplification

Targeted marker

Target captureMetabarcoding

Taxonomic resolution

Primer bias

Needed sequ. depth

Taxa missed

Biomass/abundance p/a only

Good

Good Good

Good Poorb

Poor

Fresh tissue neededConstraints

Poor

Mediumb,c

b Can use e.g. COI reference databases.a Without genomic references. c Reference genomes can be assembled de novo from HTS dataset.

Yes

Medium

Good Good Very good Very good

Low Low Very higha

~20% 20% ? 0% 0%

Maybe

Maybe No No

Maybe Maybe

Reference data

Method validation

Example

Macroinvertebrates

Fig. 3 The potential of different DNA-based approaches is currently being assessed for

application in biomonitoring programmes, as shown here for benthic macroinvertebrates.

All methods have different advantages and biases. To date, metabarcoding is a well vali-

dated method and has good reference databases. This makes this approach advantageous

for next-generation biomonitoring in the near future, whereas the other approaches need

further validation or other improvements but could be even more promising in the long

run. http://dnaqua.net, modified after Elbrecht, V., April 2017. Development of DNA metabar-

coding methods for stream ecosystem assessment. PhD Thesis, University of Duisburg-Essen.
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et al., 2012; Thomsen et al., 2012; Vasselon et al., 2017a) with most studies

comparing the performance of morphological and metabarcoding methods

for monitoring purposes (Couto et al., 2016; Elbrecht et al., 2017b;

Kermarrec et al., 2013; Lejzerowicz et al., 2015; Stoeckle et al., 2017;

Vasselon et al., 2017a; Vivien et al., 2015; Zimmermann et al., 2015). Avail-

able data suggest that in principle morphological- and metabarcoding-based

assessment systems are compatible and can even use the very same sampling

protocols. Community metabarcoding relies on PCR amplification using

“universal”, i.e., nonspecific primers and thus induces amplification bias

when the primers inevitably match some taxa better than others (Elbrecht

and Leese, 2015; Krehenwinkel et al., 2017). The use of hybridisation pro-

bes could potentially counteract this bias by allowing the targeted capture of

barcoding genes (Dowle et al., 2016; Shokralla et al., 2016), although biases

may still be introduced in hybridisation when too few probes for certain taxa

are available in the experimental setup (i.e. being saturated) or are not a good

match to the targeted taxa.

An alternative method to using specific probes or primers is to sequence

the extracted bulk DNA directly, without PCR (Zhou et al., 2013). These

metagenomics or mitochondrial metagenomics techniques (see, e.g.,

Crampton-Platt et al., 2016) omit the majority of problems associated with

PCR-based metabarcoding, i.e., the ability to perform direct quantitative

measures for certain taxa by hampering the relationship of sequence reads

and taxon biomass/abundance, and even the loss of some taxonomic groups

due to incompatible primer binding sites (Pinol et al., 2015). Such a meta-

genomic sequencing technique is well established for bacterial communities

(Tseng and Tang, 2014) and was recently applied to arthropods (e.g. Arribas

et al., 2016; Cicconardi et al., 2017). Enrichment of mitochondria is also

possible, reducing sequencing depth and thus lowering the costs per sample

(Macher et al., 2017). However, mitogenomes represent only a fraction of

the total DNA and metagenomic sequencing generally requires substantially

deeper sequencing than PCR-based approaches. Furthermore, for selected

genes such as COI that is widely used in sequencing studies of animals, good

reference databases are available, which is not yet true for complete

mitogenomes of aquatic organisms. At this point, the use of metabarcoding

with carefully designed and ecosystem-specific target-gene primer sets is

advisable: in vitro and in silico tests should be performed to validate the

applicability of the primer pair in the desired ecosystem (e.g. marine coastal

habitat, high alpine lake, lowland streams, etc.) and taxonomic context

(different ecosystems typically host different taxa) and to allow robust
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interpretations of genetic biomonitoring results. The newer PCR-free tech-

niques have huge potential, but have not been sufficiently validated yet and

lack proper reference data for deployment in routine monitoring schemes.

Once established, they could, however, be employed in the future to

reanalyse and “hindcast” archived DNA samples and provide additional

options for the analysis of DNA-based biomonitoring.

Another, more radical alternative to the taxonomy-based (metabarcoding

or metagenomics) approach could be the so-called taxonomy-free approach

(Apoth�eloz-Perret-Gentil et al., 2017; Cordier et al., 2017), founding ecolog-

ical assessments directly on genetic data as a proxy for communities without a

Linnaean assignment step (or taxonomy assigned only to higher taxonomic

levels such as phyla, orders or families) but simply using machine learning

algorithms to link presence of genetic entities with environmental factors

(see Fig. 2). Furthermore, extracting information on individual sequence var-

iants (i.e. all nonidentical DNA sequences, omitting the OTU clustering step)

from bulk metabarcoding datasets holds great potential for monitoring

(Callahan et al., 2017). With this approach, also changes in intraspecific

genetic diversity can be monitored (Amir et al., 2017; Callahan et al.,

2016; Eren et al., 2013). While these methods have successfully been applied

to identify sequence variants in microbial metabarcoding datasets, applying

them to macroinvertebrate bulk samples is more challenging because speci-

men biomasses often vary by several orders of magnitudes and sequence var-

iants of small specimens might go undetected because they are overshadowed

by sequences of biomass-rich specimens, especially if sequencing depths is too

shallow (but see Elbrecht et al., 2017a).

4. THE GRAND CHALLENGES FOR NEXT-GENERATION
AQUATIC BIOMONITORING

Current sample processing and taxonomic identification could

be shifted towards the use of modern HTS approaches, in particular

DNA metabarcoding. The traditional workflow could remain largely

unchanged, with DNA-based tools simply replacing morphological work,

which is still rooted in labour-intensive light microscopy (see Fig. 2).

Initial tests show similar results for both marine and freshwater bio-

monitoring (Aylagas et al., 2014; Elbrecht et al., 2017b; Lejzerowicz

et al., 2015), suggesting that a rather straightforward implementation into

the classical workflow may be achievable. However, a shift from tradi-

tional morphology-based assessments to DNA-based methods may be
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complicated by a range of issues related to technology, concept, perception

as well as economic and legal frameworks (see Fig. 4). These are discussed

in more detail below.

4.1 Genetic Data Cannot Deliver All Information Required
by Legislation

The WFD and MSFD explicitly state that in bioassessments “composition

and abundance” (Annex V and III, respectively) of BQEs need to be

accounted for. Until now, issues such as unequal biomass of multicellular

organisms and in particular primer bias greatly hamper the (current) ability

of metabarcoding to deliver abundance data for a wide range of indicator

taxa. Although several studies have shown that this bias can be reduced with

optimised and in silico evaluated primer combinations (Elbrecht and Leese,

2017) and that correction factors can be calculated under certain assumptions

(e.g. Krehenwinkel et al., 2017; Thomas et al., 2016), it is clear that

metabarcoding cannot deliver absolute abundance data for complex com-

munities of multicellular organisms (Elbrecht et al., 2017b). If primer bias

can be reduced or eliminated, e.g., through the use of PCR-free HTS

approaches, it may be possible to use mito-read number as a proxy for bio-

mass (Choo et al., 2017). This would be a major breakthrough for

Concept Technology

Economic and legal frameworkPerception

Unrepresentative sampling

New taxonomic/community information
(e.g. terrestrial eDNA, gut content)

Abundance/biomass/copy-number 
vs presence–absence data

New reference conditions

New metrics

New �units� to quantify biodiversity

New technical language

More complex/integrative settings

Costs

Knowledge transfer

Legislative requirements
(e.g. abundance data, intercalibration)

Sample/storage conditions
(e.g. preservation liquid, inhibitors)

Primer bias/PCR stochasticity

Misidentifications
(e.g. wrong references, shared barcodes) 

Reference database development

Noncorresponding taxonomy
(e.g. between reference list and results)

Fig. 4 The main challenges hindering the straightforward application of DNA-based

tools in aquatic biomonitoring. See text for further explanation. http://dnaqua.net.
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bioassessment options but also for novel ecological assessments, as more

direct links to food web structure, ecosystem processes and ecosystem ser-

vices. However, varying biomass within species and varying mitochondrial

copy number among cells, developmental stages, organisms and taxa mean

that the link with abundance will remain weak, particularly for samples that

contain a diverse assemblage of taxa or eDNA. In addition to hampering

inference of abundance measures, primer bias can cause important taxa to

be missed, particularly where a single set of primers is relied upon for analysis

of diverse assemblages. Subsampling options or site-occupancy approaches

might be options to quantify abundance. However, in terms of the current

bioassessment workflow, it is interesting to note that even after the omission

of a number of taxa due to their lack in reference databases, ecological status

assessments can be robust (Vasselon et al., 2017b), even if only presence–

absence data are used (Aylagas et al., 2014; Elbrecht et al., 2017a,b).

4.2 Adjusting the Reference Conditions

The “good ecological status” of the WFD and the “good environmental

status” of the MSFD require comparisons with undisturbed, and in the con-

text of the WFD, type-specific, reference conditions (Borja et al., 2012;

Hering et al., 2006). A substantial amount of work in the past two decades

has been invested into defining supposed reference conditions for a multi-

tude of water body types (when possible), and exploring how biotic com-

munities in degraded water bodies deviate from them. Current reference

conditions of water bodies (both reference taxa lists and reference metric

values) have been based on morphological identification methods and are

only considered valid if these methods are applied. Recent data indicate that

outcomes from DNA-based studies seem to be very compatible with

morphology-based assessments, but a shift to DNA-based tools comes with

both gains and losses. Metabarcoding typically retrieves taxa overlooked by

morphological analyses, particularly cryptic species, endoparasites, ingested

organisms or species that are represented by small, unidentifiable juvenile

states or sexes. In some cases, the number of taxa is quite high compared

to that found in morphological analysis, even when including biological rep-

licates and strict error filtering (e.g. Elbrecht et al., 2017b). Furthermore,

genetic analyses can miss several potentially important indicator taxa such

as nematodes that fail to amplify for the commonly used primers in the

PCR step (see below) and also simply due to the currently incomplete ref-

erence databases. Consequently, it will be important that any future
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inclusion of genetic tools is accompanied by the addition of DNA-based

descriptions of biotic communities at reference sites, and that the regular

update of reference conditions takes this aspect into account. Otherwise,

the finding of many more taxa with DNA-based approaches might bias

richness-based indices and report a water body as being systematically

(but inaccurately) better than would be the case with a traditional assessment.

This point requires careful assessment and planning and forms a central topic

of DNAqua-Net working groups (WG2 and 5, Fig. 5; see also Leese

et al., 2016).

Taxonomic information is an integral part of all current bioassessment

protocols. For pragmatic reasons (time/money constraints as well as identi-

fication problems) many focus on higher level taxonomy (typically genus or

family) because all or most of the members of the respective taxa are con-

sidered to indicate similar ecological conditions, following the phylogenetic

niche conservatism concept (e.g. Keck et al., 2016). According to this

concept, closely related species are assumed to possess similar ecological

characteristics and thus should indicate similar environmental conditions.

However, species within genera can differ markedly in their ecological

preferences and thus species-level resolution data sometimes provide more

precise ecological information, which should, in theory, improve ecosystem

health assessments (Macher et al., 2016; Schmidt-Kloiber and Nijboer,

2004). In principle, this may be especially relevant for assessments of biota

having (partly) arised from sympatric speciation processes where different

ecologies (ecological character displacement) rather than distinct distribu-

tions promoted diversification, e.g. plankton communities. Most frequently,

specimens are identified using morphological criteria, and the Linnaean

binomial nomenclature is used to query a database or software to retrieve

taxon-specific ecological information. Genetic markers could provide sim-

ilar or higher than species-level identification and thereby act as a link to

reference databases of OTUs in the same manner. Overviews of markers

and databases used are given in, e.g., Pawlowski et al. (2012) and Creer

et al. (2016). The application of DNA barcoding has been hampered by a

lack of reliable and comprehensive reference databases. This has been solved

for several taxonomic groups and regions through national and international

barcoding campaigns (see above). However, even now, there is no Euro-

pean or even global DNA barcode reference library for aquatic BQEs.

A first overview of aquatic BQEs for selected regions was prepared by mem-

bers of Working Group 1 of DNAqua-Net (Table 1; see Section 5). While

reference libraries are fairly comprehensive for freshwater and marine fishes
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as well as freshwater benthic macroinvertebrates, for major groups of Euro-

pean marine benthic macroinvertebrates, considerable compilation effort is

still needed, as even in major groups such as Annelida, Crustacea and

Mollusca (MZB) below 50% of the taxa relevant for routinemonitoring pos-

sess reference barcodes (Table 1). Reviewing available DNA barcode data

revealed that even in groups with relatively good species coverage, we still

Fig. 5 Traditional biomonitoring in practice (left; green) and ways to include DNA-based

methods (right; blue) into a “next-generation” programme for sustainable water-

resource management. The roles of DNAqua-Net’s five Working Groups (WG1–5) are

indicated. WG1: DNA barcode references; WG2: biotic indices and metrics; WG3: field

and lab protocols; WG4: data analysis and storage (HPC¼high-performance comput-

ing); WG5: implementation strategy and legal issues. Further, the international and

intersectoral DNAqua-Net consortium aims at developing novel genetic tools for bio-

assessment of aquatic ecosystems in Europe and beyond, thereby bridging countries,

disciplines, cultures (see Kelly et al., 2015) and generations. http://dnaqua.net.
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lack baseline information on local genetic variability, i.e., barcodes typically

come from a few campaigns conducted in a small subset of the range of a

given species and do not cover its genetic diversity. For example, almost

all fish species known to occur in Slovakia are represented by DNA

barcodes; however, only 4% of them are derived from samples actually col-

lected in Slovakia. The situation is similar for freshwater macroinvertebrates,

with only 2%–3% of all referenced species possessing barcodes from

Slovakian specimens. Bergsten et al. (2012) showed that geographical cove-

rage of sampling is important in order to correctly apply DNA barcoding

and, e.g., not split two geographically distinct population of the same species

into two different species. This highlights the need to support local

barcoding campaigns in order to ensure better coverage of species ranges

but also to link faunistic/floristic databases such as the Fauna Europaea

Table 1 Overview of COI DNA Barcode Data Available (Bold) and Missing (Italics) for

Formally Used Aquatic Animal Biological Quality Elements (BQEs) for Selected

Countries/Regions

Country

Macrozoobenthos (MZB) Fish

Freshwater Marine Freshwater Marine

Germany 611/79 (89%) 72/0

(100%)

Danube (JDS) 280/72 (80%) 62/4 (94%)

Luxembourga Genera: 95/61 (61%)

Families: 103/19 (84%)

35/0

(100%)

Norway 229/21 (92%) 311/70 (82%) 37/0

(100%)

Europe 1119/1406

(44%)b
544/86

(86%)c
1188/306

(80%)d

Slovakia 982/883 (53%) 65/4 (94%)

aReference list for MZB is based on family-, subfamily- and/or genus-level entries only. Coverage is
given for family- and genus-level entries based on the checklist function implemented in BOLD
(as on 02.01.2018).
bChecklist generated from AMBI’s species list, including all Annelida, Crustacea and Mollusca species
reported for Europe (excluding Barents Sea and Black Sea). All available DNA barcodes, including u-
nreviewed, unpublished data and specimens collected outside European marine regions.
cBased on all available DNA barcodes from the FREDIE consortium (www.fredie.eu) including yet
unpublished data, including 21 extinct and 44 alien species.
dBased on ERMS checklist, only Actinopterygii, Elasmobranchii and Holocephali. All available DNA
barcodes, including unreviewed, unpublished data and specimens collected outside European marine
regions.
Percent coverage in the Barcode of Life Data Systems (BOLD) in parenthesis.
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(https://fauna-eu.org) to DNA barcode databases, as otherwise the uncer-

tainty of identification can increase with the growing data available

(Bergsten et al., 2012).

For diatoms, the chloroplast marker rbcL is used for barcoding. How-

ever, the taxonomic coverage is still very sparse due to the complications

associated with isolating and culturing species prior to barcoding (Rimet

et al., 2016). For example, 1437 taxa are reported on the German red list

(Lange-Bertalot and Steindorf, 1996). Of these, however, only 19.5% are

available in a barcode reference library (Zimmermann J., personal commu-

nication). For Slovakia, the freshwater diatoms reference list used for WFD

implementation includes 853 taxa (species/subspecies). Out of them 156

(18%) possess records in the Barcode of Life Data System (BOLD), but only

four species (<0.5%) have a barcode. For Sweden, 1317 taxa are on the offi-

cial diatom taxa list, for which only 13% and 16% (rbcL and 18S barcode

marker, respectively) are represented by reference barcode data (M. Kahlert,

personal communication). In France, for the 600 more common diatom

species, only 140 (23.3%) have an rbcL barcode (A. Bouchez, personal com-

munication). However, the increasing quantity of HTS sequences obtained

from environmental diatom samples may be efficiently used to fuel current

databases (Rimet et al., 2018). Rimet et al. (2018) show that it is possible to

link hitherto unidentified barcodes fromHTS output to Linnaean binomials

using phylogenetic tools with high certainty as long as certain criteria are met

(e.g. low diversity diatom assemblages and relatively high frequency of target

organism in both HTS output and corresponding light microscopical

analysis).

While many national barcoding campaigns have contributed substantial

amounts of sequence data, coverage remains spatially fragmented, taxonom-

ically incomplete and disconnected from available autecological trait data-

bases. Recent studies (Elbrecht et al., 2017b; Vasselon et al., 2017a) have

documented high proportions of taxa that were identified using morpholog-

ical traits but not found in the genetic analyses of the bulk samples (30% for

freshwater macroinvertebrates and 68% for diatoms). This can to some

extent be attributed to a lack of available reference barcodes (especially

for diatoms), as only those taxa that have a corresponding record in the data-

base can be detected and assigned with genetic methods. Other factors that

may contribute to these differences include misidentifications and primer

bias. In order to improve both speed and robustness for DNA-based assess-

ment, skilled taxonomists are needed to fill those gaps, since precision of

assessment increases with the number of taxa assigned unequivocally
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(Haase et al., 2010; Rosser, 2017; Schmidt-Kloiber andNijboer, 2004; Stein

et al., 2014).

Another reason to embed expert taxonomists in the process of develop-

ing a next-generation biomonitoring concept is the fact that species names

(or species hypotheses), especially among more cryptic taxa, are often

dynamic entities under constant revision and therefore subject to change.

Many species are still being lumped, split, synonymised or transferred

between higher taxonomic levels and many monitoring lists use rather out-

dated taxonomy as they are not updated regularly. This is the case for WFD

assessments using phytoplankton, for instance, where analysts often use iden-

tification keys written in the 1970s, which do not follow the current taxon-

omy of microalgae. Current literature on microalgae taxonomy now

integrates DNA data and electron microscopy observations to delimit spe-

cies boundaries. Such features are of little use in determinations based on

light microscopy. Other organism groups have cryptic or nearly cryptic spe-

cies that are difficult to distinguish using light microscopy (e.g. J€orger and

Schr€odl, 2013; Lin et al., 2017). Simple comparisons of taxa lists used by

managers with DNA reference databases without questioning data validity

can lead to gross underestimates of availability and coverage of available

DNA barcode references, because the species names listed in the manager’s

lists might be outdated and not connected to the most current taxonomic

classification used in the reference database, or vice versa. For instance, a

gap analysis for fish species used for biomonitoring in Luxembourg utilising

BOLD’s checklist function revealed several taxa with no available DNA

barcode reference data (Weigand A.M., unpublished data). However, after

updating the taxonomy of the WFD-relevant taxa list and including a syn-

onomy list in BOLD, the coverage increased from 86% to 100%. The oppo-

site is also possible: a straightforward comparison of the marine European

fish species against the DNA barcode reference library entries revealed

that 39% of species had ambiguous DNA barcode references associated.

However, this amount decreased to only 13% after critical revision of

the records’ incongruences (Oliveira et al., 2016). About 60% of the

detected mismatches resulted from syntax errors, synonyms, mislabelling

and contamination.

Another conceptual challenge with respect to barcode-based species

assessment is that different barcodes do not necessarily represent different

species and vice versa, identical barcodes may include more than one species

(e.g. Bergsten et al., 2012). Hence, reference data revision and curation as

well as the inference of biological trait data are much needed and, ideally,
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should result from the coordinated efforts of taxonomists, ecologists, genet-

icists and database managers (Ekrem et al., 2007). Linking and promoting

taxonomic research through the network is one of the central goals of

DNAqua-Net. Our strategy is to collaborate with the Consortium of Euro-

pean Taxonomic Facilities (CETAF, http://www.cetaf.org) together with

the international Barcode of Life project (iBOL, http://www.ibol.org) and

national barcoding campaigns.

4.3 Stressor–Biodiversity Relationships

Even once we have standardised our baseline reference data, we will need to

understand how these deviate from the desired state under environmental

stress. At present, we still do not fully understand many of the details in

stressor–biodiversity responses, especially when considering biodiversity

responses from the level of genes through to community-level and related

functional aspects. Stressors often co-occur in natural systems in space

and/or time and the response of biota to them is not necessarily simple or

linear as they may interact in antagonistic, synergistic and additive ways,

generating “ecological surprises” (Hering et al., 2015; Jackson et al.,

2016a; Townsend et al., 2008). The next generation of biomonitoring

programmes will not necessarily solve these problems, but they could make

important steps towards that goal given their ability to generate a far more

comprehensive range of OTUs or even individual genotypes and hence

response variables that could act in more nuanced ways than is the case with

the coarse traditional methods currently in use (Jackson et al., 2016b;

Macher et al., 2016). The role of genetic data is key as they (i) can diminish

taxonomic uncertainty, (ii) provide information on additional taxa (such as

bacterial or protist communities) and ecosystems, not currently included

into traditional monitoring programmes, and (iii) deliver information on

ecosystem functions, which may be affected more directly by multiple

stressors. In times of increasing human impacts on ecosystems and climate

change, this task will require large-scale coordinated research projects over

the coming decades.

4.4 Technological Progress Hampers Continuity and Demands
Standardisation

In Section 3, we highlighted the currently explored methods for DNA-

based biomonitoring and it became obvious that some are quite advan-

ced (metabarcoding), whereas others are still at the developmental stage
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(hybridisation techniques, metagenomics). This makes it difficult at the

moment to provide clear guidance to regulators on which method to use.

The EU’s WFD, as a major piece of legislation with direct relevance to

DNAqua-Net, is due to have a revision of procedures in 2019. Thus, con-

sultations on revisions and amendments as well as decisions on which steps to

include in the next monitoring cycle need to happen soon. Therefore, the

rather exploratory approaches using target capture and metagenomics seem

to be an inappropriate strategy to propose at the moment, compared to the

relatively robust species presence–absence estimates provided by DNA

metabarcoding. However, what is now exploratory might soon become

standard. Therefore, revisions need to accommodate the possibility of

new and powerful tools becoming available, despite current limitations. It

may thus be more important to consider and develop Quality Assurance/

Quality Control (QA/QC) measures as well as intercalibration with previ-

ous approaches for any new DNA-based method to be used in bio-

monitoring rather than recommending specific tools and protocols. This

could include the use of standardised, artificially added DNAof well-defined

(yet unknown to the analyst) “mock communities” (i.e. combination of

species-specific DNA isolates in the laboratory to design artificial commu-

nities for test purpose). TheDNAor even complete samples can be routinely

processed alongside real samples as internal quality checks, as well as ring tests

and proficiency tests as external checks on the performance of laboratories.

As a first example of its use in this field, proficiency testing was introduced

for eDNA detection of the Great Crested Newt in the United Kingdom in

2017. The choice of methods to implement and evaluate novel DNA-based

approaches in biomonitoring is open to debate, and a mutual understanding

of their capacities, benefits and pitfalls is important. An understanding of

legal frameworks will be necessary to inform these decisions. Moreover,

it is also important to consider trade-offs in practicality and cost-effectiveness

of the available approaches that will allowDNA-based monitoring to be car-

ried out routinely by nonacademics in a robust and replicable manner. For

example, it may not be realistic to propose a method that requires samples to

be immediately transported to the laboratory on ice as the majority of field

ecologists will not have access to the necessary resources and facilities for

this. The question of promoting a possibility of routine processing with

QA/QC for data analysis (bioinformatic pipelines) should be addressed as

well, taking care of accessibility, versioning and repeatability of the selected

bioinformatic filtering.
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4.5 Costs and Accessibility: A Janus-Headed Debate?

At this point, European monitoring is in a difficult situation: traditional bio-

monitoring approaches are—after more than a decade of testing and

negotiations—in place and thus regulators and water managers have little

interest in changing these established protocols (Friberg et al., 2011). Imple-

mentation of the WFD is already very complex to conduct and stability is

desired. Intercalibration procedures have been implemented with some suc-

cess and so have quality standards for many countries outside the EU

(Poikane et al., 2014). As the success of the traditional biomonitoring

workflow (Fig. 2) does not rely on sophisticated technological devices

but rather on trained personnel, the process chain works in all European

countries independently of their technological or economic development.

However, in some EU countries with extended monitoring networks, both

policy makers and water managers see the possibility that new DNA-based

approaches may save money, as they could reduce the costs of labour-

intensive species identifications substantially. This holds true in particular

for countries in which labour costs are high compared to sequencing costs

and where sequencing technologies and labs are readily available. Here it

becomes important to offset labour costs by making theoretical and meth-

odological knowledge available to all countries.

We also see a need for new funding streams for research on bio-

monitoring data acquisition using both traditional and novel methods in a

period of “handshaking” between the new and old technologies. This would

allow researchers and practitioners to explore how best to exploit genetic

methods without sacrificing backward-compatibility, which is a major bot-

tleneck from a regulatory perspective in the context of WFD and MSFD.

However, stakeholders and regulators often view such studies as R&D activ-

ities that should not be funded by their budget, making their full engagement

with academic programmes challenging. While there are notable exceptions

such as the funding of the German Barcode of Life II phase (“Bridging sci-

ence and application gap”, funded by the German Federal Ministry of Edu-

cation and Research) and the WFD morphological identification vs

environmental DNA comparison on the island of Mayotte (where the

WFD applies) by the French ONEMA-AFB (Vasselon et al., 2017a), inter-

national funding or transnational programmes for such studies in the

“borderland” (sensu Kelly et al., 2015) between research and management

are of central importance. Many of the challenges we have highlighted are

now being addressed by networks of working groups (see Fig. 5) mostly
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using individual, institutional, national or European research funds, and

other research groups elsewhere in the world (Hajibabaei et al., 2016).

One of the intended outputs is a streamlined array of good-practice strategies

from sampling to assessment, but further international programmes of

research funding agencies will need to prioritise cross-method comparisons

to take these forward into a legally robust, backward-compatible toolkit

ready for future monitoring programmes starting after the end-points

of MSFD and WFD in 2020 and 2027, respectively. Genetic tools

hold the promise to make aquatic biomonitoring better, cheaper (but see

Section 4.5) and more reliable (or, at least, as reliable for a comparable cost),

but the support mechanisms to develop them across sectors and countries

need to be implemented as soon as possible to ensure early adoption

of good-practice approaches.

4.6 The Importance of Transdisciplinary Dialogue

It has never been an easy task to link science, industry, decision making and

practice, especially due to different motivations and organisational mecha-

nisms that govern these sectors, but also because of the insular traditions that

kept them “independent” from each other (Friberg et al., 2011). As a result,

dissemination strategies are most often focussing on single sectors, and rarely

cross their borders. This may explain why despite significant progress in aca-

demic development and application of molecular tools for bioassessment

(see sections above), it appears that there is still limited immediate demand

for biomonitoring 2.0 by regulatory agencies and little awareness in the

general public. At the same time, and from a policy maker’s and water man-

ager’s perspective, there is increased acknowledgement that scientific find-

ings and recommendations on practical aspects such as biomonitoring must

be communicated and disseminated outside existing research networks, if

scientists want these methods to become attractive more rapidly beyond

the strictly academic sphere (Mea et al., 2016). Most large-scale research

funding now has to show effective dissemination and exploitation strategies

for communicating project activities and results to external stakeholders,

enterprises and the general public, thereby linking academic and public sec-

tors (Elliott et al., 2017). Despite these tasks being seemingly straightfor-

ward and intuitive, as well as a required deliverable from grant funding,

they are embedded within formal academic training, so the urgent need

for filling these knowledge gaps is still largely unrecognised outside

academia.
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Communication of new approaches and methods in next-generation

biomonitoring needs to primarily target policy makers and water managers

at the water basin scale, explaining the efficiency, cost-effectiveness and

compatibility of the new approaches. However, the public also needs to

be aware of and therefore informed on the potential benefits of these

methods for environmental protection and management. There is still a long

way to go, as even an established intersectoral communication strategy does

not automatically lead to implementation of the new methods, especially

since it also needs an appropriately skilled workforce. Globally, it is now

an important task to find ways to efficiently inform users and providers of

routine biomonitoring of new genetic techniques (even at a basic but unified

level), for example, by using Massive Open Online Courses (MOOCs) or

sharing tutorials on this topic, which could for instance be disseminated by

high-level authorities coordinating biomonitoring implementation, or lead-

ing national agencies involved in routine biomonitoring (Lowndes et al.,

2017). Fostering an informed start-up environment among the upcoming

generation of monitoring specialists may better link to industry. Here, aca-

demia plays a central role as it should provide training via specialised master

courses, PhDs and postdocs.

5. THE AIM OF DNAqua-Net

All of these challenges and opportunities for developing the next gen-

eration of aquatic biomonitoring provided the impetus for the EU COST

ActionDNAqua-Net (CA15219), established in November 2016 under the

COST (Co-Operation in Science and Technology) programme. The prin-

cipal goal of the network that runs until October 2020 is to connect the

relevant actors working on aquatic biomonitoring and DNA-based tool

development to develop concepts and a roadmap for the application of

new genetic tools in aquatic bioassessment programmes in Europe and

beyond (Leese et al., 2016; see http://DNAqua.Net). The international

consortium consists of 39 countries of the expanded European Union

(i.e. EU member states, near neighbour countries and Israel) and eight

international partner countries (i.e. Australia, Brazil, Canada, Iran, New

Zealand, Russia, United States of America and Uruguay), represented by

�370 participants one year after the network launch. DNAqua-Net’s five

working groups (WGs in Fig. 4) are targeting the further development

and curation of aquatic DNA barcode reference libraries (WG1), the
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adjustment and development of (ecogenomic) biotic indices and metrics

(WG2), the optimisation, development and evaluation of field and lab pro-

tocols for DNA-based biomonitoring (WG3), the storage and analysis of

“big biodiversity data” (WG4) and the legal implementation and other rel-

evant legislative issues (WG5). The main idea is to connect people and

expertise and not to fund primary research. Furthermore, there is a strong

focus on the integration of stakeholders from the outset and the promotion

of early-career investigators to develop the human resource capacity

needed for the next generation for researchers and practitioners. Since

August 2017, �10% of all participants are active stakeholders and 35% of

the management committee are junior researchers. Moreover, several small

and medium enterprises represented in the consortium, or people working

in private structures for the collection of the biodiversity data further foster

knowledge transfer from academia into practice, e.g., by training schools

that are organised (e.g. 2018 on DNA-based biomonitoring for the fourth

Joint Danube Survey, JDS4). A further step towards inclusion of a broader

academic and nonacademic audience is the establishment of specialised

forums explicitly addressing regulator needs, such as the open access Meta-

barcoding and Metagenomics journal (Leese et al., 2017) launched by

DNAqua-Netmembers and Pensoft (Ltd.) with specific article formats such

as applied studies (e.g. Theissinger et al., 2018), biomonitoring schemes,

primer/probe validation for bioassessment (e.g. Vamos et al., 2017) and

DNA barcode reference libraries. Moreover, recommendations of DNA-

qua-Net Working Groups will be made public via announcements on the

website (http://DNAqua.Net), publications in relevant stakeholder and

water manager journals (e.g. Leese et al., 2017), during stakeholder meet-

ings and workshops (e.g. Norman-Network meeting 2017, Joint Danube

Survey meeting 2017, Rhine Commission meeting 2017) or by special

invitations to targeted conferences (DNAqua-Net conference in March

2017, Essen, Germany) or via special sessions (e.g. 10th European Sympo-

sium for Freshwater Sciences, Czech Republic and 7th International Bar-

code of Life Conference, South Africa), to raise awareness for the

importance of upgraded bioassessment schemes. In particular, water-

resource management stakeholders will profit from information generated

in DNAqua-Net and will be targeted via suitable channels, e.g., (i) specific

journals addressing the audience involved in all sorts of water related issues

(e.g. Leese et al., 2017), (ii) workshops and (iii) specialised dissemination

materials.
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5.1 Networks Among Countries, Across Generations
and Disciplines

In some countries not bound by EU legislation, in particular in southeast

Europe, budget limitations as well as the lack of support by stakeholders

favour temporally restricted studies over standardised and continuous

(bio)surveillance. When considering the development of the next genera-

tion of genetic biomonitoring tools, an obvious challenge is the unequal

access of countries to information and technology. Advanced genomic ana-

lyses (e.g. HTS) are still underutilised in developing countries with low

R&D spending due to insufficient national funding, limited access to inter-

national grants, newest biotechnological infrastructures and training

programmes, up-to-date literature and high costs of licensed analysis tools

(Helmy et al., 2016). Network programmes such as the COST Action

DNAqua-Net are of vital importance in building permanent cooperation

platforms to help overcome knowledge or framework gaps between coun-

tries and to develop harmonised transnational approaches to common bio-

monitoring issues. The diversity of countries participating in DNAqua-Net

ranges from those with strong government–stakeholders–academia links to

those that are far less research intensive (i.e. inclusiveness target countries;

ITCs). This provides added value in form of combining different experi-

ences and practices and gives participants that would otherwise be excluded

access to these emerging technologies. While this has little disadvantages to

countries with strong research infrastructure, it has significant advantages to

the less research-intensive ITCs. Capacity building in the field of bio-

monitoring in ITCs is further enhanced through short-term scientific mis-

sions implemented within COST programmes that offer a possibility to

early-career investigators from ITCs to gain practical experience in a given

field of action, to increase their visibility in the broader scientific community

and to establish international cooperation networks. In the year 2017,

10 such multinational exchange programmes have been successfully con-

ducted during the launch phase of DNAqua-Net. DNAqua-Net has non-

European countries (Canada, USA) as partners in the network and as official

“Management Committee observers” included from the very beginning.

Other non-European countries have since then joined in, making

DNAqua-Net a global network to develop DNA-based biomonitoring con-

cepts for aquatic ecosystems.

Integration of the novel DNA-based or other advanced tools into cur-

rent and future bioassessment workflows requires strong and sustained
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interdisciplinary dialogue among academics, regulators and industry, espe-

cially since the technological advancement is fast. Collaborative networks

planning to distil and funnel scientific progress into the current regulatory

framework must therefore offer to participate in the implementation pro-

cess, taking into account potential inertia at the national and regional levels

of organisation. In Europe, the creation of such networks is currently fos-

tered by, e.g., large international COSTActions and the Joint Programming

Initiative knowledge hubs. In the context of aquatic bioassessment in

Europe, facilitation of uptake of new methods requires dialogue with the

relevant organisations of the regulatory framework (e.g. ECOSTAT for

the WFD and Directorate-General for the Environment, http://ec.

europa.eu/dgs/environment/). Thus, interdisciplinary networks such as

the COST Action DNAqua-Net and also Joint Programming Initiative

knowledge hubs link academics with regulators, industry and policy makers

but are short-lived in terms of funding and infrastructure (i.e. 4 years for

COST Actions and typically 3 years for Joint Programming Initiative

knowledge hubs). Another prerequisite for the uptake of novel methods

is that these become mature enough to be processed by the European Com-

mittee for Standardization (CEN, http://www.cen.eu), either into stan-

dards or through the modification of existing standards. Since method

integration into European standards is a slow and separate process, it usually

extends beyond the lifespan of ongoing scientific networks dedicated to this

subject. Therefore, networks can often only lay the foundation for future

consideration of mature methods into standards and update into legal

frameworks such as the European Directives. However, in the case of

DNAqua-Net, network members and members of CEN Working Group

2 of Technical Committee 230 on “Biological methods” have agreed upon

the need for a new permanent CEN working group that will pursue aquatic

DNA-based method standardisation in the future.

6. NEXT-GENERATION BIOMONITORING OPENS
NEW DOORS

Aside from the advantages that new methods offer to current bio-

monitoring programmes, there are additional potentially ground-breaking

opportunities: the amount and type of data will allow researchers to address

fundamental ecological questions in unprecedented ways. Many of the core

questions in ecology are still centred around how many and which species

coexist in given ecosystems, how they shape ecosystem processes and what

are the spatial and temporal scales of these dynamics. To date most
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experimental ecological work has focussed on small scales and short time

spans, while many of the major questions related to large scales and long time

spans have been left unanswered. Such formerly data-restricted research is

now being transformed and “big data”, as opposed to too little data, are

the growing challenge that will face the next generations of ecologists

(Keck et al., 2017). Metabarcoding and metagenomics, potentially in com-

bination with remote sensing and new machine learning/“big data” algo-

rithms, offer novel ways of providing new and fundamental insight into

ecological dynamics from local to global scales and across organisational

levels (Bohan et al., 2017; Bush et al., 2017). For example, DNA-based

methods were recently used to show that remarkably similar ecosystem

functions can be observed irrespective of high taxonomic turnover in bac-

terial and archaeal community composition in the “miniature aquatic

ecosystems” maintained in bromeliad plants (Louca et al., 2016). Another

recent example shows that multitrophic diversity scales highly nonlinearly

across space (Schuldt et al., 2015), and yet another shows how gene-to-

ecosystem impacts of a pesticide spill can be traced through from individual

functional genes to the entire food web (Andújar et al., 2017). One of the

most fascinating prospects is the potential use of sequence data to reconstruct

complete food webs and species associations (Bohan et al., 2017; Morueta-

Holme et al., 2016; Roslin and Majaneva, 2016) and to measure as well as

forecast ecosystem processes by linking them to the measured expression of

functional genes (Jackson et al., 2016b). An important step towards this goal

is to stratify sampling campaigns at orders of magnitudes higher (across space

and time) than in the past, as opposed to only aiming to maximise the tax-

onomic resolution and speed as part of the available sampling and monitor-

ing campaigns. Thereby, an involvement of scientists early on in the

planning of applied (e)DNA studies is crucial to maximise these potential

synergies, especially as many ecologists are still unaware of the full potential

of these tools, and the molecular scientists may likewise not appreciate the

bigger questions that can be asked using their approaches. In addition, eco-

logical concepts and models will increasingly need to be adapted in ways that

allow the use of nontraditional abundance/biomass estimates (Choo et al.,

2017) or even presence/absence data, at least until the issue of molecular

based quantification of these parameters has been resolved. It now seems

inevitable that ecology will make huge leaps forward with respect to predict-

ability and causality, in ways that are comparable to the rate and scale of

advancements made in climate science over recent decades. A central goal

ofDNAqua-Net and parallel research programmes is to stimulate such a pro-

cess and connect research and applied communities alike.
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