
The University of Manchester Research

Why workflows break — understanding and combating
decay in Taverna workflows
DOI:
10.1109/eScience.2012.6404482

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Zhao, J., Gomez-perez, J. M., Belhajjame, K., Klyne, G., Garcia-cuesta, E., Garrido, A., Hettne, K., Roos, M., De
Roure, D., & Goble, C. (2012). Why workflows break — understanding and combating decay in Taverna workflows.
1-9. Paper presented at 2012 IEEE 8th International Conference on E-Science (e-Science).
https://doi.org/10.1109/eScience.2012.6404482
Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:23. Aug. 2022

https://doi.org/10.1109/eScience.2012.6404482
https://www.research.manchester.ac.uk/portal/en/publications/why-workflows-break--understanding-and-combating-decay-in-taverna-workflows(cba81ca4-e92c-408e-8442-383d1f15fcdf).html
/portal/carole.goble.html
https://www.research.manchester.ac.uk/portal/en/publications/why-workflows-break--understanding-and-combating-decay-in-taverna-workflows(cba81ca4-e92c-408e-8442-383d1f15fcdf).html
https://doi.org/10.1109/eScience.2012.6404482


Why Workflows Break - Understanding and
Combating Decay in Taverna Workflows

Jun Zhao∗, Jose Manuel Gomez-Perez†, Khalid Belhajjame‡, Graham Klyne∗, Esteban Garcia-Cuesta†

Aleix Garrido†, Kristina Hettne¶, Marco Roos¶, David De Roure‖, Carole Goble‡
∗Department of Zoology, University of Oxford, Oxford, UK {jun.zhao, graham.klyne}@zoo.ox.ac.uk

†iSOCO, Madrid, Spain {jmgomez, egarcia, agarrido}@isoco.com
‡School of Computer Science, University of Manchester, Manchester, UK

khalidb@cs.manchester.ac.uk, carole.goble@manchester.ac.uk
§Leiden University Medical Centre, Leiden, NL {k.m.hettne, m.roos}@lumc.nl

‖Oxford e-Research Center, University of Oxford, Oxford, UK david.deroure@oerc.ox.ac.uk

Abstract—Workflows provide a popular means for preserving
scientific methods by explicitly encoding their process. However,
some of them are subject to a decay in their ability to be re-
executed or reproduce the same results over time, largely due to
the volatility of the resources required for workflow executions.
This paper provides an analysis of the root causes of workflow
decay based on an empirical study of a collection of Taverna
workflows from the myExperiment repository. Although our
analysis was based on a specific type of workflow, the outcomes
and methodology should be applicable to workflows from other
systems, at least those whose executions also rely largely on
accessing third-party resources. Based on our understanding
about decay we recommend a minimal set of auxiliary resources
to be preserved together with the workflows as an aggregation
object and provide a software tool for end-users to create such
aggregations and to assess their completeness.

I. INTRODUCTION

We have witnessed in the last 10 years an increased uptake
of workflows as the technology of choice for computational
scientific experiments [16]. A workflow experiment is com-
posed of a set of coordinated computational tasks. Each task
takes some data inputs and produces some data outputs, which
are consumed by subsequent tasks according to the workflow
definition. As well as providing the means for automating
scientific experiments, workflows have their own scientific
value: they capture experimental methods designed by the
scientists to test a given hypothesis, confirm a known fact,
amongst other things. Hence workflows play an important role
as a medium for sharing, exchanging and reusing experimental
methods, as demonstrated by existing workflow repositories,
such as myExperiment [14] and crowdLabs [27].

Resources required for executing workflows, like services
and data, can be either local and hosted along with the work-
flow or remote, such as public repositories or web services
hosted by third parties. Over time these workflows, particularly
those from the life sciences domain, are notably subject to
a decayed or reduced ability to be executed or produce the
same results [32]. This is what we call workflow decay. Sci-
entific communities cannot fully benefit from the potential of
computational workflows until the problem of workflow decay
is addressed. Our analysis with the myExperiment workflow

repository shows that a good proportion of its workflows do
suffer from decay, which decreases their value. But what are
the causes of workflow decay, and how can we detect, prevent
and cure it?

To address the above questions, we manually re-executed a
sample collection of workflows written for the widely used
Taverna workflow workbench [31] from the myExperiment
repository in order to identify the causes of their decay.
Taverna workflows are a good example for this study because
they are particularly vulnerable to decay due to third party
dependencies. Although our analysis was based on a specific
workflow system, the results and methodology should be
applicable to workflows from other systems, many of which
commonly require access to third-party resources, or sufficient
documentation for successful execution. We identify the main
causes of workflow decay and the impact they have on
workflow execution or the reproducibility of results, and we
draw a classification of these decay causes.

Our analysis of decay also shows that a minimal set of
information elements can be preserved together with work-
flows in order to reduce their decay over time. To test
our understanding of combating workflow decay, we have
implemented software tooling (RO-Manager) to construct and
evaluate aggregations of workflows and the minimal set of aux-
iliary information. The resulting aggregations are represented
as Research Objects (RO) [5].

In the rest of the paper we begin by reviewing existing
proposals in Section II. We then motivate the need for ad-
dressing the problem of workflow decay in Section III and
present our analysis and classification of the causes of decay
in Section IV. We show that it is possible to identify a minimal
set of information to be aggregated with a workflow to address
some of the problems of decay. We present an outline of our
approach in Section V and our implementation in Section VI.
We validate our solution by a case study (in Section VII).
Finally, Section VIII concludes the paper by outlining our main
contributions and ongoing work.



II. RELATED WORK

Our discussion covers two areas: approaches for repairing
workflow decay and modelling aggregation structure.

The problem of workflow decay is recogised as an impedi-
ment to the reuse of workflows and the reproducibility of their
results [16]. Yet, we observe only a handful of approaches
attempting to address the problem of workflow decay, with
most of them focusing on repairing the decay. In this paper,
we do not aim to present yet another technique for repairing
workflow decay, rather we aim to identify the root causes that
may yield decay in a workflow, and propose the elements
that if combined with the workflow will facilitate its repair
or prevent its decay in the future. Information used by the
existing repair techniques, such as provenance information,
could provide valuable inputs to extend our proposal. The
existing repair approaches can be classified into the following
three categories:

• Repair by service substitution: Our empirical study shows
that a lot of workflow decay is caused by the unavail-
ability of third-party web services that are required for
the execution of workflows. Therefore, an effective repair
technique could be replacing unavailable services with
suitable substitutes. This has been investigated in our pre-
vious work [4], [6], in which semantic annotations of web
services and/or provenance traces of previous executions
of workflows were exploited to identify suitable substitute
services. Similarly, Calore et al. [9] proposed using
string-based similarity measures to search for substitute
web services by comparing their annotations with those
of the unavailable web services.

• Repair by adaptation: Lee et al. [25] proposed adaptation
techniques that can be applied to react to changes in
the execution environment of the workflow. Although
their original objective is to improve the performance of
workflow, the techniques are potentially applicable to the
problem of workflow decay. The workflow abstraction
layer proposed by Gil et al. [16] also provides the desired
flexibility for workflows to adapt to changes.

• Repair by provenance support: Sometimes unavailable
services can neither be substituted nor repaired. Prove-
nance information can be useful to explain failures and
to enable appropriate repairs, by tracing what changes
to the components of a workflow led to this incapability
of replicating [10], [13], [23]. Additionally, provenance
information can also be used to run the workflow using
previous states of the underlying data sources, thereby
guaranteeing the reproducibility of the workflow re-
sults [24]

Approaches like Virtual Machines have also been ex-
ploited [34] to preserve runtime environment to cope with
changes. However, they do not currently support preservation
of the distributed environment in which execution occurs, such
as client-server models or calling remote services which may
be third party. Workflows share many properties with software,
such as the composition of components with external depen-

dencies. Hence some aspects of software preservation [28] are
applicable and should be further investigated.

Research Objects were conceived to extend traditional pub-
lication mechanisms [3]) and take us “beyond the pdf” [7] by
aggregating essential resources related to experiment results
along with publications. This includes not only the data used
but also methods applied to produce and analyse that data.
The notion of using aggregation to promote reproducibility
and accessibility of research has been studied in many other
work, including the Open Archives Initiation Object Reuse
and Exchange Specification (OAI-ORE, or ORE [1]), the
Scientific Publication Packages (SPP) [22], and the Scientific
Knowledge Objects [18]. Nano-publication [20] is another
approach of supporting accessible research by publishing key
results of an investigation as succinct, tripartite statements.
The RO model has a workflow-centric dimension, providing
modules to describe a workflow experiment (such as the
processors used or the data parameters processed) as well as
provenance traces of its executions. These workflow-centric
ROs are aimed to support particularly the reproducibility and
reuse of workflow-based experiments [19]. This is closely
related to packs from myExperiment [30], which aggregate
elements such as workflows, documents and datasets together,
following Web 2.0 and Linked Data principles. The RO model
is built upon myExperiment packs, but it has a more dedicated
representation of workflows and provenance.

In order to enhance the trustworthiness of these ROs we
associate them with a list of explicitly defined requirements
that they must satisfy and we use this list to evaluate their
completeness, i.e. the quality of the ROs. This is built upon
the idea of the (Minimum Information Model) MIM model
by Gamble et al. [15], which provides an encoding of these
requirements using the standard Web Ontology Language
(OWL)1 and makes use of existing OWL reasoning software
to validate data against these checklists.

III. MOTIVATION: THE DECAY OF A WORKFLOW

To illustrate the needs for preserving scientific workflows,
we use an example workflow which is part of the workflow
from a myExperiment pack2. The workflow is used to extract
a list of common Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways3 for genes from two related studies. It
is illustrated in Figure 1. The workflow starts by issuing,
in parallel, two queries to the KEGG database: the first
retrieves pathways found for genes in a special chromosome
previously identified being related to a studied disease, and the
second extracts pathways for genes differentially expressed in
a local microarray study. The pathways returned from the two
searches are then compared to identify common pathways by
a locally hosted web service. By identifying pathways that are
common to both studies, a more informative picture can be
obtained of the candidate processes involved in the expression
of a phenotype.

1http://www.w3.org/2004/OWL/
2http://www.myexperiment.org/packs/55.html
3http://www.genome.jp/kegg/



Fig. 1. Identifying intersecting pathways.

The content of the KEGG database is subject to regular
updates, and the implementation of the web service for iden-
tifying common pathways was locally hosted by the PhD
student who initially performed the study. Thus it is possible,
and likely, that when we re-ran the workflow it would produce
different lists of pathways. Should the KEGG database alter its
interface then the workflow might no longer be able to access
it and it will become inoperable, and there is no guarantee of
continued availability of the web service hosted by the PhD
student.

Such volatility of third party resources, including the
databases, web services, and persons involved in the experi-
ments, lead to the decay of workflows, which is a fundamental
challenge for preserving their reusability and reproducibility.
The symptoms are common but the consequences are severe.
Workflows are perceived as an effective preservation of sci-
entific methods by transparently documenting the process of
an experiment. A failure to ensure their longevity will impair
scientists’ trust in results whose methods can no longer be run
or reproduced.

The above analysis shows that to combat decay it is not
enough to just preserve the workflow; we must also make
a suite of auxiliary information available together with the
workflow. To know what these auxiliary information could be,
we must have a more comprehensive understanding about the
causes of the decay. Therefore, we took a bottom-up approach
by analysing a selection of myExperiment workflows to gather
actual possible causes of their failure, as presented in the
following section.

IV. A CLASSIFICATION OF CAUSES TO WORKFLOW DECAY

In this section we present our analysis of concrete causes
of workflow decay and a classification of these causes4. We
chose Taverna workflows because this is the largest available
workflow collection (more than half of the workflows in
myExperiment are Taverna workflows at the time of writing)
and Taverna workflows have been published on myExperiment
since its launch in 2007, therefore providing a good insight
into decay over those years. Although in this paper we focus
on a particular family of workflows, we expect our approach
and analysis to be applicable to many others and our analysis
to be repeatable on a different corpus of workflows.

92 Taverna workflows were chosen from myExperiment,
including an equal number of Taverna 1 [31] and Taverna
2 [29] workflows. To base our analysis on a sample of
workflows that is representative of the set of workflows in
myExperiment, we tried to select workflows by three criteria:

4All related experiment data can be downloaded in our research object that
is available at http://purl.org/NET/wf4ever/ro/ro-decay-paper.

1) the year they were created, 2) the creator of the workflows;
and 3) the domain studied by the workflows. Figures 3-6 in
Appendix IX illustrate the features of our workflow corpus. We
believe that the decay of workflow could be directly impacted
by the year they were created, hence we tried to make an
even coverage of T1/T2 workflows between the years 2007
and 2012. In order to reduce possible bias introduced by the
specific workflow creators, we avoided choosing workflows
created by the same person in the same year. Our workflow
selection also had a good coverage of domains, covering
18 different scientific (such as life sciences, astronomy, or
cheminformatics) and non-scientific domains (such as testing
of Grid services).

Some previous work has performed analysis of the whole
myExperiment repository in order to understand the usage
patterns of workflows [26], [35]. A complete analysis of
myExperiment repository is not the goal of our study, rather
we focused on understanding the concrete causes of workflow
decay by choosing a sufficiently representative corpus from
myExperiment.

To identify the causes of decay that these workflows may
suffer from, we attempted to execute them using the Taverna
2.3 workbench. We then manually examined their results,
diagnosed broken links, etc. Our analysis showed that nearly
80% of the tested workflows failed to be either executed or
produce the same results (if testable), and those from earlier
years (2007-2009) had more than 80% failure rate (as shown
in our Figures 7-8 in Appendix IX). The causes of workflow
decay can be classified into four categories, as presented in
the following.

A. Volatile third-party Resources

Most of the workflows that we analysed make use of third-
party resources such as web services and databases, e.g., the
KEGG services used in our example workflow provided by
the Data Bank of Japan. The provision of such resources may
be interrupted or changed, causing failure of the workflow
to execute. In certain cases, the workflow cannot be run,
even when the third party resources that it relies on are
available, e.g., when such resources require authentication.
Another cause that may lead to workflow decay, is changes to
third party resources. For example, if the web service provider
decides to change the implementation of the web service, then
the workflow execution may not deliver the same results, or
worse, it may not be possible to execute . Table I summarises
these causes of decay with concrete examples.

B. Missing example data

It is not always obvious which data can be used as inputs
to the workflow execution, and example inputs are often
most helpful. Example outputs can also be useful to gain
an insight of the outcome anticipated from the workflow.
However, our analysis revealed that they are not always made
available. Provenance traces of previous runs are also useful
as indications of where example data may be found.



TABLE I
CATEGORISATION OF DECAY CAUSED BY THIRD-PARTY RESOURCES

Causes Refined causes Examples
Third party
resources are
not available

Underlying dataset, partic-
ularly those locally hosted
in-house dataset, is no
longer available

Researcher hosting the
data changed institution,
server is no longer
available

Services are deprecated (DNA Data Bank of Japan)
DDBJ web services are
not longer provided de-
spite the fact that they are
used in many myExperi-
ment workflows

Third party
resources
are available
but not
accessible

Data is available but iden-
tified using different IDs
that the one known to the
user

Due to scalability reasons
the input data is super-
seded by new one mak-
ing the workflow not exe-
cutable or providing wrong
results

Data is available but per-
mission, certificate, or net-
work to access it is needed

Cannot get the input,
which is a security token
that can only be obtained
by a registered user of
ChemiSpider

Services are available but
need permission, certifi-
cate, or network to access
and invoke them

The security policies of the
execution framework are
updated due to new host-
ing institution rules

Third party
resources
have changed

Services are still available
by using the same identi-
fiers but their functionality
have changed

The web services are up-
dated intentionally or un-
intentionally (e.g.malware)
providing wrong results

C. Missing execution environment

The execution of a workflow may rely on a particular local
execution environment, for example, a local R server or a
specific version of workflow execution software. Some of
our test workflows exhibit this type of decay. Taverna often
provides sufficient information about missing libraries, and
sometimes workflow descriptions provide a warning about the
requirement for a specific library. This type of decay appears
to be fixable by installing the missing software, albeit requiring
some effort.

D. Insufficient descriptions about workflows

Sometimes a workflow workbench cannot provide sufficient
information about what caused the failure of a workflow run.
Additional descriptions in the workflow can play an important
role in assisting re-users to understand the purpose of the
workflow and its expected outcomes.

E. Summary

The results of our analysis are summarised in Figure 9 in
Appendix IV, which illustrates the number of workflows that
suffer from each of the causes of decay presented above. It
shows that 50% workflows suffer from decay due to third party
resources. However, we might draw a different conclusion if a
bigger corpus or a different collection of workflows are used.
Examining the causes of decay due to third party resources,
we observed the unavailability of third party resources as the
leading cause, followed by their inaccessibility, and service
changes (see Figure 10 in Appendix IV).

Informed by this analysis, Table II illustrates the set of
minimal information that we believe should be preserved

TABLE II
INFORMATION ELEMENTS REQUIRED FOR SPECIFIC TASKS OF COMBATING

WORKFLOW DECAY.
Causes Increase runnability Assess replicability
Missing
third-party
resources

example inputs+local copy
of third-party resources

example inputs+outputs+
local copy of third-party
resources

Inaccessible
third-party
resources

example inputs+auxiliary
descriptions about key vul-
nerable resources

example inputs+outputs+
local copy of third-party
resources

Updates of
third-party
resources

example inputs example inputs+outputs+
snapshots of third-party re-
sources

Missing ex-
ample data

example inputs example inputs and out-
puts

Missing exe-
cution envi-
ronment

example inputs+necessary
execution libraries

example inputs+outputs+
necessary execution
libraries

Incomplete
metadata

example inputs+detailed
metadata descriptions

example inputs+outputs+
detailed metadata descrip-
tions

along with a workflow for two specific aspects of combating
workflow decay: 1) guaranteeing the rerunning of a workflow;
and 2) assessing the ability of a workflow to replicate pre-
vious results. This table was created based on our hands-on
experience of attempting to repair failed workflows during our
empirical study. Different approaches might require a different
set of information from our proposal, but the structure of the
table lays out a landscape for any future investigation.

From the table we identify that although a different set
of information could be required for the two specific tasks,
a small set of common information can provide a minimal
starting-point. For example, to assess the replicability of a
workflow, we must at least preserve the information about
previous outputs to assess whether replication was indeed
achieved. We could recommend to scientists that these minimal
sets of information be preserved along with their workflows,
in order to increase their repeatability and reproducibility.

Furthermore, Table II also suggests a need to support
customising this minimal list of requirements for specific
workflows that might be associated with components subject to
different decay causes. For example, we identify that although
example inputs are commonly required for running a workflow,
snapshots of third-party services or databases can also be
required by some workflows to replicate previous results.

V. APPROACH

Based on our analysis we apply an approach of bundling the
preserved workflow together with the auxiliary information for
mitigating its decay. The resulting aggregation is a Research
Object. How much supporting information is enough informa-
tion? It may be that one can never have enough information,
which gives rise to a notion of completeness that must be
considered with respect to some purpose or goal.

Our decay analysis identifies a minimal set of information
to support the goal of reducing workflow decay. To confirm
that an RO is complete in its provision of this information
we adopt a checklist-based approach. Checklists are a well-
established tool for guiding practices to ensure safety, quality
and consistency in the conduct of complex operations [11],



[21]. More recently, they have been adopted by the biological
research community to promote consistency and comparability
across research datasets [33], in the form of minimum informa-
tion guidelines. Here we apply checklists to review and quality
evaluation of ROs. In the following we introduce the RO model
used to represent the aggregation object, and the Minim model
for representing the minimal requirement checklists.

A. RO Model and Manifest

The RO model is an aggregation structure for collecting
information about the mechanics and context of an exper-
iment, including workflow description, data and supporting
information, in order to facilitate the reuse and reproducibility
of the experiment [3]. The structure of an RO is described in a
manifest file. A manifest file to describe an RO for our example
workflow (Figure 1) includes the following information:

• References to the various resources aggregated by the
RO, e.g., the workflow file and the input and output data
used in its previous run. These aggregated resources can
either be resources on the web that are referred to in the
manifest file or stored physically within an RO.

• Annotations about the RO and its aggregated resources,
such as the creator of a workflow, when it was created,
or indication of a specific library required to execute
the workflow. These annotations are mainly structured
information, expressed using the W3C standard Resource
Description Framework (RDF)5 data format.

The RO model is implemented as a suite of lightweight
ontologies using OWL, and makes use of existing community
vocabularies. Its aggregation structure is based on the Object
Reuse and Exchange (ORE) vocabulary [1] and its expression
of annotations to its aggregated resources is based on the
Annotation Ontology (AO) [12].

B. Checklists for RO completeness

To evaluate the completeness of an RO we need to express
them in a way to allow for machine evaluation and reporting.
We use the Minim data model6, which is a customised version
of the aforementioned MIM model.

The MIM model [15] is inspired by the Minimum Infor-
mation for Biological and Biomedical Information (MIBBI)-
style minimum information models [33]. It represents the
requirements that the data is required to satisfy in a knowledge
representation language (OWL) and uses information about the
data provided in a machine-readable format (RDF). Evaluation
of the conformance of some test data against the MIM require-
ments is performed using existing OWL reasoning software.

The Minim model used in our approach is an evolution of the
MIM model that trades the theoretical elegance of evaluation
using OWL reasoning for flexibility to introduce ad hoc testing
capabilities that are not limited to examination of available
RDF data, and which can, in principle, invoke arbitrary probes
of local and web-accessible resources. Figure 2 provides a

5http://www.w3.org/RDF/
6http://purl.org/minim/

schematic view of the Minim model. As with MIM, a Minim
checklist enumerates a set of requirements to be satisfied. It
differs from MIM in the following key respects:

• An explicit expression of Constraints (or Goals): Dif-
ferent models may be provided for different purposes;
e.g. the requirements for reviewing an experiment may
be different from those for a workflow to be runnable.
Constraints are a basis for selecting a model (checklist)
to use, corresponding to the purpose of a given evaluation.

• An extended expression of Requirements: these follow
the MIM idea, but are extended to cover more than just
the presence of certain information about an experiment.
For example, we may wish to test not only that a suitable
reference to input data is provided by an RO, but also that
the data is live (accessible), or that its contents match a
given value (integrity).

• An introduction of Rules: for requirements that go
beyond testing for availability of certain information,
we replace the OWL-based definition of reports with
a system of rules, each of which invokes a checklist
primitive testing operation (see Section VI).

minim:Constraint e.g. "Runnable"minim:forPurpose

minim:Model

Resourceminim:onResource

minim:toModel

minim:Requirement

minim:hasMustRequirement
minim:hasShouldRequirement
minim:hasMayRequirement

minim:Rule
minim:isDerivedBy

minim:SoftwareEnvironmentRule

minim:DataRequirementRule

minim:ContentMatchRequirementRule

minim:derives

... etc ...

Fig. 2. An overview of the Minim model.

VI. IMPLEMENTATION

In this section we describe our implementation of the
RO model and Minim checklist evaluation in a user-facing
command-line tool, RO-Manager.

A. RO-Manager

RO-Manager7 is a command-line tool that supports the
creation, manipulation and evaluation of an RO in a local file
system directory structure. It supports bundling of information
into an RO to aid workflow preservation, and evaluating the
completeness of the RO against a checklist. The evaluation
component has also been implemented as a REST service API.

B. Checklist evaluation
The evaluation component can evaluate an RO against a

specified checklist, taking account of the state of any web
resources referenced, and provide an indication of whether the
RO is (still) fit for purpose. The tool takes an RO, including its
manifest, a Minim description of one or more checklists, and a
purpose that the RO is assessed against. The indicated purpose

7RO-Manager is on Github: https://github.com/wf4ever/ro-manager



is used to select a checklist from those available, against which
the RO is evaluated to produce an evaluation report. Here is a
simple example checklist expressed using RDF Turtle8 format
following the Minim model:

<#runnable_RO_model> a minim:Model ;
rdfs:label "Runnable RO" ;
minim:hasMustRequirement
<#isPresent/workflow-instance>,
<#isPresent/workflow-inputfiles> ,
<#isPresent/workflow-inputportnames> .

For our KEGG pathway example (Figure 1), this amounts to
requiring the following must be present, which are the minimal
set of information required for the workflow to be runnable:

• A Taverna workflow description file;
• All the input files (chromosome name, start position, end

position) required for the gene search;
• Workflow process port names for each of the input files.
Each of these requirements are actually derived (reported)

through invocation of a checklist primitive, described in the
following section.

C. Checklist requirements and primitives

The checklist entries are high-level requirements to be
satisfied, each of which invokes a checklist primitive test. So
far we have identified and implemented the following high
level requirements:

• Evaluate the presence of a particular type of resource:
e.g., is a particular type of resource (e.g. a workflow de-
scription) aggregated by the RO? Are all the input values
present? Is provenance information about a workflow run
available?

• Evaluate the accessibility of a particular type of resource:
e.g., are all workflow descriptions accessible? Are any
input files associated with a workflow actually accessible?

• Evaluate of the presence of dependency between ROs:
e.g., does one RO have a dependency on another RO?
Does an RO depend on another RO that does not meet
some quality criteria? Does an RO depend on another RO
whose publication has been retracted?

Each of the above requirements can be implemented as
one or more checklist primitives. The choice of checklist
primitives is intended to allow a range of requirement tests to
be performed using a relatively small number of re-purposable
primitives. New primitives can be added as required by
modifying the RO Manager evaluation software. So far the
following primitives have been designed and implemented
based on the above checklist functions:

• assess the presence of a particular resource in an RO,
using SPARQL ASK and/or SELECT queries, e.g. are
any scripts or programs used by a workflow aggregated
by an RO?.

• assess the liveness (accessibility) of a resource aggregated
in an RO. This can test for existence of a local file, or
accessibility of an external web resource, depending on

8http://www.w3.org/TR/turtle/

the form of reference used in the RO; e.g., are the inputs
for a workflow instance available?

• assess the availability of a certain program in the software
environment by executing a command and matching the
response against a supplied regular expression; e.g., is
Python version 2.6 or greater installed?

VII. PRESERVING WORKFLOWS IN PRACTICE

The main goal of our experiment is to assess the effective-
ness of our checklist and minim approach to reduce workflow
decay. For this we used a collection of ROs that we created
using existing myExperiment packs. Specifically, we used
the RO Manager tool to create the ROs from myExperiment
packs and its checklist component to assess their completeness
for two specific purposes: workflow runnability and result
replicability.

Note that there is a sizable number of packs in myExperi-
ment. However, our previous investigation shows that only a
small proportion of them are actually created for preserving
workflows from decay9; the rest are mainly used for either
sharing knowledge, by creating a collection of documents and
papers, or for self-curation, with little information to make the
workflow (re-)usable. Based on this investigation we identified,
for our analyses, 4 packs (pack 55, 58, 217, and 219), from
the ∼100 Taverna workflows used in our decay study, as our
candidate ROs, described in Table III.

The transformation, whereby a myExperiment pack was
converted into an RO, was implemented by the RO Manager
tool. The purpose of the transformation was not to produce a
complete mapping between myExperiment packs and the RO
model, which is out of the scope of this work. On the contrary,
we transformed just-enough content into the corresponding RO
representation for our evaluation, and added additional files
required for our completeness evaluation.

A. Workflow runnability

According to the analysis result shown in Table II (Sec-
tion III), the minimal information set required for re-running
workflows from a particular RO includes: i) a workflow file,
and ii) input data for running the workflow. For the workflow
runnability test, we needed to add two additional components
to the RO:

1) A workflow experiment description, which uses the
RO ontology to describe the processes and data used by
the preserved workflow, which indicates samples of all
the data required to run the workflow.

2) A Minim description file in RDF, to prescribe what
constraints must be satisfied by the RO in order to enable
workflow execution.

At the moment both files have to be manually created, but
we envisage automating this operation. Table IV summarises
the test result for our resulting ROs. 2 out of 4 passed our
runnability test: all the ROs included the must-have workflow
templates, but only 2 of them included the input data value

9http://www.wf4ever-project.org/wiki/display/docs/myExperiment+Pack+Analysis



TABLE III
SUMMARY OF THE PACKS USED FOR THE CASE STUDY.

Pack Domain No. of workflows Example inputs Example outputs Example provenance traces
55 Genomics 3 n/a Yes n/a
58 Genomics 1 n/a n/a n/a

217 Data from the Time
Series Data Library

2 As annotations in the workflow As screenshots n/a

219 Geography 3 No inputs were required As screenshots n/a

required for running the workflow. The assessment report of
the ROs that failed the test (packs 55 and 58) clearly showed
that their failure was due to the missing inputs.

However, passing the runnability test does not guarantee
that the workflows can indeed be run. Our checklist defines
the minimial requirements for a workflow to be runnable. In
fact, when we tried to actually execute these workflows, none
of them could be run straightforwardly using the information
included in the packs/ROs, as summarised in Table IV.

TABLE IV
SUMMARY OF THE RUNNABILITY TEST RESULTS.

RO Runnability
test

Runnable Decay cause

55 Failed,
but fixed

No, only after we recov-
ered the input data from
the publication

Missing example
data

58 Failed No, services are no
longer accessible

Inaccessible/Unavailable
third-party
resources &
Insufficient workflow
descriptions

217 Passed No, but after we updated
the scripts to process the
updated data resources

Updates of third-
party resources

219 Passed Not completely, missing a
local R library setting up

Missing execution
environment

This shows that apart from the minimal set of information
(workflow description and input data), individual workflows
would really benefit from the preservation of additional infor-
mation in order to deal with the specific type of decay, for
example, the additional dependent libraries or sample output
data.

B. Result replicability

The goal of our replicability test is to evaluate whether
the RO contains sufficient information for assessing result
replication has been achieved. Therefore, the minimal set of
information that must be included in a test RO should include
i) the information required for running an RO, as shown above,
and ii) the outputs from a previous run. Therefore, in order
to enable the replicability test, we need to add one more
requirement to the Minim description files, which specifies
that all the output data values of the preserved workflow must
be bundled or referenced from within the RO.

Our replicable test results (summarised in Table V) showed
that 3 of the ROs passed the replicability test. The RO for pack
58 is not runnable at all and contains neither input nor output
data values. Of the ROs that passed the tests, we tested their
actual replicability by running them. Our results showed that
none of them managed to exactly produce the original results,
as summarised in Table V.

TABLE V
SUMMARY OF THE REPLICABILITY TEST RESULTS.

RO Replicability
test

Replicability Decay cause

55 Passed No, not able to find the
exact input data & pro-
duced different outputs

Missing example
data & Insufficient
workflow
descriptions

58 Failed Workflow is not runnable Inaccessible/Unavailable
third-party
resources &
Insufficient workflow
descriptions

217 Passed No, produced a more up-
dated citation record

Updates of third-
party resources

219 Passed No, produced more up-
dated weather forecast
and not able to produce
another part of the result
due to missing R library

Updates of third-
party resources

C. Summary

Our experiment shows that the minimal set of information
is not sufficient for guaranteeing the actual runnability or
replicability of our test workflows. An additional, customised
set of information is needed, to support the specific needs,
such as the requirement for the R library. However, our
checklist tool did enable us to guarantee the completeness of
an RO against an identified list of requirements and its report
provided sufficient details for us to understand the causes of
their failures. The size of our test sample, although small,
allow us to assess the usefulness of our checklist. That said,
creating a bigger corpus of ROs to evaluate our approach is a
major part of our future work.

VIII. CONCLUSION

Decay is one of the main impediments to workflow reuse
and to the reproducibility of workflow results. In this paper,
we identified and characterised some causes of decay. Rather
than speculating on the causes, we grounded our analysis
upon an empirical study whereby we analysed real scientific
workflows from the myExperiment repository. Our resulting
decay classification allowed us to elaborate a concrete and
pragmatic solution for mitigating workflow decay. Specifically,
we proposed a framework that assists workflow publishers
in identifying and bundling up the information necessary
to prevent and help repairing workflow decay. As well as
catering for minimal decay requirements, the framework that
we propose provides means for assessing the quality of
the bundle. Furthermore, such a framework is extensible; it
allows designers to specify requirements that are particular
to their workflows and the environment of their execution.
Our approach is, to our knowledge, the first that provides a



comprehensive understanding of workflow decay starting from
the sources that causes the decay to a practical solution that
enables decay to be addressed.

In our study, we have focused on Taverna workflows.
However, we believe that our results are applicable to other
scientific workflow systems, whose workflows are also com-
posed of steps that rely on third party resources. To assess the
degree to which this hypothesis holds in practice, we envisage,
as part of our future work, to re-run our decay analysis using
an expanded corpus of workflows, using Taverna workflows
as well as workflows from other scientific workflow systems,
such as Kepler [2], VisTrails [8] or Wings [17].

ACKNOWLEDGMENT

The research reported in this paper is supported by the
EU Wf4Ever project (270129) funded under EU FP7 (ICT-
2009.4.1).

REFERENCES

[1] Open archives initiative object reuse and exchange, 2008.
[2] I. Altintas, O. Barney, and E. Jaeger-Frank. Provenance collection

support in the kepler scientific workflow system. Provenance and
annotation of data, pages 118–132, 2006.

[3] S. Bechhofer, I. Buchan, D. De Roure, P. Missier, J. Ainsworth, J. Bha-
gat, P. Couch, D. Cruickshank, M. Delderfield, I. Dunlop, M. Gamble,
D. Michaelides, S. Owen, D. Newman, S. Sufi, and C. Goble. Why
linked data is not enough for scientists. Future Generation Computer
Systems, 2011.

[4] Khalid Belhajjame. Semantic replaceability of escience web services.
In eScience, pages 449–456. IEEE Computer Society, 2007.

[5] Khalid Belhajjame, Oscar Corcho, Daniel Garijo, Jun Zhao, Paolo
Missier, David Newman, Raul Palma, Sean Bechhofer, Esteban Garc
Cuesta, Jose Manuel Gomez-Perez, Graham Klyne, Kevin Page,
Marco Roos, Jose Enrique Ruiz, Stian Soiland-Reyes, Lourdes Verdes-
Montenegro, David De Roure, and Carole A. Goble. Workflow-
centric research objects: First class citizens in scholarly discourse. In
Proceeding of SePublica2012, pages 1–12, 2012.

[6] Khalid Belhajjame, Carole A. Goble, Stian Soiland-Reyes, and David De
Roure. Fostering scientific workflow preservation through discovery of
substitute services. In eScience, pages 97–104. IEEE Computer Society,
2011.

[7] P.E. Bourne, T. Clark, R. Dale, A. De Waard, I. Herman, E. Hovy,
D. Shotton, et al. Improving future research communication and e-
scholarship: a summary of findings— macquarie university researchon-
line. 2012. http://force11.org/white paper.

[8] S.P. Callahan, J. Freire, E. Santos, C.E. Scheidegger, C.T. Silva, and H.T.
Vo. Vistrails: visualization meets data management. In Proceedings of
the 2006 ACM SIGMOD international conference on Management of
data, pages 745–747. ACM, 2006.

[9] F. Calore, D. Lombardi, Enrico Mussi, Pierluigi Plebani, and Barbara
Pernici. Retrieving substitute services using semantic annotations: A
foodshop case study. In Business Process Management Workshops.
Springer, 2007.

[10] Z. Chen and L. Moreau. Implementation and evaluation of a protocol for
recording process documentation in the presence of failures. Provenance
and Annotation of Data and Processes, pages 92–105, 2008.

[11] S. Chin, K. Kim, and Y.S. Kim. A process-based quality management
information system. Automation in Construction, 13(2):241–259, 2004.

[12] P. Ciccarese, M. Ocana, L.J. Garcia Castro, S. Das, and T. Clark. An
open annotation ontology for science on web 3.0. J Biomed Semantics,
2(Suppl 2):S4, 2011.

[13] D. Crawl and I. Altintas. A provenance-based fault tolerance mechanism
for scientific workflows. Provenance and Annotation of Data and
Processes, pages 152–159, 2008.

[14] D. De Roure, C. Goble, and R. Stevens. The design and realisation
of the myexperiment virtual research environment for social sharing of
workflows. Future Generation Computer Systems, 25:561–567, 2009.

[15] M. Gamble, C. Goble, G. Klyne, and J. Zhao. Mim: A minimum
information model vocabulary and framework for scientific linked data.
2012. in submission.

[16] Yolanda Gil, Ewa Deelman, Mark H. Ellisman, Thomas Fahringer, Ge-
offrey Fox, Dennis Gannon, Carole A. Goble, Miron Livny, Luc Moreau,
and Jim Myers. Examining the challenges of scientific workflows. IEEE
Computer, 40(12):24–32, 2007.

[17] Yolanda Gil, Varun Ratnakar, Jihie Kim, Pedro Antonio Gonzalez-
Calero, Paul Groth, Joshua Moody, and Ewa Deelman. Wings: Intelligent
workflow-based design of computational experiments. IEEE Intelligent
Systems, 26(1), 2011.

[18] F. Giunchiglia and R. ChenuAbente. Scientific knowledge objects v. 1.
Technical report, Technical Report DISI-09-006, University of Trento,
2009.

[19] Carole A. Goble, David De Roure, and Sean Bechhofer. Accelerating
scientists’ knowledge turns. In Proceedings of The 3rd international
IC3K joint conference on Knowledge Discovery, Knowledge Engineering
and Knowledge Management., 2012. in press.

[20] P. Groth, A. Gibson, and J. Velterop. The anatomy of a nanopublication.
Information Services and Use, 30(1):51–56, 2010.

[21] B.M. Hales and P.J. Pronovost. The checklist–a tool for error manage-
ment and performance improvement. Journal of critical care, 21(3):231–
235, 2006.

[22] J. Hunter. Scientific publication packages–a selective approach to the
communication and archival of scientific output. International Journal
of Digital Curation, 1(1):33–52, 2008.

[23] S. Köhler, S. Riddle, D. Zinn, T. McPhillips, and B. Ludäscher. Im-
proving workflow fault tolerance through provenance-based recovery.
In SSDBM, pages 207–224. Springer, 2011.

[24] D. Koop, E. Santos, P. Mates, H.T. Vo, P. Bonnet, B. Bauer, B. Surer,
M. Troyer, D.N. Williams, J.E. Tohline, et al. A provenance-based
infrastructure to support the life cycle of executable papers. Procedia
CS, 4:648–657, 2011.

[25] Kevin Lee, Rizos Sakellariou, Norman W. Paton, and Alvaro A. A.
Fernandes. Workflow adaptation as an autonomic computing problem.
In Proceedings of the 2nd workshop on Workflows in support of large-
scale science, WORKS ’07, pages 29–34, New York, NY, USA, 2007.
ACM.

[26] R. Littauer, K. Ram, B. Ludäscher, W. Michener, and R. Koskela. Trends
in use of scientific workflows: Insights from a public repository and
recommendations for best practices. In The Seventh International Digital
Curation Conference, 2011.

[27] Phillip Mates, Emanuele Santos, Juliana Freire, and Cláudio T. Silva.
Crowdlabs: Social analysis and visualization for the sciences. In SSDBM,
pages 555–564. Springer, 2011.

[28] B. Matthews, A. Shaon, J. Bicarregui, and C. Jones. A framework for
software preservation. International Journal of Digital Curation, 5(1),
2010.

[29] Paolo Missier, Stian Soiland-Reyes, Stuart Owen, Wei Tan, Aleksandra
Nenadic, Ian Dunlop, Alan Williams, Tom Oinn, and Carole A. Goble.
Taverna, reloaded. In SSDBM, pages 471–481. Springer, 2010.

[30] David Newman, Sean bechhofer, and David De Roure. myexperiment:
An ontology for e-research. In Workshop on Semantic Web Applications
in Scientific Discourse in conjunction with the International Semantic
Web Conference, 2009.

[31] Thomas M. Oinn and Et Al. Taverna: lessons in creating a workflow
environment for the life sciences. Concurrency and Computation:
Practice and Experience, 18(10):1067–1100, 2006.

[32] David De Roure, Khalid Belhajjame, and Et Al. Towards the preser-
vation of scientific workflows. In Procs. of the 8th International
Conference on Preservation of Digital Objects (iPRES 2011). ACM,
2011.

[33] C.F. Taylor, D. Field, S.A. Sansone, J. Aerts, R. Apweiler, M. Ash-
burner, C.A. Ball, P.A. Binz, M. Bogue, T. Booth, et al. Promoting
coherent minimum reporting guidelines for biological and biomedical
investigations: the mibbi project. Nature biotechnology, 26(8):889–896,
2008.

[34] P. Van Gorpa and S. Mazanekb. Share: a web portal for creating and
sharing executable research papers. Procedia Computer Science, 4:589–
597, 2011.

[35] I. Wassink, P.E. van der Vet, K. Wolstencroft, P.B.T. Neerincx, M. Roos,
H. Rauwerda, and T.M. Breit. Analysing scientific workflows: Why
workflows not only connect web services. In 2009 World Conference
on Services - I, pages 314 –321, 2009.



IX. APPENDIX

Fig. 3. Number of Taverna 1 workflows tested between 2007-2011, in
comparison to total number of workflows from that year in myExperiment.

Fig. 4. Number of Taverna 2 workflows tested between 2009-2012, in
comparison to total number of workflows from that year in myExperiment.

Fig. 5. Distribution of number of workflows from each different domain.

Fig. 6. A pie chart of the distribution of the domain studied by our test
workflows.

Fig. 7. Number of Taverna 1 workflows tested and failed between 2007-2009.

Fig. 8. Number of Taverna 2 workflows tested and failed between 2009-2012.

Fig. 9. A summary of workflow decay causes.

Fig. 10. Workflow decay due to third party resources.


