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ABSTRACT

Aims. The maximum-likelihood method is the standard approach to obtain model fits to observational data and the corresponding
confidence regions. We investigate possible sources of bias in the log-likelihood function and its subsequent analysis, focusing on
estimators of the inverse covariance matrix. Furthermore, we study under which circumstances the estimated covariance matrix is
invertible.

Methods. We perform Monte-Carlo simulations to investigate the behaviour of estimators for the inverse covariance matrix, depending
on the number of independent data sets and the number of variables of the data vectors.

Results. We find that the inverse of the maximum-likelihood estimator of the covariance is biased, the amount of bias depending on
the ratio of the number of bins (data vector variables), p, to the number of data sets, n. This bias inevitably leads to an — in extreme
cases catastrophic — underestimation of the size of confidence regions. We report on a method to remove this bias for the idealised
case of Gaussian noise and statistically independent data vectors. Moreover, we demonstrate that marginalisation over parameters
introduces a bias into the marginalised log-likelihood function. Measures of the sizes of confidence regions suffer from the same

problem. Furthermore, we give an analytic proof for the fact that the estimated covariance matrix is singular if p > n.
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1. Introduction

The maximum-likelihood method (e.g. Barlow 1991) is common
practice to obtain the best-fit parameters m and confidence re-
gions from a measured data vector d € R? for a model m().
It usually consists of finding the maximum of the log-likelihood
function

1
Lid|m) o« = [d - m(x)] 27! [d - m(x)], ey

where 7 is the parameter vector and a Gaussian distribution of
the measurement errors is assumed. The confidence regions for
the maximum-likelihood fit are then defined by the surfaces of
constant AL = Lax — L, where L.« is the maximum value of
the log-likelihood function.

For the evaluation of the log-likelihood the population co-
variance matrix X and its inverse X~ or estimates thereof are
needed. In most cases, no exact analytical expression for & can
be given, although numerous authors make use of analytical ap-
proximations. An example from the field of weak gravitational
lensing is Semboloni et al. (2006), who use the Gaussian ap-
proximation to the covariance matrix of the shear correlation
functions given by Schneider et al. (2002). Other possibilities
are to estimate ¥ from the data themselves (e.g. Hetterscheidt
et al. 2006; Budavari et al. 2003) or to obtain it from a simu-
lated data set whose properties are comparable to the original
data (e.g. Pan & Szapudi 2005). In the latter paper, the authors
observed that the estimated covariance matrix becomes singular
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if p, the number of entries of the data vectors, exceeds the num-
ber of observations / simulated data vectors. As a remedy, they
propose to use the Singular Value Decomposition (SVD, Press
et al. 1992) to obtain a pseudo-inverse of the covariance matrix,
but do not investigate the properties of the resulting estimate of
27! in detail. In this paper, we prove analytically that the rank
of the standard estimator of the covariance matrix cannot ex-
ceed the number of observations. We then point out that, even
if this estimator is not singular, simple matrix inversion yields
a biased estimator of 2!, This may, if not corrected for, cause
a serious underestimate of the size of the confidence regions.
This problem has also been noticed by Hirata et al. (2004) and
Mandelbaum et al. (2006), who use Monte-Carlo simulations to
determine the correct confidence contours in cases where the co-
variance matrix is noisy. We report on the existence of a simpler
method to remove this bias, which can be derived for Gaussian
noise and statistically independent data vectors, and test the va-
lidity of this method when these assumptions are violated.

2. The covariance matrix
2.1. Estimators

Let d be a vector of p random variables with components d;,
drawn from a multi-variate Gaussian distribution with popula-
tion covariance matrix £ and mean u:

1
P(d) exp|-5(d - ' (d —u)). 2

1
2P Vdetz

Furthermore, let d® denote the kth realisation of this random
vector, where k € [1, n] and n is the total number of realisations.
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The well-known maximum-likelihood estimator for the compo-
nents of the covariance matrix is given by (Barlow 1991)

n

O = L () (¢ ), ®

k=1

which in the case of a known mean vector y is unbiased. If, how-
ever, p has to be estimated from the data, a correction factor of
n/(n — 1) has to be applied to (3).

2.2. The rank of CML

In the following, we prove that CM is singular for p > n in case
of known mean vector, and for p > n — 1 if the mean vector is
obtained from the data as well. For the first case, this can be
seen by rewriting (3) as

A 1 v
v = > a®a®, )
k=1

where we presume, without loss of generality, that the mean vec-
tor is zero. Since the data vectors d¥ are statistically indepen-
dent, we can safely assume that they are linearly independent
for n < p (for a continuous distribution, the probability to draw

linearly dependent data vectors is zero). Therefore, {d(k)} span
an n-dimensional subspace U of R”. To check whether CM is
singular we now try to find a vector y # 0 for which CMLy = 0.

Looking at (4), we see that this is only possible for p > n, since
in this case we can always choose a vector y from the subspace
orthogonal to U, for which d® -y =0V k. If p < n, {d(k)} al-
ready spans the whole of R”, and no vector can be found that is
orthogonal to all d®. This proves that CML s singular for known
mean vector if p > n.

We now prove our statement for an unknown mean vector g,
which is estimated from the data using

1 n
n=- > a®. Q)
k=1

For this, we define a new set of independent data vectors {w(k)}

by forming linear combinations of {d(k)}, specified by the orthog-

onal transformation B, of which we demand that the last (nth)
row be given by (1/ v/n, ... ,1/+/n) (Anderson 2003):

w(k) = Z Bkl d(l). (6)
=1

Thanks to our choice of B,;, we have w™ = nu. Next, we
rewrite CML by means of the new data vectors:

1 n

A t
ev = > d®a® -yt ©)
k=1
_ lz w® p®' _ Lo o @)
n =l n
1 n—1
t
= 1S b, )
n k=1

The last expression is of the same form as (4) (except for the
sum, which has one addend less), and so the same line of
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reasoning as above can be applied to show that CM-

forp>n-1.

is singular

Another interesting implication of Eq. (9) is that the mean
vector and the estimated covariance matrix are distributed inde-
pendently (again see Anderson 2003), although they are com-
puted from the same data vectors. First, note that w” and w"”
are statistically independent for i # j. This can be seen by com-
puting the covariance between the two vectors:

Cov (w®, w) = <(w<i> — ) (' - ,,(j))‘> (10)

AN BB <(d<k> — ) (a® - u)l> (11)
i

= Z BuBjiou 12)
- dys )

Here, (-) denotes the expectation value and (see Eq. (6))

v = () = zn: By (d9) = p Zn: B, (14)

= =1

is the mean value of w®.

Since CML does not depend on w'™, which in turn is statisti-
cally independent of the remaining w'”, this shows the indepen-
dence of estimated mean and covariance.

3. The inverse covariance matrix
3.1. An unbiased estimator for =1

From (3), an estimator for ™! can be obtained by matrix inver-
sion:

&= (oM (15)

"l:his estimator is consistent, but not unbiased due to noise in
CML: the inverse of an unbiased estimator for some statisti-
cal variable X is in general not an unbiased estimator for X!
Indeed, in our case of Gaussian errors and statistically indepen-
dent data vectors one can show (Anderson 2003) that the expec-
tation value of C;! is nor the inverse of the population covari-
ance, but

A N

-1\ _ -1 _
<C*>_N—p—lz forp <N -1, (16)
where N = n if py is known and N =n—1 if the mean is

estimated from the data. In the following, we will only pursue
the latter case.

The amount of bias in C;l thus depends essentially on the
ratio of the number of entries p in the data vectors (henceforth
referred to as the number of bins) to the number of independent
observations 7. It leads to an underestimation of the size of con-
fidence regions by making the log-likelihood function steeper,
but it does not change the maximum-likelihood point and thus
does not affect the parameter estimates themselves.

From (16) it follows that an unbiased estimator of 7! is
given by!

A~ _n—p—2 A

c! Clforp<n-2. (17)

n—1
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3.2. Monte-Carlo experiments

To illustrate Eq. (17), and also to probe how the pseudo-inverse
of the estimated covariance obtained by the Singular Value
Decomposition behaves (see below), we perform the following
experiment: first, we choose an analytical form for the popula-
tion covariance Z. We use three different models:

Z?}C = 0'26,'j, (18)
zg‘}:l = o? [1-i/(1 +p))] &, and (19)
M= /(1 +eli - i), (20)

which initially are p; X p; matrices. € can be used to tune the
degree of correlation in model (20); we choose € = 0.05.

We then create n data vectors of length p; according to
d® =m +y® (Z)), where y® (Z,) is a noise vector drawn from
a multivariate Gaussian distribution with mean zero and covari-
ance 2. The choice of the model vector m is arbitrary, and in
fact for the present purpose it would be sufficient to set m = 0.
For later use, however, we choose the linear model m; = ax; + b,
where X; = (Xmax — Xmin)(i + 1/2)/p1 is the value of the free vari-
able corresponding to the centre of the ith bin.

From this synthetic set of observations we estimate the mean
data vector and the covariance matrix, which yields the estimator
CML Next, both £ and CML are inverted using the Singular Value
Decomposition (see below). Finally, we compute the unbiased
estimate C™! of the inverse covariance as given in (17).

To probe the dependence of the bias of the estimators for !,
n new data vectors are created subsequently with p; = p;/j bins,
for all integer j € [2, ..., pi/2], where the population covariance
2 ; for p; bins can be obtained from the original ¥; by averaging
over (j X j)-sub-blocks of . This strategy of re-binning has the
advantage that the true covariance is known exactly for all p;.

Since the bias in Eq. (16) is just a scalar factor, we record the
traces of the estimators C;! and C~! for each number of bins p.
To improve our statistics, we repeat the procedure outlined above
10* times and average over the traces computed in each step.

In Fig. 1, we plot the ratios of the trace of Z~! to the traces
of C;! and €', respectively. Not using the bias-corrected C~!
can have considerable impact on the size of confidence regions
of parameter estimates: for p < n — 2, the components of C;!
will be too large compared to those of the true inverse covari-
ance, and the log-likelihood will decrease too steeply, resulting
in confidence contours too small.

We also plot the traces of C;! for the different covariance
models beyond p > n — 1, where the estimator CM" is singular.
These data points have been obtained using the Singular Value
Decomposition to invert the covariance matrix, yielding a de-
composition of the form
C = UWV', 2n
where U and V are orthogonal matrices and W is a diagonal ma-
trix containing the singular values. Since C is symmetric, one has
in addition U =V, while W contains the moduli of the eigenval-
ues of C. The inverse of C is then given by C~! = VW-!U'. If C
is singular, some of the entries of W will be zero or comparable

! Note that there is a typing error in Anderson’s book, where he gives
an expression corresponding to

¢! =lszé;l forp<n-2.
n—
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Fig. 1. Ratios of the trace of ! to the traces of C;! (triangles) and
(o (squares), respectively. The dashed line is for the covariance model
(18), the solid line for (19) and the dot-dashed-line for (20). The origi-
nal data vectors had p; = 240 bins, and were rebinned by subsequently
joining 2, 3, ... of the original bins. The number of independent ob-
servations is n = 60. Error bars are comparable to the symbol size and
therefore omitted.

to machine precision. We therefore can only compute a pseudo-
inverse of C by replacing the inverses of these singular values
in W=! by zero, as has been suggested in Press et al. (1992) and
Pan & Szapudi (2005). Figure 1 shows that the bias of C'in
this regime depends significantly on the covariance model cho-
sen and does not depend on binning in a simple way. Therefore
we strongly discourage from the use of the SVD for p > n — 1.

4. Implications for likelihood analysis

Having obtained an unbiased estimator of the inverse covariance
matrix, one may still be concerned about a possible bias in the
log-likelihood function, since it consists of the product of (d — u)
and C! (Eq. (1)), since p and C! are estimated from the same
set of observations. In other words, the question is if it is possible
to write

(L(d|n))

-% (—m) C" (- m)) (22)

1 A
5 (= m) {C7) ()~ m). (23)

Luckily, this is indeed the case, since we have shown at the
end of Sect. 2.2 that mean vector and covariance matrix are dis-
tributed independently.

4.1. Marginalised likelihood

Usually, one is not only interested in the full parameter space
of a problem, but also in values of single parameters and the
corresponding errors. In the Bayesian framework, this is usually
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Fig. 2. Triangles, solid lines: ratio of the sum over all pixels of the
marginalised likelihood computed using €' and the true marginalised
likelihood. Filled triangles are for the power-law fit (marginalised
over the power-law index), open triangles are for the straight line
fit (marginalised over the intercept). Squares, dashed lines: ratio of
Vdet IZ*I using €' to the true one, computed with 2. For both cases
> =30

achieved by marginalising over the “uninteresting” parameters:
the log-likelihood function £; for the single parameter 7; is com-
puted using

Li(dir) = log []_[ f dn,} exp [L(d|m)] (24)

J#L

There is no reason to believe that the marginalised log-
likelihood, which is a highly non-linear function of the (unbi-
ased) estimate of the full log-likelihood, and with it the size
of thq errors on 7; are unbiased, even if one uses the unbi-
ased C~!. We demonstrate this by means of our simulated fit-
ting procedure, where we now use in addition to the straight
line model also a second simulation using a power-law model of
the formm; = a xﬁ’ . We marginalise over the intercept of the line
and the power-law index, respectively. We record the sums over
all pixels of the (one-dimensional) grid of the marginalised log-
likelihood functions, which we compute using the true ! and
the unbiased estimator C~!. For 2, we choose the model (18).
We average over ~3 x 10* repetitions of these experiments. We
plot the ratio of true to estimated log-likelihood sums in Fig. 2
(triangles and solid lines). The plot shows a bias of maximally
~8% for the straight line and even less for the power-law, in a di-
rection which would lead to an overestimation of the error bars
on slope and amplitude. Although the effect is not very large,
this is not guaranteed to remain so for models different from the
ones considered here.

4.2. Measuring the size of confidence regions

For some applications, it is useful to have a simple measure of
the size of the confidence regions. As an example, we make use

Unbiased estimation of the inverse covariance matrix

of the Fisher information matrix F (Fisher 1935), which is de-
fined by (Tegmark et al. 1997)

= 82‘5
- (97T,‘ aﬂ'j ’

(25)

where the derivative is to be evaluated at the maximum-
likelihood point 7. F can be interpreted as an estimate of the
inverse covariance matrix of the parameter estimates, provided
L is well approximated by a Gaussian around the maximum-
likelihood point.

To demonstrate the bias in Vdet F-!, we compute the Fisher
matrix for the straight line and power-law fits using (Tegmark
et al. 1997)

ama c’)mﬁ _1
871’,‘ 371"]' B>

F,’j =
a,f=1

(26)

which is valid if the covariance matrix does not depend on the
parameters 71;; m is the model vector.

In Fig. 2, we give the ratio of VdetF~!, computed using the
unbiased estimated covariance C~, to the value computed using
the true covariance (boxes and dashed lines). One sees that in this
case the size of the confidence regions is significantly overesti-
mated, for p/n approaching unity by as much as ~30% for the
straight line case, and by a comparable, albeit slightly smaller
factor for the power-law fit.

5. Bootstrapping and non-Gaussian statistics

The derivation of the unbiased estimator C~! rests on the as-
sumptions of Gaussian noise and statistically independent data
vectors. To test the performance of this estimator in real world
situations, where one or both of these assumptions may be vi-
olated, we make use of an example from the domain of weak
gravitational lensing. For an introduction to this field we refer
the reader to Bartelmann & Schneider (2001).

We simulate a weak lensing survey consisting of one single
field, containing N, galaxies, which are assigned a random el-
lipticity €. € = € + ie; is a complex number, which is related to
the quadrupole moment of the light distribution of a galaxy (see
Bartelmann & Schneider 2001). The two components of the el-
lipticity are drawn from a Gaussian distribution with dispersion
el \/E

The goal of the survey is to measure the shear correlation
function &, () and to fit a model prediction to it. An estimator
for &, is given by (Schneider et al. 2002)

_ (EY) € 4 & eéj)) Ag (|0i_0j|)
2n,(9) '

&) = @7

where the galaxies are labelled with i and j and have the angular
positions 6; and 6. Ag(¢) is unity if  — AD/2 < ¢ < I+ AD/2,
where A# is the bin width, and zero otherwise. Finally, ny(##) is
the number of pairs of galaxies contributing to the correlation
function in the bin centred on .

We also need the covariance matrix of &, (¢#), which, since
we only have one measurement, is estimated using the bootstrap-
ping algorithm (e.g. Efron & Tibshirani 1993): First, we create
a catalogue of all N, = Ng(Ng — 1)/2 possible pairs of galaxies
in the field. We then create Nps bootstrap realisations of the sur-
vey by repeatedly drawing N, pairs with replacement from the
catalogue. From these, we estimate the mean data vector and the
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Fig. 3. Ratio of the traces of the unbiased estimator C;' and €' to the
trace of Z!; the covariances for the solid curve have been estimated
using bootstrapping (see text), the dashed line shows the ratio of the
traces for log-normal errors.

covariance matrix of the shear correlation function. As before,
we do this for various numbers pf bins, vyhere we record the de-
pendence of the traces of ~!, C;! and C~! on binning. For the
simple case of pure shape noise, the population covariance is di-
agonal and can be easily computed using (Schneider et al. 2002)
5 —2 g 28

ij — znp(ﬂl) ijs ( )
where ©J; is the angular separation corresponding to the centre of
the ith bin. We precompute the function n, numerically from a
large set of independent data fields for all binning parameters we
wish to use in the simulation.

In principle, both of the assumptions made for the derivation
of Eq. (17) are violated: the noise in the shear correlation func-
tion is )(Z—distributed, because &, « €€, where € is drawn from a
Gaussian. However, the number of degrees of freedom of the )(2—
distribution, which equals the number of pairs, is very large, so
that it is very well approximated by a Gaussian (central limit the-
orem). We therefore do not expect any significant influence on
the performance of 1. We expect a larger impact by the fact
that the data vectors resulting from the bootstrapping procedure
are not statistically independent, since different bins necessar-
ily contain the identical galaxy pairs. Strictly speaking, also the
requirements for the application of the bootstrap procedure are
not met, since the pairs of galaxies which we use to sample the
distribution of the shear correlation function are not statistically
independent. However, we argue that drawing individual galax-
ies instead of pairs is not correct, since this would sample the
distribution of €, not the one of &,.

The outcome of ~2 x 10* realisations of this experiment is
given in Fig. 3 (solid line), with N, = 500 and N, = 40. The
figure shows that, in spite of the correlations among the pairs of
galaxies and the data vectors, Clis wrong by only ~1%, and
may well be used in bootstrap applications like this.

Finally, we explore the impact of non-Gaussian noise. For
this purpose, we perform the same experiment as before, only
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replacing the Gaussian noise vectors ones, y®, with a log-

normal distribution. These are computed using
k k

¥ = exp (r§ ) 1/2), (29)

where r® are vectors containing uncorrelated, Gaussian ran-

dom variables with mean zero and variance o2 = 1. The result

is shown in Fig. 3 (dashed line). Clearly, Eq. (17) is no longer

applicable, although for p/n > 0.2, one still does much better
with it than without it.

6. Summary and conclusions

We have given a proof for the fact that the standard estimator of
the covariance matrix (3) is singular for p > n if the mean vector
used in (3) is known, and for p > n — 1 if the mean is estimated
from the same data set as the covariance matrix. Furthermore,
we noted that the inverse of the maximum-likelihood estima-
tor of the covariance matrix is a biased estimator of the inverse
population covariance matrix. This bias depends basically on
the ratio of the number of bins to the number of independent
observations and can be quite severe as these two numbers be-
come comparable. If uncorrected for, it will lead to a signifi-
cant underestimation of the size of confidence regions derived
from maximum-likelihood fits. The bias can be corrected for
p < n — 2 by using the estimator (17) instead, which was derived
by Anderson (2003) under the assumption of Gaussian errors
and statistically independent data vectors. We stress that there is
no contradiction between the foregoing two statements: The sin-
gularity of Cyy for p > n — 1 derives from linear algebra alone,
whereas the fact that C~! is zero for p = n—2 is due to the
statistical distribution of the covariance matrix. Going beyond
p =n—1, we find that it is not advisable to use the Singular
Value Decomposition to invert the estimated covariance matrix,
since the bias of the pseudo-inverse does not seem to be control-
lable and depends strongly on the population covariance matrix,
which is a priori unknown.

Given the unbiased estimator C~!, we argue that also the log-
likelihood function is unbiased. However, great care has to be
taken if one wishes to perform further analysis of £: since it is a
statistical variable, any nonlinear operation on it has the potential
to cause a bias. We demonstrate this for the case of marginalisa-
tion over certain parameters, where the bias is relatively mild for
the examples we chose. The situation is much worse if one tries
to quantify the size of the confidence regions. The square root
of the determinant of the inverse Fisher matrix shows a signifi-
cant amount of bias, and therefore should not be used as absolute
measures of measurement uncertainty.

The upshot of all this is the following: avoid to use more bins
for your likelihood fit than you have realisations of your data. If
your errors are Gaussian and the data vectors are statistically in-
dependent, use the estimator ¢! to obtain an unbiased estimate
of the inverse covariance matrix and the log-likelihood function.
If one or both of these two requirements are not fulfilled, the es-
timator is not guaranteed to work satisfactorily; this should be
checked from case to case.

Finally, we note that the estimates of the covariance matrix
and its inverse can be quite noisy. If one has prior knowledge
about the structure of the covariance matrix, one can develop
estimators with a much lower noise level. Since this noise is re-
sponsible for most of the problems discussed in this paper, these
improved estimators may also be useful in situations where the
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requirements for the use of C~! are not fulfilled. We will explore
these possibilities in a future paper.
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