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ABSTRACT Wireless sensing represented by WiFi channel state information (CSI) is now enabling
various fields of applications such as person identification, human activity recognition, occupancy detection,
localization, and crowd estimation these days. So far, those fields are mostly considered as separate topics
in WiFi CSI-based methods, on the contrary, some camera and vision-based crowd estimation systems
intuitively estimate both crowd size and location at the same time. Our work is inspired by the idea that
WiFi CSI also may be able to perform the same as the camera does. In this paper, we construct Wi-CaL,
a simultaneous crowd counting and localization system by using ESP32 modules for WiFi links. We extract
several features that contribute to dynamic state (moving crowd) and static state (location of the crowd) from
the CSI bundles, then assess our system by both conventional machine learning (ML) and deep learning (DL).
As a result of ML-based evaluation, we achieved 0.35 median absolute error (MAE) of counting and 91.4%
of localization accuracy with five people in a small-sized room, and 0.41 MAE of counting and 98.1% of
localization accuracy with 10 people in a medium-sized room, by leave-one-session-out cross-validation.
We compared our result with percentage of non-zero elements metric (PEM), which is a state-of-the-art
metric for crowd counting, and confirmed that our system shows higher performance (0.41 MAE, 81.8% of
within-1-person error) than PEM (0.62 MAE, 66.5% of within-1-person error).

INDEX TERMS Crowd counting, crowd localization, CSI, machine learning, WiFi sensing.

I. INTRODUCTION
The importance of technological prediction of how people
will behave or make a decision has been growing upmore and
more in our modern society since the human population has
gone beyond the range of manual processing. Before those
predictions, naturally, we first need to estimate the current sit-
uation of people in an area of interest. The crowd estimation
technique is one of the methods that can contribute to various
situation understandings. In a retail store or supermarket that
has separate sections divided by product types as an example,
if we are able to recognize how many people are passing
by and gathering at a certain area or passage in a specific
time (current situation), it leads to a prediction of sales
trends of the particular goods as well as time-specific section
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congestion (prediction). This enables the shop manager to
appropriately arrange the products, assign the optimal work
schedule for staff, and also especially, it could be very mean-
ingful in terms of crowd dispersal in a situation such as the
COVID-19 pandemic spread since 2019. Since this aspect
identically applies to the museums, exhibitions, or exposi-
tions as well, the real-time crowd information of each area
in those places should be acquired by deploying the crowd
estimation system area-by-area.

Today, the most universal method for crowd estimation
is a vision-based technique, and wireless sensing-based
approaches are rapidly catching it up. The camera and
vision-based techniques are intuitively possible in human
counting with good accuracy thanks to well-developed head
counting and pattern recognition in the images [1]–[3]. Espe-
cially, they have an advantage in estimating an extensive
crowd over a huge outdoor area. However, vision-based
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approaches have some critical weaknesses at the same time,
such as non-availability under the dim light circumstances,
impossibility of widespread installation of cameras, under-
estimation due to occlusion of objects, and privacy-invasive
concerns. Nowadays, many technical approaches for both
indoor and outdoor crowd estimation have been attempted
using various wireless sensing technologies, e.g., WiFi [4],
PIR sensor [5], Bluetooth [6], wireless sensor network [7],
and also the combination of multiple wireless sensing tech-
nologies such as WiFi, UWB, and light sensor [8]. Among
them, WiFi sensing-based methods are now highly spot-
lighted because of WiFi’s pervasiveness and fine-grained
source data like channel state information (CSI).

WiFi sensing can be divided into two major approaches:
CSI and passive WiFi radar. In [9], Li et al. compared the
fundamentals and activity recognition results by leveraging
both systems. They evaluated the systems by machine learn-
ing, then concluded the CSI-based system performs better
in a line of sight (LoS) condition, whereas the radar-based
system shows better performance in a non-LoS environ-
ment. In this paper, we address a WiFi CSI-based crowd
estimation approach, because our target area is an indoor
LoS-link environment. Meanwhile, we adopt machine learn-
ing to assess our system performance. The recent WiFi
sensing techniques are now often being collaborated with
IoT and machine learning technologies as spectrum sensing
does [10], [11], which is a basis of the wireless channel
sensing in the field of cognitive radio.

Although numerousWiFi-based human sensing techniques
have been studied so far [12], [13], most of those studies
are focused on resolving only a single issue such as per-
son identification [14], respiration detection [15], activity
recognition [16], and human detection [17]. Particularly, the
crowd counting and localization techniques are treated as
separate issues in most cases. On the other hand, one thing
we need to note regarding the vision-based methods is that it
can count people along with recognizing which part of the
area the people are gathered at, from the image or video.
Practically, there are several camera-based studies addressing
both issues of crowd counting and localization [18], [19].
Knowing the location of a crowd has great advantages in
terms of system distribution cost and energy efficiency. If the
system can recognize not only the number of people in a
crowd but also where the people are gathered, we will be able
to sparsely deploy the sensing devices in an area of interest
instead of installing them densely to estimate the situation of
all small separate sections. Also, we can provide a targeted
air-conditioning service toward a more crowded location by
graded adjustment of multiple air conditioners in a large room
or area.

In our previous work [20], we were inspired by the idea
that the same thing a camera can do can be also performed
by wireless sensing, and to the best of our knowledge,
it was the first attempt of simultaneous crowd estimation by
using WiFi CSI. Through this work, we further reveal
the potential of WiFi CSI toward a comprehensive crowd

estimation system. We propose a method for device-free
crowd counting and localization Wi-CaL, and evaluate the
system by the experiments with the further enhanced fea-
tures and more people than the previous work, at two dif-
ferent test areas. To examine the new WiFi CSI platform,
we utilize ESP321 node which is a compact IoT solution
of WiFi/Bluetooth communication and sensing, instead of
inaccessible, conventional WiFi CSI tools. We show con-
vincing results obtained by machine learning using practical
experiment data from two test fields with up to 10 people.
Finally, we provide diverse analytic comparisons in detail,
by handling several conditions which are influential in system
performance. This paper acquires significance by the follow-
ing main contributions:
• First, we demonstrated the feasibility of real-time simul-
taneous crowd estimation system that can precisely esti-
mate not only the crowd count but also the location of
the crowd in parallel.

• Second, we examined the potential of ESP32 nodes
and CSI toolkit to become a promising WiFi sensing
platform, and confirm that they have sufficient sensing
resolution for medium-scale crowd estimation.

• Third, practical validations were conducted in two dif-
ferent real environments, which are a small-sized meet-
ing room with five people and a medium-sized seminar
room with 10 people.

• Fourth, we evaluated the system performance by leave-
one-session-out cross-validation to reflect CSI tendency
change depending on time-varying environmental fac-
tors, as well as by continuous data series (k-fold
cross-validation).

• Finally, diverse analytic results were obtained by
machine learning (regression analysis for crowd count-
ing and classification for crowd localization) with
comparisons depending on conditions and parameters,
additionally, we examined the differences and compar-
isons with the results by deep learning.

The rest of this paper is organized as follows. In Section II,
we first briefly review the studies related to crowd estimation.
We then address the background of WiFi CSI and its solu-
tions, and our observation in terms of CSI characteristics in
Section III. The proposed systemWi-CaL for crowd counting
and localization is described in Section IV. We present the
evaluation method of our system and the results in Section V.
Finally, we give discussions about the current states and
future works in Section VI and then conclude this paper
in Section VII.

II. RELATED WORK
In this section, we review the literature related to WiFi
CSI-based sensing techniques mainly focused on crowd esti-
mation techniques. Since we can observe the significant vari-
ation of CSI only by the change of multipath environment or
LoS blockage events of aWiFi link, mostWiFi sensing-based

1https://www.espressif.com/en/products/socs/esp32
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human sensing approaches are based on the mobility of the
target object. Therefore, all following crowd estimation sys-
tems are assuming the situations of when people are walking
in or passing through the WiFi channels, same as our work.

Depatla and Mostofi [21] presented a technique for
through-wall crowd counting based only on WiFi received
signal strength (RSS). In the paper, they emphasized that
through-wall counting should be demonstrated in case there
is no available WiFi device in an area, pointing out that
transceivers are located within the area of interest in all
the conventional counting methods. They proposed a motion
model for multi-people walking to estimate the number of
people walking inside with one pair of WiFi transceivers
behind walls. Ibrahim et al. [22] proposed a deep learning
system for WiFi-based human counting. They also usedWiFi
RSS measurements to detect temporal line of sight (LoS)
blockage of a single WiFi link. They utilized LoS block-
age detector to measure its timing and long short-term
memory (LSTM) model to overcome the vanishing gradient
problem during long sequences training. They showed that
the system is able to count the people with 63% of count
accuracy in a small room with up to seven people, and
55% of count accuracy in a medium-sized room with up
to 10 people.

Liu et al. [23] proposed an approach of deep learning-based
crowd counting using WiFi CSI. Both CSI amplitude and
phase are used as source data in the system, and they
attempted to use two filters to smooth those measure-
ments. They provided performance comparison depending
on impacts of time window size, neural network struc-
ture, and pre-processing method. The system showed 82.3%
of average recognition accuracy with up to five people.
Di Domenico et al. [24] presented a differential CSI approach
for counting by trained-once classification model. Normal-
ized Euclidean distance between two CSI vectors is used as
a basic metric of the system to reduce the dependence on the
background environment. They trained a classifier with the
data from a medium-sized room, and tested it with the data
from small-sized and large-sized rooms. The system showed
74% of classification accuracy by small room data, and
52% by large room data.

Zou et al. [25] proposed FreeCount, which is a device-free
crowd counting scheme using a modified CSI tool running
on commercial WiFi devices. They adopted the transfer
kernel learning (TKL) model to take account of temporal
variation of CSI measurements, and trained the model with
20 features based on de-noised CSI data by wavelet filter,
which are categorized in common statistics, transformation-
based, and shape-based features. In addition, they extended
and further developed their system into WiFree in [26].
They mainly measured the shape similarity between adja-
cent time series CSI curves to distinguish the number of
people. Also, the feature selection method was presented in
the paper, to figure out the most informative features for the
system. They demonstrated the system in three different-sized
rooms with four, seven, and 11 participants, respectively, and

achieved 99.1% of occupancy detection accuracy and 92.8%
of crowd counting accuracy.

Xi et al. [27] proposed a device-free crowd count-
ing approach by using the percentage of non-zero ele-
ments (PEM) and the Grey Theory, where PEM is a metric of
dilated CSI matrix for crowd counting proposed in the paper.
The values of PEM reflect the fluctuation of CSI signal by
a matrix with ‘0’ or ‘1’ elements, based on the idea that the
signal is unstable, then the dilated CSI matrix contains the
larger number of ‘1’. This is grounds for monotonic relation
between the number of people and PEM. They evaluated their
system with Intel 5300 NIC-based CSI tool, and their results
showed that the ratio of estimation errors within two people
was 98% in the indoor area and 70% in the outdoor area.

Some works use this PEM as the main metric of their
system. Li et al. [28] presented a device-free indoor people-
counting method based on WiFi CSI and PEM. To calculate
PEM, they made dilated matrix by the covariance matrix of
both CSI amplitude and phase. Their system achieved robust-
ness and detection performance by combining the ampli-
tude and phase information in CSI data, and validated a
monotonic relation between CSI variation and crowd number.
It is shown that the system can get 92% of accuracy with
up to eight people. Meanwhile, Zhou et al. [29] proposed
the crowd counting technique by using WiFi CSI and deep
neural networks (DNN) with PEM. They also leveraged PEM
to construct the monotonic relationship between the change
of CSI amplitude and people count by the DNN regression
model. One pair of WiFi links was used in their experiment
with Intel 5300 NIC-based CSI tool. They achieved 0.11 of
mean counting error in a medium-sized meeting room with
up to five people and 0.14 of mean counting error in a hall
with up to 34 people.

In [30], Xu et al. described SCPL system which can per-
form the counting and localization in parallel. The system
consists of two phases, first is counting subjects by succes-
sive cancellation (iteratively subtracting an impact of one
target from the measurements) and the other is localizing
each subject by indoor human tracking model. They tested
their system in two indoor environments with four people,
then achieved up to 86% of counting accuracy and 1.3m
of average localization error. However, they only used WiFi
RSS as their system’s source data, leading to very extensive
distribution of necessary WiFi devices (about 20 nodes for
each test area) for high accuracy. Since this work is addressing
multi-subject counting and individual tracking, it is essen-
tially different from our work which is estimating the number
of people in the crowd and the sectioned location of the
human cluster itself.

Mohammadmoradi et al. [8] presented multi-modal people
counting by a combined system of multiple wireless sensors
such as WiFi, UWB, and light sensors. Their estimation is
performed based on the detection of the flow of people getting
into a room or going out of the room through the sensor
sets installed on both sides of the door. They described that
each sensor can independently detect a person’s passage by
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variation of the sensor signal, then the final decision is made
by a majority vote between the different sensors. Also, they
tested that each sensor can tell the obvious difference of
when multiple people move in/out together at the same time.
As a result, WiFi and UWB could distinguish the cases of
the movement of multiple targets (up to three people), and
the system showed 96% of overall performance in passage
counting.

Finally, Zheng et al. [31] examined the impact of radio
frequency interference (RFI) onWiFi CSImeasurements, and
proposed the cyclostationary analysis-based RFI detection
algorithms. They described that, even though the CSI-based
sensing applications have beenwidely studied in recent years,
the RFI problem is overlooked and unexplored in the field of
WiFi sensing. Therefore, they conducted real-world experi-
ments with WiFi (main signal source), ZigBee, Bluetooth,
and microwave (RFI sources). They provided several com-
parisons depending on evaluation metric, interference type,
RFI-Rx distance, or Tx-Rx Distance, then the system eventu-
ally showed over 90% of RFI detection accuracy.

All the above-mentioned studies utilized the conventional
WiFi routers and old CSI platforms that require particu-
lar WiFi modules such as Intel 5300 NIC or Qualcomm
Atheros WiFi chip. In our work, we leverage ESP32
transceivers as the signal source which is the latest WiFi
IoT CSI solution. Although the conventional WiFi routers
can obtain more fine-grained and stable CSI measurements,
we will show that our system also could achieve promis-
ing and convincing, even better performance. Most of all,
we differentiate our work from other related works by a
point of revealing the possibility and potential in WiFi IoT
sensing-based simultaneous crowd estimation for both count-
ing and localization.

III. WIFI CSI PRELIMINARIES
In this section, we briefly describe the basics of WiFi CSI,
currently usable solutions, a new promisingCSI IoT platform,
and our observations.

A. BACKGROUND
As mentioned earlier, many research works are leveraging a
WiFi sensing technique thanks to some solutions for access
to WiFi CSI open to the public. CSI represents an estimate
of the impulse response of the propagation channel between
a transmitter and a receiver in the orthogonal frequency-
division multiplexing (OFDM) transmission system. When
we denote the OFDM system in the frequency domain, it is
modeled as:

y = Hx+ n (1)

where x and y are the transmitted and received complex
vectors, and n and H are noise vector and channel infor-
mation matrix, respectively. Since CSI is an estimate of H,
it can be denoted as Ĥ which is obtained from a transmitter.
Ĥ contains the information of amplitude attenuation and
phase shift of each subcarrier in the form of complex

FIGURE 1. ESP32 nodes.

numbers, therefore, these measurements can be denoted as:

CSI = Ĥ = ||Ĥ||ej
6 Ĥ (2)

where ||Ĥ|| and 6 Ĥmean the CSImeasurements of amplitude
attenuation and phase shift, respectively.

B. CONVENTIONAL CSI & WiFi IoT SOLUTION (ESP32)
There are two representative WiFi CSI-enabled solutions,
Linux 802.11n CSI tool [32] and Atheros CSI tool [33].
Those have been widely utilized as CSI-enabled plat-
forms in various publications so far. However, both Linux
802.11n and Atheros tools require a laptop or WiFi router
which is equipped with particular WiFi modules such as
Intel 5300 NIC for the former, and specific Qualcomm
AtherosWiFi chips for the latter. This fundamentally restricts
the accessibility to CSI data, even some of those modules are
purchasable only from the used-item market. They also may
cause inconvenience in device deployment due to the require-
ment of a laptop or router. Moreover, the Linux 802.11n CSI
tool has a constraint in which it can provide CSI readings of
only 30 subcarriers out of 64 subcarriers. Therefore, some
researchers have modified those CSI tools to fit them into
their systems.

In early 2020, an ESP32 CSI toolkit has been presented
as a new CSI solution, emphasizing its convenience and
accessibility [34]. Using this toolkit, the authors of [34] prac-
tically performed further research works regarding human
occupancy and direction monitoring in [35]. They conducted
a hallway experiment to investigate the capability of ESP-
based device-free WiFi sensing for single-person detection
and walking direction prediction, even if the Tx/Rx ESP
nodes are lined up behind the same side of a wall. In addition,
they also presented a method of soil sensing by using ESP
nodes in [36], demonstrating that ESP-based WiFi sensing
is effective not only for human sensing. By [35], [36], they
showed the feasibility of this compact ESP32 becoming an
alternative solution of WiFi sensing. In this paper, we also
adopt the ESP32 CSI toolkit and ESP32 WiFi nodes, which
are shown in Figure 1, as the CSI reading devices for WiFi
sensing. Since the ESP32 module has a single antenna,
it can only exploit signals from fewer channels than other
two-by-two or three-by-three MIMO WiFi architectures,
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FIGURE 2. CSI bundle tendency depending on different situations.

consequently, we could obtain a relatively small amount of
CSI data. Nevertheless, this low-cost, low-power, compact
WiFi node has a great advantage in terms of easy and flexible
deployment. We suppose that these compact devices have the
potential to become a promising WiFi IoT sensing solution.

For this work, we set several ESP32 nodes as transmit-
ters (access point, AP), and the others as receivers (station,
STA), to make multiple WiFi links. We assign a dedi-
cated SSID and password to each pair of Tx/Rx for one-
to-one communication at a configured packet rate, by the
ESP32 CSI toolkit operating in the Linux terminal. Since the
ESP32 nodes are powered, the AP continuously sends CSI
requests to the STA, then, the STA returns the observed CSI
information to the AP so that we can get the channel state
between AP and STA from the AP side. The ESP32 nodes are
operated on 802.11n legacy mode WiFi, which uses 2.4GHz
band (bandwidth: 20MHz) and consists of 52 non-null
subcarriers [35], [36].

If there are multiple WiFi links in the system, a measured
CSI vector hi,k from the ith packet can be denoted as:

hi,k = (hi,1,k , · · · , hi,j,k , · · · , hi,ns,k ) (3)

where hi,j,k is a complex CSI value of jth subcarrier measured
in the k th link, and ns is the total number of available subcar-
riers. Since the complex CSI values contain information of
both amplitude ai,j,k and phase φi,j,k , they can be calculated
by the following equations:

ai,j,k =
√
Re(hi,j,k )2 + Im(hi,j,k )2

φi,j,k = atan2( Im(hi,j,k ),Re(hi,j,k )) (4)

where Re(·) and Im(·) are the functions of the real and imagi-
nary part of a complex number, respectively, and atan2(y, x)
is the function of 2-argument arctangent.

In this paper, we use only the amplitude values ai,j,k for
our system. This is because the purpose of this work does
not strictly require a contribution of phase shift value. Phase
shift value is required for some applications that need angle
of arrival (AoA) or time of flight (ToF), but it is excluded in
some cases due to its severe offset caused by hardware and
software errors that leads to difficulty in clarifying the signal
pattern, as described in [12].

C. OBSERVATIONS
WiFi CSI provides measurements of the signal amplitude
and phase information at the subcarrier level. To investigate
the CSI amplitude data, we look into subcarrier-amplitude
plot that shows the signal magnitudes of each subcarrier
within a certain time interval. In our system, for example,
the time-series CSI data is segmented into six-second time
windows to convert it into overlapped CSI curves (as we will
describe in Section IV). In one time window, we call the over-
lapped CSI curves a CSI bundle. Figure 2 visualizes the CSI
bundles in several different situations. A CSI bundle shows a
specific tendency in terms of the width and shape, therefore,
it reveals a couple of characteristics in accordance with the
propagation condition between WiFi AP and STA, which is
changed by moving objects or channel circumstances. Those
characteristics can be represented in dynamic and static state-
dependent characteristics, which are described in the follow-
ing subsections.

1) DYNAMIC STATE-DEPENDENT CHARACTERISTIC
For crowd counting, we associate the bundle-width variation
with the number of people. If there is no person between a
WiFi link, the signal multipath or scattering effect is nearly
constant and signal variation only comes from observational
error, thermal noise, or signal interference. Therefore, the
CSI amplitudes across all the subcarriers are relatively stable.
On the other hand, as the number of people in the area
increases, themultipath environment becomesmore andmore
complicated due to increased moving objects. As a result, the
amplitudes fluctuate widely and the CSI bundle width conse-
quently gets thicker. In Figure 2(a) and (b), the black curves
form the CSI bundles of the cases when an area is empty
and four people are walking within the area, respectively,
and the green lines represent the lower and upper quartile
values across all subcarriers, which can reveal the difference
of bundle width.

2) STATIC STATE-DEPENDENT CHARACTERISTIC
In a CSI bundle, we can also recognize a particular shape
depending on the difference of the target space’s inner struc-
ture and/or distribution of objects including human bodies.
The basic shapes of CSI curves are formulated depending
on the inner structure of a target area. However, a cluster
of people consistently moving around within a limited area
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FIGURE 3. Processing flow in proposed system.

FIGURE 4. CSI smoothing results.

constantly affects the multipath environment of the WiFi
signal. Consequently, this continuous influence affects the
formation of shape tendency of the CSI bundle as well.
Figures 2(c) and (d) show the difference of CSI-bundle-shape
formation with the yellow average line, between two different
situations that three people are freely walking within one
section and another section of a target area.

IV. Wi-CaL: CROWD COUNTING AND LOCALIZATION
In this section, we propose a WiFi sensing-based crowd
counting and localization system Wi-CaL that enables both
crowd counting and crowd localization in parallel.

A. OUTLINE
The final goal of this study is to investigate if the proposed
system can estimate not only how many people are in a
particular area, but also which specific section of that area
people are gathering at. Therefore, we devise effective fea-
tures for dynamic and static state-dependent characteristics
as well as using common statistical features. Since we found
that some features extracted from CSI data generally have
a monotonic relationship to people count, ML regressor is
used for crowd counting. On the other hand, crowd local-
ization would be estimated by ML classifier because we
divide the test area into discrete sections. Figure 3 shows
the comprehensive flow of our system. We describe the sys-
tem flow in the following sections, including the scheme
and method of data processing and feature extraction in
detail.

B. CSI PRE-PROCESSING
In order to leverage CSI readings as informative and effective
resources for crowd estimation, it is essential to pre-process
the data before the feature extraction. We present the CSI
segmentation and smoothing process in this section.

1) DATA SEGMENTATION
After receiving the CSI data which is obtained as a form of a
complex vector, the system first calculates amplitude values
across the entire subcarriers as mentioned in Section III-B.
After that, the time-series amplitude values are accumulated
and segmented into a given-sized timewindow. Here, we omit
the link index k because all the following CSI processing
is identically performed regardless of the link number, then
we can define a CSI curve vector ai of each packet and a
time-series amplitude vector aj of each subcarrier as follows:

ai = (ai,1, · · · , ai,j, · · · , ai,ns )

aj = (a1,j, · · · , ai,j, · · · , anp,j)
T (5)

where i and j are indices of packet and subcarrier, respec-
tively, and ns and np are the total number of subcarriers and
packets in a time window, respectively.

Then, a CSI bundle A(w) in a time window can be denoted
as:

A(w)
=
[
a(w)

1 · · · a
(w)

j · · · a
(w)
ns

]
(6)

where w is the index of time window. We empirically set
each time window to contain six seconds of CSI data with
three-seconds overlapping. Sincewe configure the packet rate
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TABLE 1. List of extracted features.

of the ESP32 nodes as 100 packets/sec, each time window
contains 600 packets (np = 600). Also, we can obtain CSI
readings in a total of 52 available subcarriers (ns = 52). This
CSI bundle A(w), which is consisting of CSI curves in a 6 s
time window, becomes a base unit for our feature extraction
process.

2) CSI SMOOTHING
Since the CSI readings are considerably noisy, it is necessary
to remove the redundant components from the calculated
amplitude values. For this smoothing process, we apply two
filters, one is Hampel filter for eliminating spike noises, the
other is Savitzky-Golay filter for removing overall white
noise without distorting the tendency of the signal. These
filters are used in several existing studies for WiFi CSI
noise reduction because of their low computational cost,
as described in [37]. Figure 4 shows the amplitudes of the
time-series CSI before applying filters, after applying Ham-
pel filter, and after applying both Hampel and Savitzky-Golay
filters, respectively.

C. FEATURE EXTRACTION
In this section, we describe all the features extracted from
the amplitude signal of WiFi CSI for crowd counting and
localization. The features are categorized by three extraction
sources for each dynamic and static state, as summarized
in Table 1.

1) COMMON STATISTICAL FEATURES
We calculate common statistical features from time-series
CSI amplitudes. Several statistical functions are indepen-
dently applied to each subcarrier signal.

First of all, we can simply use the standard deviation of
amplitudes of each subcarrier. Intuitively, the more the num-
ber of people between WiFi channels, the more complicated
multipath fading channel is formed. This subsequently makes
the signal amplitude more severely fluctuate across entire
subcarriers thanwhen there are no people in the area.We have
checked that the number of people shows a monotonic rela-
tionship with the degree of signal fluctuation. A standard
deviation vector of subcarriers std(w) can be denoted as:

std(w)
= ( σ (a(w)

1 ), · · · , σ (a(w)

j ), · · · , σ (a(w)
ns )) (7)

where σ (x) denotes a function of the standard deviation of
any vector x.

As we can see from the CSI bundles in Figure 2(a) and (b),
the uppermost and lowermost CSI curves in a time window
gradually rise and go down as the number of people increases.
This characteristic is also representing the linearity between
crowd size and CSI signals. The CSI minima vector min(w)

and maxima vectormax(w) can be denoted as:

min(w)
= (min(a(w)

1 ), · · · ,min(a(w)

j ), · · · ,min(a(w)
ns ))

max(w)
= (max(a(w)

1 ), · · · ,max(a(w)

j ), · · · ,max(a(w)
ns )) (8)

where min(x) and max(x) represent a function of minima and
maxima of any vector x, respectively.
Similarly, the lower and upper quartile values of entire

subcarriers also show linear downward and upward trends
along with the increased number of people. We can denote
the lower quartile qtl(w) and the upper quartile qtu(w) as:

qtl(w) = ( q1(a
(w)

1 ), · · · , q1(a
(w)

j ), · · · , q1(a(w)
ns ))

qtu(w)
= ( q3(a

(w)

1 ), · · · , q3(a
(w)

j ), · · · , q3(a(w)
ns )) (9)

where q1(x) and q3(x) denote a function of the first quartile
and the third quartile of any vector x, respectively.

The average line of a CSI bundle shows the general shape
of CSI curves in a time window. This mean vector across
entire subcarriers mainly contributes to the localization part
of the system, because it reflects a particular shape of bundles
to the learning model depending on a specific section in the
area of interest that the crowd is gathered at. The mean vector
avg(w) can be denoted as:

avg(w)
= (µ(a(w)

1 ), · · · , µ(a(w)

j ), · · · , µ(a(w)
ns )) (10)

where µ(x) is a function of the mean value of any vector x.

2) CSI BUNDLE-BASED FEATURES
It is necessary to figure out a way to enhance our system’s
performance with some more effective features as well as
statistical ones. Therefore, we now address the features which
can be extracted from the CSI bundles.

The interquartile range (IQR) is the width between the
lower quartile and upper quartile. The values of the lower
quartile and upper quartile mutually inversely go down
and up as the number of people between a WiFi link
increases, consequently, the IQR also increases as we can see
in Figure 5. We can obtain an IQR vector that intuitively
implies the vertical width of a CSI bundle by the subtraction
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FIGURE 5. Average iqr(w) over links and subcarriers.

FIGURE 6. Average euc(w) over WiFi links.

of upper and lower quartiles as:

iqr(w) = qtu(w)
− qtl(w) (11)

The amplitude difference with adjacent subcarriers is the
summation of the absolute differences between one subcarrier
and adjacent subcarriers on both sides. It reflects the relation-
ship between adjacent subcarriers to the ML model, in terms
of lightly-varying or heavily-varying subcarriers depending
on the state of measuring space. This difference with adjacent
subcarriers adj is denoted as:

adj(w) = (µ(ζ (w)

1+N ), · · · , µ(ζ
(w)

j ), · · · , µ(ζ (w)

ns−N )) (12)

where

ζ
(w)

j = ( ζ (w)

1,j, · · · , ζ
(w)

i,j , · · · , ζ
(w)

np,j)
T ,

ζ
(w)

i,j =

N∑
n=1

( |a(w)

i,j − a
(w)

i,j−n| + |a
(w)

i,j − a
(w)

i,j+n|) (13)

where N is the number of adjacent subcarriers on both sides
which will be included in adj calculation. In this paper,
we decide as N = 2 through the empirical test.

Euclidean distance between CSI curve vectors from adja-
cent packets also contains information of how intensely the

multipath fading channel is changing. The Euclidean distance
maintains relatively low values when a channel is not being
interrupted by moving people, but the larger crowd in the
channel makes the value gradually increase, as we can see
in Figure 6. Let med(x) be a function of the median value of
any vector x, then the median of Euclidean distances in a time
window euc can be denoted as:

euc(w) = med( ε (w)1 , · · · , ε
(w)

i , · · · , ε
(w)

np−1
) (14)

where

ε
(w)

i = ||a
i+1
(w) − ai(w)|| (15)

In localization, we use coefficients of the fitted poly-
nomial curve of CSI bundle’s average line (cur(w)) and its
1st derivative function (der(w)), to leverage a particular shape
of the CSI bundle as a feature for localization. cur(w) reflects
the shape of the CSI bundle itself, and der(w) clarifies at
which points of the fitted curve have peaks, valleys, or sharp
slopes. We empirically apply the curve fitting with a 6-term
polynomial curve, then we use its polynomial coefficients
as the features. Therefore, cur(w) and der(w) feature vectors
contain six and five components, respectively.

3) RSS-BASED FEATURES
Lastly, we use RSS measurements which are measured with
CSI readings. WiFi RSS also shows a monotonic relation
between its variation and the number of people within the link
coverage similar to statistical features of CSI. If we define ρ
as an RSS measurement of a packet, the standard deviation of
RSS in a time window rss(w) can be denoted as:

rss(w) = σ ( ρ (w)

1 , · · · , ρ
(w)

i , · · · , ρ
(w)
np ) (16)

D. STANDARDIZATION & LEARNING MODELS
The extracted features are concatenated to form the datasets
for training each machine learning model of crowd counting
and localization. In this study, we treat counting and localiza-
tion as regression and classification problems, respectively.
Each feature vector or feature value is connected vertically
along the order of time windows and horizontally along the
order of links, for example, a feature matrix of standard
deviation STD can be denoted as:

STD =


std(1)

k=1 std(1)

k=2 · · · std
(1)

k=nk
std(2)

k=1 std(2)

k=2 · · · std
(2)

k=nk
...

...
...

...

std(nw)

k=1 std(nw)

k=2 · · · std
(nw)

k=nk

 (17)

where nk and nw are the total number of WiFi links in the
system (nk = 4 in this work) and the total number of
timewindows for training, respectively. Equally, other feature
matrices such asMIN,MAX, · · · ,RSS are also produced by
the same procedure. Then, all the feature matrices are lined
up from side to side becoming the final training dataset.

After the formation of training data, all datasets are
standardized by standard normal distribution N (0, 1) to

24402 VOLUME 10, 2022



H. Choi et al.: Wi-CaL: WiFi Sensing and ML Based Device-Free Crowd Counting and Localization

FIGURE 7. Planes and scenes of practical experiments.

fit the scales between different features before training.
Then, machine learning regressors and classifiers are trained
with the datasets to evaluate the performance of simul-
taneous crowd estimation. In this paper, we examine
counting performance with linear regressor (LR), random
forest regressor (RFR), XGBoost regressor (XR) and Light-
GBM regressor (LGBMR), and localization performance
with Random Forest classifier (RFC), Logistic Regression
classifier (LRC), support vector classifier (SVC) and Light-
GBM classifier (LGBMC). Furthermore, we construct the
DNN models, namely DNN regressor (DNNR) and DNN
classifier (DNNC), to check and provide the differences and
comparisons, and pros and cons compared to conventional
ML models.

V. PERFORMANCE EVALUATION
In this section, we present experimental setup, data gather-
ing scheme, and several comparisons depending on learning
models and adjustable parameters, then evaluate the system
performance through the experiments at two difference-size
rooms.

A. EXPERIMENTAL SETUP
We collected the CSI data through a multi-scenario exper-
iment with up to five participants in a small-sized meeting
room and up to 10 participants in a medium-sized seminar
room. Unlike conventional research that a single pair of WiFi
routers were usually installed using Intel or Atheros CSI solu-
tions, we placed the four pairs of ESP32 nodes to make four
WiFi links vertically, horizontally, and diagonally crossing
over the target area. This enables the system to faithfully
observe the change of CSI measurements with regard to
the movement of walking people covering the whole target
area. For our experiment, all transmitters were set to send
the CSI request packets to their pair receivers at 100Hz of
packet rate. We performed our experiments in a small-sized
meeting room (5.5m by 5.5m) and a medium-sized seminar
room (11m by 5.5m) which were equally divided into four
sections for assessment of crowd localization, as shown in
Figures 7(a) and (c). Figures 7(b) and (d) show the actual
scenes of our experiment. In both rooms, each WiFi link k
consists of AP k (Tx) and STA k (Rx).

B. DATA GATHERING SCHEME
To confirm the effectiveness of our insight of simulta-
neous crowd estimation, we designed and conducted the

FIGURE 8. Examples of walking scenarios.

experiments which contain five scenarios with a certain num-
ber of people walking in an experiment area. Here, five sce-
narios mean the situations that the cluster of people is walking
at different sections of the area. The number of people are
denoted as Pnpeo (npeo = 0, 1,· · · , 5 in the meeting room,
npeo = 0, 1,· · · , 10 in the seminar room), and the scenarios
related to the section number correspond to Snsect (nsect =
1,· · · , 4, and oth that indicates other pattern, i.e., full-area
walk). To be specific, the scenarios Snsect are corresponding
to the situation in which the participants walk freely within a
particular section nsect . In the scenario Soth, on the contrary,
the participants perform free walking all over the experiment
area. The examples of Pnpeo /Snsect scenarios are depicted in
Figure 8. In every section walking (S1, S2, S3, S4, and Soth),
all the participants walk randomly within the given space,
without any guidance/limitation on how to walk.

We collected two minutes of CSI data in each scenario
of all combinations of Pnpeo and Snsect . That is, a total of
60-minute-data (2 mins × 5 sections × 0-5 people) in the
meeting room and 110-minute-data (2 mins × 5 sections ×
0-10 people) in the seminar room were collected in a
single experiment. Then, we carried out three times of iden-
tical experiments in each of the meeting room and the
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FIGURE 9. Performance comparisons by learning models.

seminar room, on different days. This is to check the differ-
ence in system performance originating from circumstance
changes, such as temperature, humidity, or signal interfer-
ence. The experiments on different days are distinguished
as Session 1, 2, and 3.

C. COMPARISONS
In this section, we first compare our system performance
depending on the learning models including conventional
ML models and DNN, then provide further comparisons
between LGBM and DNN. We also present the result of
performance comparison between our method and conven-
tional metric (PEM) based method, then show how the sys-
tem performance changes in several different conditions and
parameters, such as time window size, the number of used
subcarriers, the number of used links, and scenario length. All
comparisons are based on the results of leave-one-session-out
cross-validation from the seminar room (up to 10 people).
We show the counting performance by median absolute
error (MAE) because a few error outliers are included in the
results due to an observational error. Here,MAE is themedian
value of the absolute crowd counting errors calculated by
median( |Real Counts− Estimated Counts |).

1) IMPACT OF LEARNING MODEL
As we mentioned in Section IV-D, we test four different
ML models and DNN for each of counting and localization,

FIGURE 10. Comparisons in MAE and training time over ML and DL.

then LGBMR and LGBMC are finally selected for overall
evaluation among them. In the case of counting, LGBMR
shows the second-best performance (0.41 MAE) after DNNR
(0.35 MAE), but we use LGBMR as a prior learning model
because of the reasons that are discussed in Section V-C2.
In localization, LGBMC shows the highest accuracy
as 98.1%, also it shows the smallest error range of each
session testing result. Figures 9(a) and (b) present the result
comparison by the learning models.

2) FURTHER COMPARISON BETWEEN ML AND DL
As we described in Section II, the authors of [29] assessed
the crowd counting system by DNN, and used PEM metric
as their system’s feature. Hence, we set this related work
as our comparison target to weigh the pros and cons of
ML (LGBMR) and DL (DNNR), and also PEM and our
feature. To that end, we first calculated the PEM values
from our datasets in the same way, then constructed our DL
model with the same DNN architecture described in [29] as
follows: four hidden layers with [1000, 500, 100, 10] neurons,
10−4 of learning rate, 100 of batch size, Adam optimizer and
ReLU activation function. Figure 10 shows the differences
in accuracy and training time depending on the used model,
used feature, and epochs setting. The descriptions of the trials
in Figure 10 are as follows:
• LGBM-OF: LGBMR trained with our features. It shows
0.41 MAE and requires 4.6 seconds of training time.

• DNN-OF-20: DNNR trained with our features,
20 epochs. DNN requires 20 epochs to reach to the
sameMAEwith LGBMR, and that needs approximately
4 times longer training time than LGBMR.

• DNN-OF-ES: DNNR trained with our features, early
stopping (patience: 100, average number of epochs:
445). We empirically set the patience setting of early
stopping in 100. It shows 0.06 improvement in MAE
over LGBM, requiring 336 seconds of training time.
We select this as our final DNN model setting.

• DNN-PEM-ES: DNNR trained with PEM, early stop-
ping (patience: 100, average number of epochs: 376).
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PEM shows 0.18 worse MAE than the case of our fea-
tures (DNN-OF-ES) by the same model settings.

• DNN-OF-22K: DNNR trained with our features,
22000 epochs. 22000 is the same number of epoch
settings in [29]. It shows 0.03 improved MAE compared
to DNN-OF-ES case, but the required training time is
unrealistic (15,867 seconds).

• DNN-PEM-22K: DNNR trained with PEM,
22000 epochs. This is the identical condition with [29].
It also shows 0.18 worse MAE than the case of our
features (DNN-OF-22K).

Here, early stopping is a method for avoiding overfitting in
DNN models by the halt of model fitting if validation MAE
doesn’t seem to be enhanced anymore, and patience value is
the early stopping parameter of how many epochs DNN will
be patient even without enhancement of validation MAE. All
above results are obtained by the following PC specification:
Intel(R) Core(TM) i7-10750H CPU (2.60GHz, 2.59GHz),
16GB RAM, and 64-bit Windows OS.

Although DNN shows slightly better performance,
we evaluate our system by LGBMR and LGBMC in the
rest of this paper. There are several reasons that we use
the conventional ML models other than DL. First is, the
fact that there is no significant gap between the ML and
DL-based results implies evidence of well-designed features.
Our work is more focused on effective feature engineering,
which is to find out some attributes corresponding to a sys-
tem’s goal from the raw data, rather than using an advanced
learning model. Meanwhile, LGBM shows a considerably
shorter training time than DNN. Generally, DNN requires
a large number of epochs and a longer training time to
reach to system’s best performance. We adopted the ESP32
nodes as our CSI reading devices with the consideration of
IoT-based aspect, therefore a low computing power environ-
ment is also needed to be considered. In addition, since a
retraining process for a new target area is required as of now,
it should be considered that the cost of model training of
DL would be a high barrier.

3) COMPARISON WITH CONVENTIONAL
METRIC PEM BY LGBMR
We compared PEM (with 52 subcarriers) and our fea-
tures (with 13 subcarriers) by LGBMR as well. Under our
testing environment, our features show better performance
(0.41MAE, 81.8%ofwithin-1-person error) than PEM-based
performance (0.62 MAE, 66.5% of within-1-person error),
as shown in Figure 11. To objectively compare the feature
importance with PEM, we include the PEM values with our
features in LGBMR for crowd counting. As a result, several
of our features including adj(w) and euc(w) show higher rank
in feature importance than PEM in link 1, 2 and 4, as shown
in Table 2. Only in link 3, PEM shows the highest impact in
feature importance.

4) IMPACT OF TIME WINDOW SIZE
Since our approach is adopting a method extracting sta-
tistical and designed features from a single-time-window

FIGURE 11. Performance comparison with PEM.

TABLE 2. Rank of feature importance including PEM.

CSI bundle, the configuration of time window size influences
system performance. In other words, the performance eval-
uation by each time window length is necessary because it
is important to decide how long data will be a base unit of
the system for the learning phase and online phase. Since
the longer time window contains more information and its
statistical values are more stable, the system performance
becomes higher as the length of the time window increases
as we can see in Figures 12(a) and (b). However, with tak-
ing into account the system’s real-time estimation capability,
we decided to use the time window size of our system in six
seconds with three seconds overlapping.

5) IMPACT OF NUMBER OF SUBCARRIERS
In terms of the number of subcarriers, the difference in system
performance is not very significant. Even so, we decided to
use 13 subcarriers data in our system, since it shows a slightly
higher performance than the other cases using 4, 26, and
52 subcarriers in both counting and localization, as shown in
Figures 12(c) and (d). Here, the used subcarriers are selected
with having the identical distance on both sides, from subcar-
rier 1 to 52 (e.g., 13 subcarriers: 1, 5, 9, · · ·, 49.). The small
number of subcarriers would have an advantage in terms of
shorter training time. For instance, we practically checked the
training time of each case that contains the different number
of subcarriers as 1.4s (4 subc), 4.6s (13 subc), 9.5s (26 subc),
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FIGURE 12. Performance comparisons by conditions and parameters.

and 16.7s (52 subc) by LGBMR-based leave-one-session-out
cross-validation with 600 mins long dataset (10 mins data ×
10 people× 3 days× 2-session data for each day). Neverthe-
less, the reason why we use 13 subcarriers here is that we also
need to consider the performance degradation produced by
the mutual similarity between the signal tendency of chosen
subcarriers that leads to overfitting.

6) IMPACT OF NUMBER OF LINKS
We placed four WiFi links to cover the whole experiment
area without any blind spots. Naturally, the number of WiFi
links impacts the system performance, therefore we com-
pare the accuracy when we use only a part of the links
data in the learning and testing phase. As we can see in

Figures 12(e) and (f), the system performance drops when we
include only a single link data, and it is gradually improved
as the number of links is increased, then it shows the best
performance when we use all four links. Also, we can see that
the cases including link 1 show higher MAE than the others.
This can be considered that link 1 in the seminar room was
too short to cover the entire area compared to the other links.

7) IMPACT OF SCENARIO LENGTH
As mentioned in Section V-B, two-minute-long CSI read-
ings have collected for each scenario (PnpeoSnsect ). To figure
out how long scenario data is required for higher accuracy,
we compared the performance of when we use only a part
of scenario data or the whole two minutes data for the

24406 VOLUME 10, 2022



H. Choi et al.: Wi-CaL: WiFi Sensing and ML Based Device-Free Crowd Counting and Localization

TABLE 3. Overall performance: conventional ML (LGBM) vs. DL (DNN).

training phase. We adjusted in scenario length by 30, 60,
90, and 120 seconds, and the corresponding results showed
0.47, 0.44, 0.43 and 0.41 MAE in counting, respectively, and
97.5%, 98.0%, 98.0% and 98.1% in localization, respectively.
The scenario length seems not to give a drastic impact on our
system performance, nonetheless, the numerical accuracy is
being slightly improved by the longer scenario data.

D. OVERALL PERFORMANCE
For the final results, we fixed the optimal conditions and
parameters that are confirmed in Section V-C. Our overall
performances are obtained under the conditions as follows:
LGBMR and LGBMC models were used for counting and
localization, respectively. Time window size for a single CSI
bundle was set in six seconds with three seconds overlap-
ping. We used 13 subcarriers out of 52, and all four WiFi
links. We set the scenario length as two minutes. In train-
ing and testing process, counting datasets for each crowd
count contain all section data (S1-S4, and Soth), and localiza-
tion datasets for each section contain all crowd count data
(P1-P5 in meeting room, P1-P10 in seminar room).
To compare the overall differences between the perfor-

mances of ML (LGBM) and DL (DNN), we present all the
numerical results from both learning methods in Table 3.
In the table, we gave background shadows to the results that
showed better performance between ML and DL. Accord-
ing to the results by leave-one-session-out cross-validation,
DL showed worse MAE in the meeting room but achieved
better MAE in the seminar room in counting, on the other
hand, ML showed better accuracy in both meeting and sem-
inar room in localization. In other words, it is impossible
to be clarified that DL always has a clear advantage or
always achieves better performance than ML in all the cases,
as mentioned in Sections V-C1 and V-C2. We have opened
the corresponding Python codes and feature datasets2 of the
results in Table 3 to the public through Github.

1) k-FOLD CROSS-VALIDATION
The k-fold cross-validation is a machine learning evaluation
method to assess a trained model by a single session dataset.
The whole dataset is split into k folds of datasets from
the first. When one fold is selected as test data, the other
k−1 folds become training data. After repeating this process
k times, the system performance is derived by averaging
all results from k trials. Specifically, we adopt the stratified
k-fold method which splits the folds by criteria ensuring that

2https://github.com/narajinx/Wi-CaL-WiFi-Crowd-Estimation.git

each fold contains the same ratio of target classes data. In this
study, we empirically set the number of folds as k = 7.

In the meeting room experiment, we achieved 0.16, 0.18,
and 0.13 MAE in crowd counting, and 96.5%, 97.1%,
and 95.9% of classification accuracy in crowd localization,
by Session 1, 2, and 3, respectively. Meanwhile, in the semi-
nar room experiment, we achieved 0.32, 0.36, and 0.32 MAE
in crowd counting, and 95.7%, 96.7%, and 97.3% of classifi-
cation accuracy in crowd localization, by Session 1, 2, and 3,
respectively. These results are summarized in Table 3.

2) LEAVE-ONE-SESSION-OUT CROSS-VALIDATION
We have separate datasets of three sessions which are col-
lected in the same room, by the same scenarios, but on
different days. This is to confirm our assumption that the
tendency of CSI data changes as time passes due to dif-
ferent temperatures, humidity, signal interference, and so
on. In that case, a regressor or classifier trained by only a
certain session’s data might not be adequate for the others.
However, there are only a few existing studies which are
addressing the time-variant influence in CSI measurements.
Hence, to confirm this variation between different sessions,
we conducted leave-one-session-out cross-validation. Here,
leave-one-session-out means, one whole session is selected
as test data to test a regressor or classifier trained by the other
sessions. This process continues until every session becomes
a test session at least once. Finally, the system performance
is calculated by averaging all the session results.

As summarized in Table 3, we achieved 0.35 MAE and
89.8%of counting predictions occurredwithin-1-person error
in the meeting room experiment, also 0.41 MAE and 81.8%
of counting predictions occurred within-1-person error in the
seminar room. In crowd localization, we achieved 91.4% and
98.1% classification accuracy in the meeting room and sem-
inar room, respectively. Figures 13 and 14 are presenting the
error CDFs of counting results and the confusion matrices of
localization results from both the meeting room and seminar
room, respectively.

3) FEATURE IMPORTANCE
We checked the rank of feature importance for both count-
ing and localization, from the result of leave-one-session-
out cross-validation. As shown in Table 4, the bundle-based
features, which are separately designed, dedicated metrics
for each counting and localization, mostly hold the highest
ranks across all links in both estimations. Meanwhile, we use
the statistical features as a common input. This is because,
each statistical feature shows different feature importance
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FIGURE 13. Counting error CDF (Leave-one-session-out).

FIGURE 14. Confusion matrices of localization (Leave-one-session-out).

depending on link number, regardless of what kind of estima-
tion (counting or localization) it contributes for. Therefore,
it is hard to define which specific statistical features are
always effective for counting or localization, as we can see
in the middle and lower-ranked features of Table 4.

VI. DISCUSSIONS
Through this study, we figured out the optimal conditions
and parameters for simultaneous crowd estimation such as
the learning models, the size of time windows, the number
of used subcarriers and links, by practical system implemen-
tation and diverse performance evaluations. We carried out
leave-one-session-out cross-validation to confirm the real-
istic system performance with considering the influence of
the change of CSI signal trends by the passage of time.
Furthermore, we empirically compared the pros and cons of
the conventional ML model (LGBM) and DL model (DNN).

Practically, it was confirmed that the system shows lower
accuracy when we use data of different days for each training
and testing phase compared to when using the same day data
for both training and testing. Thus, we need to concretely
reveal which factors (e.g., the difference of temperature,
humidity, or fine inner structure) produce the degradation
of system performance by installing environmental sensors
and inputting its data as a feature for machine learning.

TABLE 4. Rank of feature importance.

Also, we assessed our system performance by the test datasets
that are separately collected with the certain crowd count
(P0-P10), assuming the system can be applied in realistic
situations as long as the learning models are trained once.
However, it seems necessary to carry out a real-time system
evaluation that includes continuous changes of the number of
people in the area, to reveal the variation of system accuracy
depending on those state transitions.

Besides, we define the following five remaining challenges
and future directions toward the further-enhancedWiFi crowd
estimation.

A. SELECTIVE SUBCARRIER
As we mentioned in Section V-C5, there was no significant
difference in estimation accuracy depending on the number
of used subcarriers in this work. Naturally, the less number
of subcarriers makes the training phase faster, but in some
cases, the small number of subcarrier selection could cause
the lack of enough distinct features. Hence, the algorithmic
investigation of selective subcarriers for a certain target area
would be needed as one of our future works.

B. LAYOUT-INDEPENDENT LEARNING
It is also necessary to conduct the leave-one-room-out cross-
validation. We implemented our system in a meeting room
and seminar room which have a relatively simple inner struc-
ture, however, if we want to examine the feasibility of the sys-
tem in the real world, it should be on trial in the public space
such as supermarkets, museums, and even outdoors. We will
proceed in stages for our future work on system robustness
from diverse indoor layouts, structure, and outdoors.

C. LARGE-SCALE HUMAN DENSITY ESTIMATION
We suppose that the validation of the system’s detection limit
in terms of the number of people is essential. Our system
uses the statistical values and features in a given size of time
windows as training data for machine learning. Especially,
the crowd count estimation is based on CSI variation and
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regression analysis, but the fluctuation level of CSI signals is
expected to necessarily converge at a certain point of crowd
size. Therefore, we need to examine the possibility of massive
crowd estimation as well, which is currently possible by
vision-based approaches, by more large-scale experiments.

D. MULTI-CLUSTER CROWD ESTIMATION
Our system now has a restriction that it can estimate the crowd
information only in the cases when a crowd is gathered within
a single section (S1-S4) or randomly spread across the entire
area (Soth). Undoubtedly, it is a generous precondition that all
people are gathered at a single section in an area. However,
at least this work has significance in the sense of the very first
foundation stone in WiFi sensing-based crowd localization
that can contribute to predicting which part of an area is the
most crowded spot in the real world such as retail stores,
supermarkets, or exhibitions. Indeed, the most ideal case is
if we can estimate the number of people in each section like
‘‘five people in Section A, three people in Section B.’’, i.e.,
when the crowd is split into multiple clusters and exists in
multiple sections. This detailed estimation, for instance, will
enable to help disperse the people onto a less crowded area
in the situation of an emergency evacuation. Even though
it requires more time and effort to devise a new metric or
design a different algorithmic approach, this multi-cluster
crowd estimation would become our final objective in our
future work.

E. COEXISTENCE OF MULTIPLE TYPES OF SIGNALS
As we mentioned in Section II, some studies are address-
ing the WiFi sensing with other multiple types of wireless
signals such as UWB and visible light [8] or Zigbee, Blue-
tooth and microwave [31]. A considerable advantage of WiFi
CSI-based human sensing is that it is possible to detect people
without installing any other devices by utilizing pervasive
WiFi signals. Nevertheless, different types of wireless sens-
ing could be helpful in some cases, for example, the visible
light sensors can recognize the obvious change of luminance
occurred by the passage of person or change of crowd size,
as presented in [8]. Meanwhile, since it is necessary to con-
sider the impact of coexisting radio frequency (RF) signals on
WiFi if we use multiple types of wireless signals, the signal
interference should be detected. In this case, the RFI detection
algorithm introduced in [31] can be a base of the solution for
eliminating the redundant components in CSI measurement.

VII. CONCLUSION
In this paper, we examined the potential and feasibility of the
simultaneous crowd estimation system that can predict both
the number and location of a crowd, byWiFi IoT CSI solution
and machine learning. We also comparatively confirmed the
pros and cons between conventional machine learning and
deep learning in crowd estimation by empirical comparisons.
We utilized for the first time, ESP32 nodes and its CSI toolkit
as the WiFi sensing source for medium-scale crowd count-
ing and localization instead of conventional WiFi, therefore

we provided the initial foundation of this new CSI plat-
form by various comparisons. We conducted the empirical
experiments with up to 10 people (for crowd counting) in
two four-sectioned real environments (for crowd localiza-
tion) for three different days. By leave-one-session-out cross-
validation, our system achieved 0.35 MAE of counting error
(89.8% of within-1-person error) and 91.4% of localization
accuracy with five people in a small-sized meeting room,
and 0.41 MAE of counting error (81.8% of within-1-person
error) and 98.1% of localization accuracy with 10 people in a
medium-sized seminar room, by machine learning.
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