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Abstract

A human activity recognition (HAR) system acts as the backbone of many human-centric applications, such as active

assisted living and in-home monitoring for elderly and physically impaired people. Although existing Wi-Fi-based human

activity recognition methods report good results, their performance is affected by the changes in the ambient environment.

In this work, we present Wi-Sense—a human activity recognition system that uses a convolutional neural network (CNN)

to recognize human activities based on the environment-independent fingerprints extracted from the Wi-Fi channel state

information (CSI). First, Wi-Sense captures the CSI by using a standard Wi-Fi network interface card. Wi-Sense applies

the CSI ratio method to reduce the noise and the impact of the phase offset. In addition, it applies the principal component

analysis to remove redundant information. This step not only reduces the data dimension but also removes the environmental

impact. Thereafter, we compute the processed data spectrogram which reveals environment-independent time-variant micro-

Doppler fingerprints of the performed activity. We use these spectrogram images to train a CNN. We evaluate our approach

by using a human activity data set collected from nine volunteers in an indoor environment. Our results show that Wi-Sense

can recognize these activities with an overall accuracy of 97.78%. To stress on the applicability of the proposed Wi-Sense

system, we provide an overview of the standards involved in the health information systems and systematically describe how

Wi-Sense HAR system can be integrated into the eHealth infrastructure.

Keywords Channel state information · Convolutional neural network · Doppler effect · Health information systems ·
Human activity recognition · Principal component analysis · Radio frequency sensing · Spectrogram

1 Introduction

The world demographics reveal that the elderly population is

rapidly increasing across the globe. The World Health Organi-

zation statistics show that 16% of the world population will

� Muhammad Muaaz

muhammad.muaaz@uia.no

Ali Chelli

ali.chelli@uia.no

Martin Wulf Gerdes

martin.gerdes@uia.no

Matthias Pätzold

matthias.paetzold@uia.no

1 Faculty of Engineering and Science, University of Agder,

P.O. Box 509, 4898 Grimstad, Norway

be over the age of 65 by 2050 [34]. To embrace this demo-

graphic shift and to poise the social transformation asso-

ciated with it, the Madrid International Plan of Action on

Ageing [33] has identified several priority directions includ-

ing “ensuring enabling and supportive environments.” Issue

I of this priority direction emphasizes the development of

adaptable living environments for elderly to support them

to enjoy safe, active, and independent living in their homes

for as long as possible. To enable this, there is a great

need to develop robust, unobtrusive, and senior-friendly in-

home monitoring systems that can be integrated with HIS

to automatically invoke a nearby emergency health service

provider for assistance in case of emergency.

HAR acts as the basic building block of an in-home

monitoring system. HAR generally deals with the recog-

nition of human activities based on sensor data. A typical

HAR system consists of data sensing, processing, and clas-

sification modules. The sensing module consists of one or

more sensors that collect data when a person is carrying
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out different activities. A data processing module generally

eliminates noise from the raw sensor data and subsequently

prepares the data for the classification module. The classi-

fication module classifies the performed activities using a

learning algorithm.

HAR systems are generally classified into vision-based

[3, 19], wearable sensor–based [32, 38], and radio frequency

(RF)–based [12, 37]. In vision-based HAR systems, com-

puter vision techniques are used to recognize human activi-

ties from the recorded videos or images [43]. Vision-based

HAR systems are generally considered very accurate in rec-

ognizing human activities, but they do not cope well with

changes in the ambient environment. For example, vision-

based systems have a limited operating area; they require a

clear (or an obstacle-free) view of the environment; users

often rate them as a potential privacy risk; their performance

is subject to change under different lighting conditions

and anthropometric variations. On the other hand, wearable

sensor–based HAR systems use inertial sensors to capture

the user’s dynamic body movements while performing dif-

ferent activities. The recorded sensor data is then processed

and analyzed to recognize activities. Wearable sensor–based

HAR systems can be considered as a viable alternative

to vision-based HAR systems because they are immune

to changes in the ambient environment and do not suffer

from privacy risks. However, wearable sensor–based HAR

systems are less user-friendly because they require users

to carry or wear sensors, which is invasive, unpleasant,

and uncomfortable for the elderly and physically disabled

individuals [23].

RF-based HAR systems work on the principle that human

bodies reflect RF signals, and human movements introduce

variations in the frequencies of the RF signals due to

the physical phenomenon known as the Doppler effect.

These variation-enriched RF signals are used to recognize

human activities. RF-based HAR systems offer several

advantages over vision-based and wearable sensor–based

HAR techniques. For instance, in contrast to vision-based

HAR systems, RF-based HAR systems are unaffected by

lighting conditions as well as anthropometric variations,

and they do not compromise the user’s privacy. In addition

to that, unlike wearable sensor–based HAR systems, RF-

based HAR systems do not restrict users to wear a sensor.

Therefore, RF-based HAR systems can be considered as

a more appropriate alternative for HAR systems in smart

homes and healthcare applications. As a result, since last

few years, researchers have been diligently exploring and

developing RF-based HAR techniques.

1.1 Related work

Existing RF-based HAR systems either employ radar or

Wi-Fi technology to sense human activities, both of which

have their own merits and demerits. For instance, radar-

based systems [22] offer high sensitivity and spatial

resolution resulting in a more accurate recognition of human

activities [36], gestures [31], and fall detection [16], but this

advantage comes at a significantly higher cost. Therefore,

the high cost of radar-based systems limits their widespread

use. On the other hand, Wi-Fi-based HAR systems are

economical in general, and they can easily be integrated

into pre-existing Wi-Fi infrastructures at our homes and

workplaces without notable additional costs. There exist

two types of Wi-Fi-based HAR systems [37]. The first

type uses the received signal strength indicator (RSSI) [12,

29], whereas the second type relies on the channel state

information (CSI) [7, 8, 15, 25, 37, 40, 44] for activity

recognition tasks.

The CSI characterizes how RF signals travel from a

transmitter to a receiver in an environment at different

carrier frequencies and undergo various effects, such as

amplitude attenuation, phase shift, and time delay [2]. The

previous work has shown that the CSI-based HAR systems

outperform the RSSI-based HAR systems [37]. This is

due to a reason that the CSI provides more information

compared to the RSSI. For each received data packet, the

CSI provides both the amplitude and phase information for

every orthogonal frequency-division multiplexing (OFDM)

subcarrier, whereas the RSSI provides a single-value for

each received packet that represents the attenuation of the

received signal strength during propagation.

There exist various approaches to recognize human activ-

ities using CSI data by applying machine learning [21,

25, 37] and deep learning [7, 44] techniques. In [37], the

authors proposed two theoretical models. The first model

(known as “the CSI-speed model”) links the speed of human

body movements with the CSI data, while the second model

(known as “the CSI-activity model”) links the speed of

human body movements with human activities [37]. The

proposed approach in [37] was developed using commercial

Wi-Fi devices and achieved an overall recognition accuracy

of 96%. A deep learning technique consisting of autoen-

coder, convolutional neuronal network (CNN), and long

short-term memory modules to recognize human activities

from the CSI data has been proposed in [44]. This deep

learning network achieved an overall accuracy of 97.4%. In

[7], an attention-based bidirectional long short-term mem-

ory technique was used to recognize human activities from

the CSI data. The CSI data sets collected in two differ-

ent environments, namely an activity room and a meeting

room were used to evaluate the performance of the proposed

approach. This approach achieved a recognition accuracy of

96.7% when evaluated using the CSI data collected inside

the activity room and 97.3% when the CSI data collected

inside the meeting room was used. However, in the cross-

environment scenario, where the training data that has been
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collected in one environment and the testing data from the

other environment are used, the overall recognition accuracy

drops to 32%.

Although existing CSI-based HAR systems have

reported reasonably good results, they still suffer from the

drawback that they are environment dependent. This implies

that their performance is susceptible to changes in the envi-

ronment, as reported in [7]. This is generally true for all

CSI based-HAR systems that only rely on the amplitude

of the CSI data for recognizing activities and gestures.

Researchers have proposed several solutions to resolve this

problem. For instance, in [15], it was proposed to use subject

and environment independent features extracted from the

CSI data for training the classifiers. However, this approach

requires a large amount of training data that must be col-

lected from a a lot of persons in different environments [15]

to train a machine learning model. The other approach pro-

poses the use of a semi-supervised learning technique, that

requires users to manually label the activity fingerprints that

may have been changed due to changes in the environment

[39]. This solution requires user interaction that is not very

practical for applications in elderly care.

A location and position invariant gesture recognition

system “WiAG” was proposed in [35]. WiAG, first collects

training samples form users using a single configuration.

Next, it uses a translation function to virtually generate

data samples for all possible configurations. Afterwards,

it constructs classification models for each configuration

using corresponding virtual samples. At runtime, WiAG fist

estimates the configuration of the user and the evaluate

runtime (or testing) data against the classification model

corresponding to that configuration.

Wi-Motion [21] leverages amplitude and phase infor-

mation extracted from the CSI data. At first, Wi-Motion

separately constructs two support vector machine (SVM)

classifiers using statistical and frequency domain features

extracted from amplitude and phase information. To classify

the activities, a posterior probability-based decision-level

fusion strategy was employed to fuse the results of the clas-

sifiers. Reportedly, the Wi-Motion was able to achieve a

recognition accuracy of 96.6% when evaluated using a data

set consisting of five activities such as, bend, half squat,

step, jumping, and stretching a leg.

In [25], the authors presented a spectrogram-based approach

to compute environment independent fingerprints of dif-

ferent activities from the CSI data. At first, the impact

of the environment and noise is removed from the CSI

data. Afterwards, the spectrogram method was used to com-

pute the mean Doppler shift (MDS) from the processed

CSI data. The MDS represents the Doppler signature of

the performed activity. Thereafter, different statistical and

frequency domain features were extracted from the MDS.

They employed a SVM classifier to classify different activ-

ities based on the features extracted from the MDS. This

approached achieved an overall recognition accuracy of

96.2% when evaluated using a data set consisting of four

activities including walking, falling, sitting, and bending.

As described above, the learning algorithms used in [21, 25]

are able to classify human activities with overall recogni-

tion accuracies of 96.2% and 96.6%, respectively. However,

these approaches [21, 25] require extensive user interaction

and domain knowledge to extract and choose discrimina-

tive features from the processed CSI (or MDS) data, to

effectively classify human activities.

1.2 Contributions and organization

This work presents Wi-Sense that uses a CNN to recognize

human activities from environment-independent time-

variant micro-Doppler signatures (or fingerprints) extracted

from Wi-Fi CSI data. In contrast to previous works [7,

15, 40, 44], Wi-Sense uses both amplitude and phase

information of the CSI data. First, Wi-Sense processes the

CSI data to remove the impact of noise and fixed (or non-

moving) objects present in the environment. The processed

CSI data is then used to compute the spectrogram1 of

the CSI data corresponding to different human activities.

These spectrograms represent the radio channel Doppler

characteristics caused by fixed and moving objects present

in the environment. As we know, the static objects do not

cause any variation in the RF signals Doppler frequencies.

This implies that different static objects’ positions in the

environment will not influence the performance of our HAR

system. The spectrograms are stored as portable network

graphics (PNG) images and used to train a deep CNN. We

evaluate this novel approach using a Wi-Fi CSI data set [25].

This data set were collected in an indoor environment from

nine volunteers. Each volunteer carried out four different

activities: walking, falling, sitting on a chair, and picking up

an object from the floor.

In contrast to the approaches developed in [21, 25],

the CNN used in Wi-Sense does not require extensive

human interaction to manually extract features from the

CSI data. The CNN used in the Wi-Sense is able to auto-

matically extract discriminative features from the PNG-

formatted spectrogram images and classify human activi-

ties. Moreover, best to our knowledge, this is the first work

that provides an overview of HIS standards, their interop-

erability, and systematically describes how the proposed

Wi-Fi-based HAR system can be integrated into the existing

HIS standards.

1A spectrogram provides a visual representation of the time-variant

spectral distribution of a signal.
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The rest of the paper is organized as follows. In Section 2,

we provide a succinct overview of the proposed Wi-Sense

HAR system. In Section 3, we present the details of the

experimental setup and human activity data collection.

Section 4 describes the steps involved in processing the

CSI data and computing the spectrogram. In Section 5,

we present the architecture of our CNN model, the

classification process, and the obtained results. The details

about the relevant HIS standards and the integration of the

Wi-Sense HAR system into the HIS infrastructure are given

in Section 6. Finally, Section 7 concludes this work and

presents the future work.

2 Overview of theWi-Sense system

The Wi-Sense HAR system comprises of three main mod-

ules, namely the RF sensing module, the data processing

module, and the classification module. The RF sensing mod-

ule of Wi-Sense consists of a Wi-Fi transmitter (Tx) and a

Wi-Fi receiver (Rx). The Tx and Rx are Wi-Fi network inter-

face cards (NICs) that operate in the 5 GHz band [14]. The

Tx and Rx are used capture the CSI, while a user is perform-

ing different activities in an indoor environment. The Tx

continuously emits RF signals that propagate in the indoor

environment. While traveling from the Tx to the Rx , these

RF signals reflect from the static and moving objects present

in the environment, as shown in Fig. 1. The examples of

static objects include walls, ceiling, and furniture, whereas

the moving objects are the body segments of the moving

person, such as feet, legs, hands, arms, head, and trunk.

The ambient RF signals experience frequency shift due

to moving objects that are present in the environment. This

phenomenon is known as the Doppler effect. The Rx receives

these modified RF signals and reports the estimated CSI.

Channel state information

Data processing

Compute

spectrogram

CNN

Tx Rx

Fig. 1 The overview of the Wi-Sense HAR system

The Wi-Sense’s data processing module first effectively

reduces the noise from the CSI data. Thereafter, time-variant

micro-Doppler signatures are extracted using the spectro-

gram method. The spectrogram images show the time-

variant Doppler characteristics of the RF channel caused by

the static and moving objects. As we know, the Doppler

effect is only caused by the moving objects present in the

environment, while scattered signal components received

from static objects will not experience any Doppler shift.

Therefore, we argue that variations in the micro-Doppler

signatures are in fact due to the moving object, and thus,

the performance of the Wi-Sense will not be affected by dif-

ferent static objects’ placements. The spectrogram images

are stored as PNG images and passed to the classification

module. The Wi-Sense classification module is basically a

CNN, which determines the types of activities performed

by the user. In addition to that, the Wi-Sense HAR system

can be integrated into the HIS infrastructure using a Tele-

Care alarm service (see Section 6.2). Thus, upon detecting

an accidental fall, it can send a fall alarm message to a health

service provider.

3 Experimental setup and channel state
information collection

In this paper, we used a human activity data set [25] that was

collected in an indoor environment from nine volunteers

in total. Each volunteer performed four different activities,

namely walking, falling on a mattress, sitting on a chair,

and picking up an object from the floor. During the data

collection, only a single volunteer was moving inside the

room. For each volunteer, we recorded several trials of each

activity, and we asked the volunteer to stay inactive for one

second before commencing and after finishing an activity

trial.

Each volunteer repeated the walking activity 10 times by

walking back and forth from points A to B and B to A, as

shown in Fig. 2. The falling activity was carried out at point

Fig. 2 The experimental setup for data collection [25]
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B, where a thick mattress was place on the floor and the

participant fell on the mattress. Each volunteer repeated the

falling activity 10 times, out which five times they fell on the

mattress facing towards the antennas and five times facing

away from the antennas.

The sitting activity was also carried out at point B, where

an arm-less chair was placed. Each volunteer repeated the

sitting activity five times. For each sitting activity trial, the

volunteer stood still next to the chair facing towards the

antennas and then sat on the chair, as shown in Fig. 2.

Finally, for the activity “Picking up an object from the

floor,” a small object, e.g., a whiteboard marker, was placed

on the floor at point B. We asked the volunteers to pick it up

from a standing position. Each volunteer also repeated this

activity five times.

To collect and parse the CSI data while the participants

were performing the aforementioned activities, we used two

laptops, each was equipped with an Intel 5300 Wi-Fi NIC

[14]. We installed the CSI Tool [10] on both laptops. One

laptop was used as a transmitter (Tx), and the other laptop

as a receiver (Rx). The internal antennas of the laptops

normally have a limited coverage range; and therefore, we

connected one external directional antenna to the Tx and two

external antennas to the Rx , one of which was a directional

and the other an omnidirectional antenna. The transmitting

and receiving antennas were placed on a table as shown in

Fig. 2 at a height of 0.8 m from the floor. The NICs of the Tx

and Rx were operating at the 5.745 GHz central frequency

with 20 MHz bandwidth in single-input multiple-output

(SIMO) transmission mode. We used the “injector-monitor

Wi-Fi mode,” where the Tx was set to transmit random data

packets into the RF channel at a sampling frequency of 1 ms.

The Rx was configured to receive the transmitted packets

and report the estimated CSI in a matrix form for every

received data packet. Generally, the dimension of the CSI

data matrix is NTx × NRx × K , where NTx indicates the

number of transmit antennas, NRx stands for the number of

receive antennas, and K represents the number of OFDM

subcarriers. Moreover, the CSI Tool reports estimated CSI

data along 30 OFDM subcarriers for each transmission link.

Therefore, in our case, the dimension of the CSI data matrix

was 1 × 2 × 30.

4 Processing of channel state information
and spectrogram computation

The raw CSI data contains amplitude and phase information,

which are corrupted by noise; and therefore, the raw CSI

data streams cannot effectively be used to extract micro-

Doppler signatures [24]. The CSI data amplitude is mainly

corrupted by the ambient noise and adaptive changes of the

transmission parameters [41]. In addition to that, the phase

of the CSI data suffers from errors introduced by the carrier

frequency offset (CFO) and the sampling frequency offset

(SFO) [37, 41]. The errors related to the CFO and SFO are

due to the asynchronicity between the Tx and Rx clocks.

4.1 Phase correction

The first step towards extracting the micro-Doppler signa-

tures from the CSI data requires CSI phase distortions elim-

ination. In the literature, there exist three different methods

that can be used to eliminate the phase distortions, namely

the phase sanitization method [6], the phase calibration

method with back-to-back channel configuration [18], and

the CSI ratio method [42]. The phase sanitization method

applies a linear transformation to the measured (distorted)

phases to determine the true phase However, it has been

reported in [1] that the true phases obtained after applying

the phase sanitization method do not unfold the Doppler

features of the measured CSI data. The back-to-back chan-

nel configuration method [18] splits the transmitted signal

into two similar signals using a two-way splitter, which is

connected to the Tx . One of the two outputs of the split-

ter is connected to the Tx antenna, whereas the other output

of the splitter is directly connected to one of the three RF

antenna ports of the Rx using an RF cable, to set up a back-

to-back channel. Moreover, the Rx antennas are connected

to the remaining RF antenna ports of the Rx . In this way,

the signal is first split and then it is simultaneously trans-

mitted over the wireless and back-to-back channels. The Rx

receives signals over both channels. As the signal received

via the back-to-back channel has no phase distortions, it can

be used to calibrate the phase of the signal received by the

Rx antennas.

Inspired by the previous studies [24, 25, 42], we use the

CSI ratio method [42] in this work. The CSI ratio method

is more economical and simpler to set up, because it does

not require additional hardware compared to the back-to-

back channel configuration method [24]. Moreover, our

experiments and previous works [24, 25] suggest that the

CSI ratio method is more effective in reducing the phase

distortions and noise from the amplitude information, com-

pared to the phase sanitization and back-to-back channel

configuration methods. In the CSI ratio method, at least

one Tx and two Rx antennas are used. The Rx antennas

are placed close to each other to simultaneously receive

the CSI data. Thereafter, the CSI ratio R(f ′
k, t) is com-

puted by dividing the CSI data of the first transmission link

H1,1(f
′
k, t) by the CSI data of the second transmission link

H1,2(f
′
k, t), i.e.,

R(f ′
k, t) =

H1,1(f
′
k, t)

H1,2(f
′
k, t)

(1)
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(a) (b)

Fig. 3 The falling activity spectrograms obtained a without and b with applying the CSI ratio-based phase calibration technique

where Hi,j (f
′
k, t) is denotes the time-variant channel

transfer function (CTF)2 of a transmission link between ith

transmit and j th receive antenna pair sampled at the kth

subcarrier f ′
k [24]. The used CSI Tool provides estimated

CSIdata for K = 30 OFDM subcarriers. Each subcarrier

f ′
k (where, k = 1, 2, ...K) can be expressed as

f ′
k = f ′

0 + k�f ′ (2)

where f ′
0 represents the carrier frequency, k stands for the

subcarrier index, and �f ′ indicates the subcarrier band-

width. As the CSI Tool reports 30 CSI streams for each

transmission link. Thus, we can obtain 30 CSI ratio streams

after applying the CSI ratio method.

To demonstrate the effectiveness of the CSI ratio method

in eliminating the CSI phase distortions, in Fig. 3, we

present the comparison of the spectrograms of the CSI data

that belong to a single trial of the falling activity before and

after using the CSI ratio method. Note, the data processing

steps explained in this subsection and in the following

Sections 4.2 and 4.3 were kept the same for computing these

spectrograms.

4.2 Dimensionality reduction

It has been reported in [37] that the variations of the RF

signals due to human movements are correlated across

different CSI data streams. With reference to Eq. 1, this

means that CSI ratio streams R(f ′
k, t) corresponding to

different subcarrier f ′
k are correlated as well. Therefore,

we apply the principal component analysis (PCA) [17] to

remove correlated and redundant information from the CSI

ratio streams. The PCA is a statistical method commonly

applied to real value data sets to reduce the data dimen-

sions and filter noise from the data. However, the CSI ratio

streams are complex-valued. Therefore, we use the formula-

tion of PCA applicable to the complex-domain, as described

in [26].

2Within the scope of this work, the terms CSI and CTF are considered

interchangeable.

The CSI ratio streams are indeed continuous time series.

Therefore, before applying the PCA, the CSI ratio streams

are arranged in the form of a matrix. This is done by

considering the samples of R(f ′
k, t) at t = tn = nT for

n = 1, 2, . . . , N , where T is the sampling interval and N

denotes the number of samples in the time domain [24]. As a

result, we obtain Rkn = R(f ′
k, tn), which is used to express

the CSI ratio streams in the form of a matrix. We call this

matrix the CSI ratio matrix R, and it is defined as follows

R =

⎛

⎜

⎜

⎜

⎝

R11 R12 · · · R1N

R21 R22 · · · R2N

...
...

. . .
...

RK1 RK2 · · · RKN

⎞

⎟

⎟

⎟

⎠

∈ C
K×N . (3)

The CSI ratio matrix R is a K × N complex matrix3. Each

row of matrix R simply represents the discrete form of the

corresponding continuous CSI ratio stream. Next, the CSI

ratio matrix R is mean normalized by subtracting the mean

value m̄k =
∑N

n=1 Rkn/N from each row of the CSI ratio

matrix R, i.e.,

Rm =

⎛

⎜

⎜

⎜

⎝

R11 − m̄1 R12 − m̄1 · · · R1N − m̄1

R21 − m̄2 R22 − m̄2 · · · R2N − m̄2

...
...

. . .
...

RK1−m̄K RK2 − m̄K · · · RKN −m̄K

⎞

⎟

⎟

⎟

⎠

∈ C
K×N .

(4)

Thereafter, we compute the covariance matrix C as follows

C =
1

N − 1
RmR

H

m (5)

where (·)H denotes the conjugate transpose operator. The

covariance matrix C is a complex square (or Hermitian) matrix

of dimension K × K . The diagonal elements of C describe

the variances of the CSI ratio streams, and the off-diagonal

elements describe their covariances [24]. Thereafter, we

factorize the covariance matrix C into eigenvectors and

3For the ease of notation, capital letters K and N are used to represent

the dimensions of the CSI ratio matrix R.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 The amplitude plots of the first six principal components of the falling activity

eigenvalues. Consequently, we obtain K complex-valued

eigenvectors and K real-valued eigenvalues. The eigenvec-

tors are sorted according to the decreasing eigenvalues.

These eigenvectors are called the principal components or

(principal axes). Let Z be the matrix consisting of K eigen-

vectors sorted in order of decreasing eigenvalues. There-

after, we project the mean normalized CSI ratio matrix Rm

onto these principal axes according to

Y = R
⊺
mZ (6)

where (·)⊺ is the transpose operator. The first principal com-

ponent in Y indicates the direction in which the data has

the highest variance. On the contrary, the last principal

component in Y indicates the direction in which the data

varies the lest. So, the first principal component captures

the maximum and the last principal component captures the

minimum original data information. In Fig. 4, we visual-

ize this effect by plotting the amplitude plots of the first six

principal components of the falling activity.

In Fig. 4, we can observe that the first principal com-

ponent (see Fig. 4a) captures the variations caused by the

falling activity, and it contains very less noise. Besides, we

also observe that the level of noise increases in each sub-

sequent principal component, as shown in Fig. 4. From the

fourth onward till the last (Figs. 4c–f), each principal com-

ponent is presents in the noise in the data. Therefore, we

only used the first principal component for computing the

spectrogram. Moreover, we apply a low-pass filter with a

cut-off frequency of 150 Hz to the selected principal com-

ponent to further minimize the effect of the high frequency

components which are not caused by the human movement.

4.3 Computing the spectrogram

We use a two-step processor to compute the spectrogram

of the filtered data Y1(t). In the first step, we compute the

shorttime Fourier transform (STFT) of the filter data as

follows

XY1
(f, t) =

∞
∫

−∞

Y1(t
′)g(t ′ − t)e−j2πf t ′dt ′ (7)
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(a) Falling (b) Walking

(c) Sitting on a chair (d) Picking up an object from the floor

Fig. 5 Spectrograms of four activities explored in this work

where t ′ denotes the running time, t denotes the local time,

and g(t) is a Gaussian sliding window function, which is

defined as

g(t) =
1

√

σw

√
π

e
− t2

2σ2
w . (8)

In Eq. 8, σw indicates the spread of the Gaussian window.

The Gaussian window function g(t) is real and has unit

energy, i.e.,
∫ ∞
−∞ g2(t)dt = 1. In the second step, the

spectrogram SY1
(f, t) is obtained as [4]

SY1
(f, t) = |XY1

(f, t)|2. (9)

The spectrograms of the activities that are explored in this

work are shown in Fig. 5.

5 Classifying spectrogram images using
convolutional neural network

For every activity trial in the collected data, we first com-

puted the spectrogram and then saved it as a PNG image in a

folder labelled with the activity. Thereafter, all spectrogram

images were scaled to the same 224 × 224 × 3 dimension

by applying the bicubic interpolation technique [11]. We

split the spectrogram image data set into the training, vali-

dation, and testing data sets. The training data set consist of

70% of the total data, whereas the remaining 30% data were

divided equally into the validation and testing data sets. We

used the training data set to train the CNN with a batch

size of 16. The architecture of our CNN is shown in Fig. 6.

The CNN consists of 14 layers including input, flatten, and

output layers. The dimensions (i.e., height and width) of

the filters used in all convolutional layers are 5 × 5 and in

all max-pooling layers 2 × 2. The stride parameter, which

defines the number of cell shifts over the given data matrix,

was set to 1 for the convolutional layers and to 2 for the

max-pooling layers. The number of filters used in the first,

second, and third convolutional layer was 32, 48, and 64,

respectively. All convolutional layers used the rectified lin-

ear unit (ReLU) activation function. After each max-pooling

layer, a dropout layer (indicated by a green circle in Fig. 6)

with a threshold 0.3 was used. The last two layers are fully

connected with dimensions 256×1 and 84×1, respectively.

The dimension of the output layer is 4×1 and uses the Soft-

max activation function. The validation data were used to

monitor the training progress of the CNN and to stop the

training if the validation accuracy does not improve over 8

consecutive epochs. The CNN model accuracy and loss over

the training and validation data are presented in Fig. 7a and

b, respectively. Finally, the performance of the CNN model

was evaluated based on the testing data set.

We use a confusion matrix to quantitatively visualize the

results of our CNN model (see Fig. 8). In this confusion

matrix, the counts of the correctly classified activity trials

(i.e., true positive (T P ) and true negative (T N)) are given

in the green cells. The counts of the incorrectly classified
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Fig. 6 The architecture of the CNN, where the symbol S indicates the stride parameter and the symbol F denotes the size of filter used in the

max-pooling layer. The green circles represent the dropout layer

activity trials (i.e., false positive (FP ) and false negative

(FN)) are given in the red cells. Within the scope of

this work, T P indicates the number of correctly classified

activity trials of the positive class, and T N indicates the

number of correctly classified activity trials of the negative

class. On the other hand, FP represents the number of

activity trials that actually belong to the negative class but

incorrectly classified as the positive class. Similarly, FN

(a)

(b)

Fig. 7 a Accuracy and b loss during the training process based on the

training and validation data sets

indicates the number of activity trials that actually belong

to the positive class but incorrectly assigned to the negative

class. The overall accuracy of the CNN model is given in the

blue diagonal cell. The confusion matrix also presents the

performance of the CNN model in terms of precision and

recall for each class, which are presented in the rightmost

column and the last row of the confusion matrix (see

Fig. 8 Confusion matrix of the results obtained from the CNN model.

The rightmost column and the last row indicate the precision and recall

of the CNN model with respect to each class
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Fig. 8), respectively. The expressions of precision, recall,

and accuracy are given as

Percision =
T P

T P + FP
× 100% (10)

Recall =
T P

T P + FN
× 100% (11)

Accuracy =
T P + T N

T P + T N + FP + FN
× 100%. (12)

As shown in Fig. 8, the overall recognition accuracy of

the CNN is 97.78%. The CNN makes a single classification

error by wrongly predicting a sitting activity trial as the

falling activity. The model precision for walking, falling,

picking up an object, and sitting activity is 100%, 93.3%,

100%, and 100%, respectively. The recall of the sitting

activity is 87.5%, whereas the other three activities have a

recall of 100%.

Moreover, Wi-Sense recognizes the activities performed

at greater distances. For instance, three out of the four

activities are performed at a distance of 4 m from the

transmitting and receiving antennas.

It is not possible to directly compare the results of Wi-

Sense with existing works presented in Section 1.1, because

these approaches [7, 21, 44] use different data sets that

contain different activities. Besides, the data sets used in

these approaches are also not publicly available. However,

we can compare the results of Wi-Sense with [25], because

the same data set were used to evaluate the performance of

Wi-Sense and the approach presented in [25]. By comparing

the results of Wi-Sense with the results of [25] as described

in Section 1.1, we can conclude that Wi-Sense performs

better than the approach developed in [25].

6 HAR in the context of health information
systems

In this section, we briefly describe how HAR systems and

eHealth technologies contribute in developing adaptable

and safe environments for elderly and patients to support

them to enjoy independent living in their homes. In Section 6.1,

we first provide a succinct overview of existing HIS stan-

dards that are relevant to HAR and then in the following

Section 6.2, we describe in detail how the proposed Wi-

Sense HAR system can be integrated into the HIS infras-

tructure.

The development of telehealth and telecare technologies

as well as solutions for the monitoring of ageing citizens

and patients at home is one of the most dynamic areas

within the eHealth domain. Telehealth solutions mostly

allow automatic and seamless monitoring of various factors

of the patients’ health condition using wearable sensor

devices attached to the patients’ bodies. In addition, digital

assessment tools and questionnaires are used for interactive

assessment of more subjective healthcare and wellness

symptoms. Community telecare solutions cover social care

support (including emergency alarms), dementia care, and

assisted living by utilizing HAR with different types

of in-house surveillance technologies. One of the main

objectives of in-home monitoring systems is the detection

of critical health conditions. Typical cases are a temporary

unconsciousness due to a general collapse, a stroke, a heart

attack, or a fall (often in conjunction with a shock or serious

injuries). In such situations, it is desirable that the functions

of the HAR module include the following: identification of

abnormalities from normal activities and behaviour, such as

fall events; assessment and analysis of the risk condition,

such as the patient is inactive for a certain amount of time

after the fall event; and triggering a corresponding alarm.

The in-home monitoring system has to initiate a corre-

sponding support request. This can be the automatic initi-

ation of an emergency phone call, the creation of a short

message service, or an instant message to a formal or infor-

mal caretaker. As part of a telecare system, the in-home

monitoring system can forward specific electronic messages

to a dedicated social alarm/emergency service within the

HIS infrastructure, including additional information about

the type of alarm and the person’s condition.

6.1 Interoperability

In-home activity monitors, fall detection, and other personal

eHealth solutions, such as vital-sign monitoring mostly

involve multi-vendor devices. Therefore, such eHealth

solutions mainly face interoperability challenges [28].

According to the Institute of Electrical and Electronics

Engineers (IEEE), interoperability in eHealth solutions is

defined as “the ability of two or more systems or components

to exchange information and use the information that has

been exchanged” [9, 28]. This means the devices and

standards followed to develop eHealth solutions must be

able to interact with each other by using a common language

consisting of the common naming conventions, data types,

data formats, message syntax, data encoding, and data

decoding rules [28]. In addition to interoperability, adhering

to the common language is essential for developing scalable

eHealth solutions [5].

A number of non-profit organizations, such as Integrating

the Healthcare Enterprise (IHE)4 and the Personal Connected

Health Alliance (PCHA)5 work towards the development

of widely accepted standards for eHealth interoperabil-

ity. IHE addresses the interoperability of eHealth systems.

They promote the adoption of the Continua Health Alliance

4https://www.ihe.net/
5https://www.pchalliance.org/about-continua
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Fig. 9 Integration of the Wi-Sense system into the HIS infrastructure

(ISO/IEEE 11073) specifications in the patient care device

(PCD) domain and a Health Level Seven International (HL7)6

standard for the exchange, integration, sharing, and retrieval

of electronic health information that supports clinical prac-

tice, covering in particular clinical systems within the HIS

infrastructure [30].

PCHA regularly publishes the Continua design guide-

lines that define the framework of underlying standards and

criteria to meet interoperability of components for appli-

cations used for monitoring personal health and wellness

[27]. ISO/IEEE 11073:10471 is one of the ISO/IEEE 11073

family of standards that define the common core of commu-

nication functionality for independent living hubs (ILHs).

Within the scope of ISO/IEEE 11073:10471 standard, the

ILH is a device that is responsible for communicating with

binary sensors, normalizing the information obtained from

these sensors, and forwarding this information to one or

multiple managers. In this context, the binary sensors are

also known as situation monitors, such as smoke sensors,

fall sensors, motion sensor, door sensors, enuresis sen-

sors, and chair or bed occupancy sensors. The information

obtained from the situation monitors can be examined when

a person’s activities have deviated significantly from the

normal behavior.

6.2 Integration of Wi-Sense in the health
information system infrastructure

Utilizing the standards noted in the previous subsection, and

considering the telehealth and telecare platform for remote

monitoring as proposed in [20], we propose to integrate the

Wi-Sense HAR system using the TeleCare alarm service

within the HIS infrastructure, as illustrated in Fig. 9. The

key elements in Fig. 9 are point-of-care, HIS infrastruc-

ture, and health and care sources. As shown in Fig. 9,

the ILH and situation monitoring sensors are deployed at

6http://www.hl7.org/

the point-of-care (or user side). The ILH processes and

normalizes the information obtained from sensors and gen-

erate messages/alarm following an alarm communication

management profile [13]. The ILH is connected to the Tele-

Care alarm service in HIS infrastructure using the public

switched telephone network (PSTN). The TeleCare alarm

service forwards the messages to the health and care sources

using a virtual private network.

As described in Section 2, the Wi-Sense HAR system

consists of RF sensing, data processing, and classification

modules. Within the context of this work, the Wi-Sense’s RF

sensing module acts as a motion and fall sensor, following

the Continua/IEEE 11073:10471 specifications. The data

processing and classification modules of the Wi-Sense

process and classify the information obtained from the RF

sensing module to detect accidental falls and other types of

activities. Therefore, the Wi-Sense HAR system is realized

as an ILH, which can be deployed at the point-of-care.

This ILH follows the IHE-PCD-04 Alarm Communication

Management profile. The IHE-PCD-04 profile defines an

HL7 ORU R40 message for communicating alerts that

requires a timely response from the health/emergency

service provider [13]. Therefore, the Wi-Sense HAR

system uses an HL7 ORU R40 message to communicate

fall alarm to the TeleCare alarm service in the HIS

infrastructure, as shown in Fig. 9. The underlying format

of the HL7 ORU R40 message can be found in [13]. The

TeleCare alarm service can be realized as a web application

server that forwards the fall alarm using the HTTP/HTTPS

messages to the dedicated emergency service providers as

well as to the TeleCare support service provider.

7 Conclusion and future work

In this work, we presented the Wi-Sense HAR system,

which combines RF sensing and deep learning techniques

to recognize human activities including falls. In addition,
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we also provided an overview of the existing relevant HIS

standards and explained how the proposed Wi-Sense HAR

system can be realized according to these standards.

The sensing module of Wi-Sense uses two laptops,

where one laptop acts as a transmitter and the other as a

receiver to collect the CSI data. We collected CSI data while

nine participants performed four activities, namely walking,

falling on the mattress, sitting on a chair, and picking up an

object from the floor. A three-step process was used to filter

the collected CSI data. At first, we applied the CSI ratio

method to the collected CSI data to reduce the impact of the

phase offset. In the subsequent step, the PCA was applied

to remove redundant information from the data. In the last

step, a low pass filter was used to reduce the impact of

high-frequency components that were not caused by human

movements. Thereafter, we computed a spectrogram for

each activity trial in the collected data. These spectrogram

images data set was divided into training, validation, and

testing data sets. We used the training and validation data

sets to train a 14-layer CNN and monitor the training

process, respectively. The testing data set was used to

evaluate the performance of the CNN. The results have

shown that our CNN model achieved an overall accuracy

of 97.78%. The Wi-Sense HAR system acts as an ILH

following the Continua/IEEE 11073:10471 specifications.

Upon detecting a fall, ILH generates an HL7 ORU R40

message following the IHE-PCD-04 Alarm Communication

Management profile and sends this message to the TeleCare

alarm service, which forwards this message to the health

service providers.

In the future, we will conduct more experiments to

quantitatively evaluate the performance of our approach in

different environments and develop a prototype of of Wi-

Sense system for real-time HAR and fall detection. Besides,

we will practically demonstrate the integration of Wi-Sense

in the HIS infrastructure. The Wi-Sense HAR system is

limited to recognize activities of a single user. In the future,

we extend Wi-Sense to recognize multi-person activities by

employing multiple input multiple output (MIMO) antenna

configuration.
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