
WIDE - A Distributed Architecture for Workflow Management

Stefan0 Ceri Paul Grefen Gabriel Shchez
Politecnico di Milano University of Twente Sema Group sae

IMY The Netherlands Spain

ceri@elet.polimi. it grefen@cs. utwente. nl gsg@sema. es

Abstract
This paper presents the distributed architecture of the
WIDE workjlow management system. We show how dis-
tribution and scalability are obtained by the use of a
distributed object model, a clientlserver architecture, and
a distributed workjlow server architecture. Specific at-
tention is paid to the extended transaction support and
active rule support subarchitectures.

1. Introduction to WIDE
Workflow management is currently considered a major
application domain for information technology. To pro-
vide reliable data processing in workflow applications,
database systems have become important as the basis for
workflow management systems.

In the WIDE project, extended database technology is
developed to serve as the basis for a commercial next-
generation workflow management system. In WIDE, ex-
tending database technology focuses on extended
transaction management and active rule support. Ex-
tended transaction management provides flexible and
reliable workflow process semantics, active rule support
provides reactive behavior to cope with workflow events.
These advanced features are reflected in a rich workflow
model [CG96] and specification language [CV96]. Design
support is developed in WIDE to enable workflow appli-
cation designers to effectively use these features.

WIDE (Workflow on Intelligent Distributed database
Environment) is an ESPRIT project, the main contractor
and industrial partner of which is Sema Group, a major
European software firm. Politecnico di Milano and Uni-
versity of Twente are the academic partners, ING Bank, a
major Dutch bank, and Hospital General de Manresa, a
mid-sized Spanish hospital, are the end-user partners in
the consortium.

For reasons of brevity, this paper concentrates on data-
base technology aspects of WIDE. The organization of
this short paper is as follows. Section2 presents the

overall WIDE architecture. Section 3 shows how distribu-
tion is handled in this architecture. Sections 4 and5
discuss extended transaction management and active rule
processing in the WIDE architecture. We end the paper
with conclusions and a few words on future work.

2. The WIDE architecture
The WIDE architecture is designed to support next-
generation workflow management functionality in a dis-
tributed environment. The architecture is based on a
commercial database management system as implemen-
tation platform and extends this system with extended
transaction management and active rule support. The de-
sign of the architecture is ruled by three major design
decisions:

the database management functionality should be or-
thogonal to the workflow management functionality,

the transaction support functionality should be or-
thogonal to the rule support functionality,

both extended database functionality and workflow
management functionality should be independent from
the underlying database management system.

The resulting architecture of the WIDE workflow man-
agement system is shown in Figure 1. The lowest layer of
the architecture is formed by the commercial database
management system (DBMS). In the project context,
Oracle has been chosen as database platform. The DBMS
layer is shielded from the upper layers by means of the
basic access layer (BAL). The BAL provides an object-
oriented database access interface to its clients and maps
this to the relational interface of the DBMS to obtain data
persistence. The mapping logic is generated by a transla-
tor that translates object-oriented data specifications into
relational database manipulation operations.

Above the BAL, the server layer is located. In this
layer, the database functionality of the DBMS is extended
by a transaction support module and an active rule sup-

76
0-8186-7849-6/97 $10.00 0 1997 IEEE

I DBMS

Figure 1: Global WIDE architecture

port module. These two modules are fully orthogonal and
are discussed in more detail in Sections 4 and 5. Also
located in the server layer, the workflow engine provides
the ‘heart’ of the workflow management system. It uses
the BAL for database access, the transaction support
module to provide advanced transactional contexts for its
operation, and the active rule support module to handle
reactive workflow behavior.

Finally, in the client layer of the architecture, the
workflow client module provides the interactive interface
to the end-users of the workflow system. It communicates
only with the workflow engine.

3. Distribution in WIDE
A major aspect of the WIDE architecture is distribution.
Distribution is a main issue because of two reasons:
workflow management is a distributed application by na-
ture, and distribution opens the way to scalability of the
architecture. Distribution is obtained in three different
ways: a distributed object model, a client/server database
architecture, and a distributed server architecture.

The distributed object model in WZDE is used to create
workflow server modules and data objects that can trans-
parently be accessed by multiple processes. These
processes may be running on the same machine or on
different machines in a network. The object model used
conforms to the CORBA standard [OM95, Sie961. The
CORBA interface definition language (IDL) is used to
describe the interfaces of the distributed objects. To obtain

the mapping logic of the BAL (as discussed in Section 2),
an IDL-to-SQL translator has been constructed.

The distributed object model allows for flexible cluster-
ing of functionality into processes and flexible allocation
of processes to machines. An example is the management
of case objects, the objects that contain the data of work-
flow cases (work items). These case objects can all be
managed by one process, or they can be distributed among
several processes to distribute the work load. Clearly, the
object model provides a powerful means to achieve scal-
ability in the architecture.

In the WIDE architecture, a client/server interface is
used between the BAL and the DBMS (see Figure 1). This
client/server architecture allows flexible allocation of the
low-level database processes and the client processes that
use these (located in the workflow engine, the transaction
support module, and the active rule support module). In
the configuration with Oracle as database platform, the
Oracle Call Interface (OCI) has been chosen to realize the
interface (see e.g. [Mc96]).

A WIDE workflow management infrastructure can
consist of a hierarchy of workflow engines. In such a hi-
erarchy, each engine is associated with a workflow
domain. The hierarchy of workflow domains can be de-
rived from the organizational structure in which the
workflow is implemented, or from the ‘geographical’
structure of the organization. The decomposition of a
workflow system into a hierarchy of workflow engines
provides a means to obtain scalability of workflow appli-
cations for large organizations.

,

4. Transactions in WIDE
Workflow processes usually can be hierarchically decom-
posed into subprocesses down to the level of individual
tasks. In the higher levels of the process hierarchy, proc-
ess semantics are usually different from those in the lower
levels of the hierarchy. For this reason, we have adopted a
two-layer transaction model in WIDE [GV96]. The upper
layer provides global transactions with ‘loose’ semantics
and is based on concepts from the saga transaction model
[GS87]. The lower layer provides local transactions with
more ‘strict’ transactional semantics and is based on the
nested transaction model (see e.g. [DH91]). The overall
model is constructed such, that the two layers are com-
pletely orthogonal.

Given the orthogonal two-layer model, the extended
transaction support module in the WIDE architecture
consists of two orthogonal submodules supporting global
transactions respectively local transactions (see Figure 2).

Global transaction support is provided by the global
transaction manager (GTM) process. The GTM manipu-
lates global transaction (GT) objects. Both GTM and GT
are CORBA objects, such that they can be accessed trans-

77

Figure 2: Transaction management architecture

parently from other processes. From a functional point of
view, this means that one GTM process can serve multi-
ple workflow engine processes. Global transaction support
is completely independent from the underlying database
platform.

Local transaction support is provided in two layers.
The upper layer consists of the local transaction manager
(LTM), which manipulates local transaction (LT) objects.
The LTM can be seen as a transaction adapter [BP95].
The upper layer is independent from the underlying data-
base management system, as it only assumes support for a
standard 'flat' transaction model and uses logical trans-
action identifiers and operations. The lower layer of local
transaction support consists of the local transaction inter-
face (LTI), which maps logical transaction operations to
physical transaction operations and logical transaction
identifiers to physical transaction channels. With Oracle
as database platform, the Oracle Call Interface (OCI) is
used to realize the LTI-DBMS interface. OCI allows mul-
tiple concurrent transactions from one client using logon
and cursor data areas [Mc96]. As the LTI addresses the
DBMS directly, it can be considered part of the BAL, layer
in the layered architecture shown in Figure 1.

Further details on transaction management in WIDE
can be found in [GV96].

5. Active rules in WIDE
Support of reactive behavior is of great importance in
workflow management applications, e.g. to support ex-
ception handling. A convenient way to model reactive
behavior is the use of active rules, i.e. event-condition-
action (ECA) rules as they can be found in active database
systems [WC96].

In the WIDE conceptual model, we distinguish four
event classes: data events, external events, workflow
events, and time events [CC96]. Data events are modifi-
cations to the workflow data, and can thus be considered

I 1

Figure 3: Rule support architecture

workflow process events. External events are raised by
external applications used in the workflow context.
Workflow events describe the workflow evolution, e.g.,
starts and ends of workflow tasks. Time events are related
to absolute or relative time points in the execution of a
workflow.

A decoupled rule execution model has been chosen in
WIDE that is orthogonal to the transaction model. Detec-
tion of events and execution of rules are performed in a
decoupled fashion, i.e. in the context of different local
transactions provided by the LTI. This allows for flexible
rule handling without too strict execution dependencies,
as required in a workflow context.

A slightly simplified architecture of the active rule
support module is shown in Figure 3. Event detection is
performed by three different modules that record events in
the events database (shown as Events in the figure). Data
events are captured by low-level triggers that are installed
in the database management system (Oracle TS). These
triggers react on modifications to the workflow data rela-
tions and insert events into the events database. External
events are captured by the external event manager. Time
events are captured by the time manager, which is also
used to generate timestamps for extemal and workflow
events. Both external event manager and time manager
insert event records into the events database using the
BAL.

Rule execution is divided into scheduling and interpre-
tation of rules. The scheduler inspects the events database
(using the BAL,) and matches the recorded events to rules.
Selected rules are recorded in a to-execute list. This list is

78

next emptied by invoking, for each rule, the rule inter-
preter. The interpreter is responsible for the evaluation of
the condition of a rule and the execution of its action.

To enable distributed access, some submodules of the
rule support subsystem are realized as CORBA objects.
Further information on the WIDE rule system can be
found in [CC96].

6. Conclusions
In this short paper, we have given an overview of the
WIDE architecture. The aim has been to show how work-
flow management, extended transaction support, and
active rule support have been combined in an orthogonal
fashion that provides ample opportunities for distribution
and scalability.

In the future course of the WIDE project, we will test
the architecture at the end-user sites in the context of in-
surance and health care workflow applications. Also, we
will further elaborate the transaction and rule model to
provide fine-tuned support for diverse application con-
texts.

Acknowledgments
All members of the WIDE project are acknowledged for
their contributions to the architecture described in this
paper.

References
[BP951 R. Barga, C. PU, A Practical and Modular Method to

Implement Extended Transaction Models; Procs. 21 st
Int. Conf. on Very Large Data Bases; Zurich, Switzer-
land, 1995.

[CC961

[CG96]

[CV96]

[DH91]

[GS87]

[GV96]

[Mc96]

[OM951

[Sie96]

[WC96]

F. Casati, S . Ceri, B. Pernici, G. Pozzi; Deriving Ac-
tive Rules for Workflow Enactment; Int. Conf. on
Database and Expert System Applications; Zurich,
Switzerland, 1996.

F. Casati, P. Grefen, B. Pernici, G. Pozzi, G. Shchez;
WIDE: Workflow Model and Architecture; CTIT
Technical Report 96-19; University of Twente, 1996.

D. Chan, J. Vonk, G. Shnchez, P. Grefen, P. Apers; A
Conceptual Workflow Specification Language; CTIT
Technical Report 96-47; Submitted for Publication;
University of Twente, 1996.

U. Dayal, M. Hsu, R. Ladin; A Transactional Model
for Long-Running Activities; Procs. 17th Int. Conf. on
Very Large Databases; Barcelona, Spain, 1991.

H. Garcia-Molina, K. Salem; Sagas; F’rocs. 1987
ACM SIGMOD Int. Conf. on Management of Data;
USA, 1987.

P. Grefen, J. Vonk, E. Boertjes, P. Apers; Two-kyer
Transaction Management for Workflow Management
Applications; In Preparation; University of Twente,
1997.

D. McClanahan; Oracle Developer’s Guide; Osborne
McGraw-Hill; Berkely, USA, 1996.

Object Management Group; The Common Object Re-
quest Broker: Architecture and Specification, Version
2.0; Object Management Group, 1995.

J. Siegel; CORBA Fundamentals and Programming;
Wiley & Sons; New York, USA, 1996.

J. Widom, S . Ceri; Active Database Systems: Triggers
and Rules for Advanced Data Processing; Morgan
Kaufmann; San Mateo, USA, 1996.

79

