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Abstract: We present an approach to build multiwavelength achromatic metasurface that can 

work in off-axis configuration with an ultra-wide applicable incident angle range for visible 

light. The metasurface is constructed by combining multiple metallic nano-groove gratings, 

which support enhanced diffractions for transverse magnetic polarization in an ultrawide 

incident angle range from 10° to 80° due to the excitations of localized gap plasmon modes at 

different resonance wavelengths. To achieve the achromatic diffraction, the ratio between the 

resonance wavelength and the period of each elementary grating is fixed. Incident light at 

those multiple resonance wavelengths can be efficiently diffracted into the same direction 

with near-complete suppression of the specular reflection. Based on the similar approach, we 

also design a wide-angled off-axis achromatic flat lens for focusing light of different 

wavelengths into the same position. Our findings provide an alternative simple way to design 

various off-axis achromatic flat optical elements without stringent angle requirement for 

imaging and display applications. 

© 2016 Optical Society of America 

OCIS codes: (160.3918) Metamaterials; (250.5403) Plasmonics; (050.1950) Diffraction gratings; (090.1760) 

Computer holography. 
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1. Introduction 

Optical elements without stringent incident angle requirement are highly desired in practical 

imaging and display systems, such as the full-angle photographing and panoramic viewing 

system. There are several conventional ways for realizing wide-angled achromatic imaging 

systems, such as introduction of achromatic doublet or achromatic triplet, and multiple order 

diffractive lenses [1]. Those methods, however, require cascaded multiple thick components 

and are therefore bulky and cumbersome. 

To overcome the disadvantage of traditional optical elements, much attention has been 

paid to ultra-thin flat structures, known as metasurfaces, which consist of two-dimensional 

(2D) array of subwavelength structures [2–30] and exhibit various functionalities including 

wave deflection [2–8], focusing [9–12, 31], holographic display [13–17], polarization 

multiplexing [18–20], and beam-shaping [21–25]. Recently, the achromatization was also 

demonstrated in flat metasurface structures, such as the suitably designed metasurface 

composed of coupled rectangular dielectric resonators (RDRs) [32, 33], metallic hole and slit 

arrays [34, 35], circuit theory-based metasurfaces [36], and so on, which show great potential 

for high-quality imaging with only a lightweight thin structure. Most of the previous 

approaches to achieve achromatization, if not all, need complex design and are mainly for on-

axis applications that require only a narrow incident angle range [Fig. 1(a)]. Although on-axis 

optical components are widely used in typical optical systems, the off-axis optical 

components with large incident angle are also highly desired in some specific imaging and 

projection systems, such as off-axial Three-mirror Anastigmat, unobstructed spatial observing 

telescope and so on. 

In this paper, we present an alternative facile approach to design multiwavelength 

achromatic metasurfaces that work for off-axis configuration with an ultrawide incident angle 

range [Fig. 1(b)]. The metasurface is a combination of multiple sets of metallic nano-groove 

gratings, each of which has a unique period and groove height to work for a particular 

wavelength [Fig. 1(c)]. It has been shown previously that the wide nano-groove metasurface 

can deflect light with very high diffraction efficiency and near-completely suppress the 

unwanted specular reflection in a broadband, wide-angle range [24]. Although the previous 

proposed metasurface works for broadband, the chromatic behavior still exists due to the 

dispersion phenomenon of the grating. In order to design achromatic metasurface with wide-

angle performance, here, we choose multiple narrow nano-groove gratings with fixed ratio 

between resonance wavelength and grating period as elementary gratings, and then combine 

them to achieve achromatic diffraction and focusing. Each narrow groove grating has 

enhanced diffraction efficiency in a narrow band due to excitation of localized plasmon mode 

in the grooves. As the localized plasmon mode is independent of incident angle of the 

illuminating light, the enhanced diffraction efficiency exists for a very wide angular range. 

Besides the nano-groove structure, the concept developed here can be extend to other 

localized resonator arrays such as localized dielectric resonators, graphene ribbons and so on. 

Note that, the localized resonances are also recently used to wide-angled color display devices 

[37, 38]. The narrow band of each elementary grating also decrease the crosstalk between 

grooves of different depths when multiple gratings are combined. It is demonstrated that, the 

combined nano-groove metasurface can diffract the incident light to the same direction for 

different wavelengths, even if the incident angle is varied in an ultrawide range. By 

modulating the elementary grating with a quadratic phase profile, we also obtain a wide-

angled achromatic focusing metasurface, which can focus the incident light of different 

wavelengths into the same position. 
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Fig. 1. (a, b) Schematic of the (a) on-axis narrow-angled and (b) off-axis wide-angled 

achromatic deflection by a metasurface (orange). (c) Schematic of formation of the ultrawide-

angled achromatic metasurface by combining multiple metallic nano-groove gratings with 

different periods (p0, p1, and p2) and groove heights (h0, h1, and h2). The elementary gratings 

support the near-total diffraction in the −1st order at different wavelengths (λ0, λ1, and λ2) due 

to the excitation of the localized gap plasmon mode in the nano-grooves with different heights 

(h0, h1, and h2). 

2. Results and Discussion 

2.1. The diffraction properties of the single groove grating 

For a metallic nano-groove grating, the relation between the reflection angle of the −1st 

diffraction order θr and incident angle θ0 is determined by, 

 0sin sin / ,r pθ θ λ= −  (1) 

where, λ and p are the wavelength of incident light and period of the grating, respectively. 

From Eq. (1) we see that, the reflection angle is dependent on the wavelength of light, which 

is the well-known chromatic dispersion existing in a common grating. If λ/p is fixed, 

however, the reflection angle will be fixed for a given incident angle θ0. Therefore, in order to 

obtain the same diffraction angle for multiple wavelengths (λ0, λ1, and λ2), one can choose 

multiple gratings (g0, g1, and g2) with fixed wavelength/period ratio (λ0/p0 = λ1/p1 = λ2/p2). To 

ensure the enhanced diffraction in the −1st order, the groove heights (h0, h1, and h2) of the 

multiple gratings should be suitably chosen so that the lights with wavelengths λ0, λ1, and λ2 

just excite the corresponding cavity modes in the nano-grooves, respectively. The cavity 

mode in the metallic groove originates from the Fabry-Perot resonance of the fundamental 

waveguide mode in a truncated metal-insulator-metal (MIM) structure. In visible frequency 

range, the fundamental waveguide mode in MIM can be seen as the gap plasmon mode whose 

field is localized in the gap and metallic surface area, especially when the gap width is very 

narrow (<200nm). By combining those elementary gratings together, we could hence expect 

to obtain an achromatic metasurface as schematically illustrated in Fig. 1(c). 

                                                                                                   Vol. 24, No. 20 | 3 Oct 2016 | OPTICS EXPRESS 23121 



 

Fig. 2. (a) The −1st diffraction efficiency (shown by color bar) of an elementary grating for 

varying groove height h and incident wavelength λ, when a TM polarized plane wave incidents 

the structure with angle 45°. The ratio of wavelength and period of the grating is fixed as λ/p = 

1.1. (b) The −1st (solid), 0th (dashed) diffraction efficiencies (R-1, R0) and the absorption A 

(dot-dashed) for three elementary gratings (g0, g1, and g2), whose geometry parameters are 

indicated by blue circle, green square, and red triangle, respectively, in (a). (c) The field 

patterns (|Hz|
2) at the peak position of R-1 of the three elementary gratings. (d-f) The −1st 

diffraction efficiency (shown by color bar) of the three elementary gratings, respectively, as a 

function of incident wavelength and incident angle. 

To determine the groove height of each elementary grating, we calculated the dependence 

of the −1st diffraction efficiency (denoted as R-1) of the grating illuminated by transverse 

magnetic (TM) polarized light at incident angle 45° upon groove height h and incident 

wavelength λ [Fig. 2(a)] by finite element method (FEM), which is implemented by a 

commercial software COMSOL. In the calculation, silver is chosen as the metal material, 

with permittivity obtained by fitting the experimental data [39] to the Drude model, and the 

metallic groove width is fixed as w = 10nm. The ratio between the incident wavelength and 

the grating period, are fixed in the calculations at λ/p = 1.1. Note that, the value of λ/p should 

be chosen in the range 2/3<λ/p<2 so that the localized plasmon mode resonance locates 

within the area bounded by the −2nd, −1st and 1st Rayleigh Anomalies. Actually, the 

applicable angle range is the largest at λ/p = 1 [24]. We choose λ/p = 1.1, which is a little 

larger than 1 because the resonance peak for λ/p = 1.1 not only extends a large applicable 

angle range, but also exhibits the most flat profile. Figure 2(a) shows that the spectral peak 

wavelength of R-1 is linear to the groove height of the grating. When the groove height is 

varied from 10nm to 50nm, the wavelength of peak diffraction efficiency spans the entire 

visible wavelengths ranging from 400nm to 700nm. Hence we can select three sets of gratings 

- g0: p0 = 400nm, h0 = 15nm; g1: p1 = 500, h1 = 29nm; and g2: p2 = 600nm, h2 = 42nm, 

corresponding to wavelengths in the blue (λ = 440nm), green (550nm), and red (660nm) color 

regions as indicated by the blue circle, green square and red triangle, respectively, in Fig. 

2(a). The diffraction efficiencies of the 0th (R0) and −1st (R-1) orders as well as the absorption 

(A) of the three gratings are shown in Fig. 2(b). It is clear that the −1st diffraction efficiencies 

(solid curves) of the three gratings exhibit resonant peaks at 440nm, 550nm and 660nm, 

respectively. In contrast, the unwanted 0th diffraction efficiencies (dashed curves) approach 

zero at the three resonant wavelengths, indicating a nearly complete suppression of the 

specular reflections. The absorption (represented by dot-dashed curves) also exhibits peak 

values at the resonant wavelengths, and the shorter the resonant wavelength, the stronger the 

absorption due to the stronger intrinsic absorption of metal at shorter wavelength. 

Nevertheless, the −1st diffraction efficiencies can still reach high values larger than 0.6. 
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To shed light on the origin of the enhanced diffraction efficiency of the −1st order, we plot 

the field patterns (|Hz|
2) at the R-1 peak wavelengths of the three gratings in Fig. 2(c). The 

fields are mainly localized inside the groove regions of the gratings with a small part 

penetrating into the metal, which are typical field profiles of the localized plasmon modes, 

indicating that the strong diffraction efficiencies of R-1 are indeed caused by the excitations of 

the localized plasmon modes. Because the localized plasmon modes are independent of the 

incident angles of the illuminating light, the enhanced diffraction efficiencies should exist for 

a broad range of incident angles. Figures 2(d)-2(f) plot the R-1 as a function of the incident 

angle θ0 and wavelength λ of the illuminating light for the three gratings, respectively. The 

peak wavelength of R-1 for all the three gratings remains constant for almost all incident 

angles. The peak value is the highest at incident angle of 45°, and it gradually decrease when 

θ0 approaches 0° or 90°. As a whole, the diffraction peak exists for an ultrawide angle range 

of 10° to 80°, which promises the wide-angle performance of the achromatic metasurface. 

2.2. The coupling effect of different nano-grooves in the compound grating 

Before combing the elementary narrow groove gratings into achromatic metasurfaces, let’s 

first study the coupling effect of the grooves with different heights for varying spacings 

between adjacent grooves. Figure 3 shows diffraction efficiencies of the compound grating, of 

which there are three grooves with h1 = 15nm, h2 = 29nm, and h3 = 42nm, respectively, in 

each period. For the compound grating with p = 400nm [Fig. 3(a)], we observe the diffraction 

efficiency variation versus spacing at wavelength of 440nm, which is the resonance 

wavelength of the individual groove with h1 = 15nm. The −1st diffraction efficiency sustains 

high values when spacing is greater than a critical value of about s0 = 7nm, while below this 

critical value, it decreases dramatically. It is because, for large spacing (s>s0), the coupling 

between grooves is very weak, the resonance is still mainly determined by the individual 

groove, as the field is mainly localized in the individual groove [right inset of Fig. 3(a)]; for 

small spacing (s<s0), however, the inter-groove coupling is very strong and the resonance 

wavelength will be influenced by all the grooves [left inset of Fig. 3(a)], as a result, the 

resonance peak of R-1 shifts to longer wavelength [Fig. 4(a)]. For the compound grating with 

p = 500nm at working wavelength λ = 550nm [Fig. 3(b)], the critical spacing is slightly larger 

(s0 = 12nm), the field is mainly localized in the h2 groove [right inset of Fig. 3(b)] when s>s0, 

while it extends to all the three grooves [left inset of Fig. 3(b)] due to strong coupling when 

s<s0. For the compound grating with p = 600nm at working wavelength λ = 660nm, the 

critical spacing is even larger (s0 = 30nm), the field is localized in the h3 groove [right inset of 

Fig. 3(c)] above the critical spacing, while it extends to the h2 and h3 grooves below the 

critical spacing. 
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Fig. 3. The diffraction efficiencies (R-1: solid, R0: dashed) of the compound grating with three 

different nano-grooves in each unit cell with varying spacings between adjacent nano-grooves. 

The grating period and incident wavelength are (a) p = 400nm, λ = 440nm; (b) p = 500nm, λ = 

550nm; (c) p = 600nm, λ = 660nm, respectively. Different incident angles: 33° (red), 45° 

(green), and 60° (blue) are applied in the calculation. The insets show the field patterns (|Hz|
2) 

of the grooves at strong coupling region (left), and weak coupling region (right), respectively. 

From the −1st reflection spectra of the compound gratings in Fig. 4, we can clearly see 

that, when the groove spacing is larger than the critical spacing, the resonance peek stays in 

the same wavelength position, while the peak shift dramatically to longer wavelength as long 

as the spacing is smaller than the critical spacing. And the longer the wavelength, the larger 

the critical spacing, which can be attributed to the positive correlation between the effective 

coupling length and the working wavelength. 
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Fig. 4. The −1st reflection spectra for the compound grating for (a) p = 400nm, (b) p = 500nm, 

and (c) p = 600nm, respectively, with three different nano-grooves (h1 = 15nm, h2 = 29nm, h3 = 

42nm) in each unit cell for different spacings between adjacent nano-grooves. 

2.3 The achromatic diffraction metasurface by combining multiple periodic gratings 

By combining the three sets of the elementary gratings (g0, g1, and g2), we can construct an 

achromatic metasurface as shown by the bottom panel in Fig. 1(c). The resonance 

wavelengths of the three gratings are 440nm, 550nm, and 660nm, which correspond to blue, 

green and red colors, respectively. Figures 5(d)-5(l) show the FEM simulations of the 

combined metasurface illuminated by a Gaussian beam of blue (440nm), green (550nm), and 

red (660nm) color, respectively. When a Gaussian beam illuminates on the metasurface from 

the left side with an incident angle of 45°, the beam is reflected to the left side (negative 

reflection), whereas the specular reflection (to the right side) is completely suppressed. For all 

the three different wavelengths, the directions of the negative reflection remain the same 

[Figs. 5(d)-5(f)]. It is because when a Gaussian Beam with a specific wavelength illuminate 

the metasurface, only the gap plasmon mode in the nano-grooves that resonate at this 

wavelength is excited, whereas other nano-grooves do not respond to this wavelength due to 

large separation of the resonance frequencies and the weak coupling between localized 

resonances of the nano-grooves [see Fig. 2(b) and Fig. 3]. For comparison, we also plot the 

case for an ordinary metallic grating illuminated by the same Gaussian beams as shown in 

Figs. 5(a)-5(c). The diffraction directions are apparently different for different wavelengths, 

which is the well-known chromatic characteristic of a conventional grating. 

 

Fig. 5. The field patterns (|Hz|
2) of (a-c) the common chromatic diffraction grating and (d-l) the 

achromatic diffraction metasurface, respectively. The structure is illuminated by a Gaussian 

beam with (upper row) blue (440nm), (middle row) green (550nm), and (lower row) red 

(660nm) color, respectively. The incident angle is (a-f) 45°, (g-i) 33°, (j-l) 60°, respectively. 

The achromatic diffraction can exist for an ultrawide range of incident angles, as verified 

by the simulation for other incident angles as shown in Figs. 5(g)-5(l). When the Gaussian 

beam illuminates the metasurface at θ0 = 33° [Figs. 5(g)-5(i)], the beam is reflected back 

along its original path, because this particular incident angle satisfies the Littrow mount 

condition. Again, this works for all three wavelengths. The achromatic diffractions of the 
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metasurface also exist for incident angle of 60° for the three wavelengths as shown in Figs. 

5(j)-5(l). Incident beams are routed into the −1st diffraction order with the same diffraction 

angle (13.5°), while the specular reflections are completely suppressed. Therefore, the 

achromatic diffractions are indeed applicable for a wide incident angle range, which is highly 

desired for practical operations. The conversion efficiency of the combined achromatic 

diffraction metasurface is near 0.5 for 440nm and 550nm, while it only reaches about 0.35 for 

660nm [see Table 1]. It can be explained by the fact that, the critical spacing for λ = 660nm 

[Fig. 3(c)] is much larger than that for λ = 440nm and 550nm [Figs. 3(a) and (b)], 

respectively. The combined metasurface may contain some units with small groove spacings 

that are larger than the critical spacing for 440nm and 550nm, but smaller than the critical 

spacing for 660nm, as a result, the total conversion efficiencies at λ = 660nm are significantly 

reduced. 

Table 1. Conversion efficiency of the achromatic diffraction metasurface. 

Angle 

Wavelength 

33° 45° 60° 

440nm 0.531 0.539 0.491 

550nm 0.511 0.536 0.508 

660nm 0.347 0.360 0.359 

2.4 The achromatic focusing metasurface by combining multiple modulated gratings 

The wide-angle achromatic diffraction of the off-axis metasurface can be extended to the 

achromatic shaping of arbitrary wavefront with wide applicable incident angle range. Based 

on the relation between the phase and grating period [24], we can modulate the periods of 

each of the three sets of elementary gratings for achieving a desired phase profile by 

designing the height profile hx,y of the grating with binary hologram techniques [40, 41], 

 ( )( )( )( ), 1 sgn cos 2 / , ,
2

x y

h
h x p x yπ φ= + +  (2) 

where, h is the groove height; p is the central period of the grating, the actual period of 

grating is modulated by ( ),x yφ , which is the phase profile of the desired wavefront. Note 

that, based on just a simple one-dimensional (1D) grating with profile 2πx/p, we can modulate 

an arbitrary wavefront with 2D phase distribution ( ),x yφ . Then we can combine the 

modulated gratings to form an achromatic metasurface for shaping the wavefront for all three 

wavelengths. 

As a simple example, we now demonstrate the wide-angle achromatic 1D lens by the 

above approach. To obtain the focusing in the off-axis direction (−1st diffraction) with angle 

θr, the phase profile in the metasurface plane should be 

 ( ) ( )( )22 2, cos sin sin ,i r r i rx y k f f x f k xφ θ θ θ= + + − −  (3) 

where f is the focus length, ki is the wavevecor of the incident wave, and i = 0, 1, 2 

corresponds to the three different colors. Note that, if the focus length satisfies the limit 

x/f<<1, the phase profile can be simplified as, 

 ( )
22

2
, 1 sin 1 sin ,

22

i

i r i r

k xx x
x y k f k x

f ff
φ θ θ

 
= + + − − = 

 
 (4) 

which is the same as the quadratic phase profile of an on-axis focusing lens. 
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Fig. 6. The field patterns (|Hz|2) of (a-c) the common off-axis lens and (d-l) the achromatic 

focusing metasurface, respectively. The structure is illuminated by a Gaussian beam with 

(upper row) blue (440nm), (middle row) green (550nm), and (lower row) red (660nm) color, 

respectively. The incident angle is (a-f) 45°, (g-i) 33°, (j-l) 60°, respectively. 

Table 2. Conversion efficiency of the achromatic focusing metasurface. 

Angle 

Wavelength 

33° 45° 60° 

440nm 0.477 0.401 0.286 

550nm 0.552 0.489 0.335 

660nm 0.420 0.382 0.260 

Due to the different wavevector for each color, this design leads to a different gradient 

period profile for each of the elementary grating. By carefully combining those three gradient 

gratings in the same way as shown in Fig. 1(c), we can obtain the metasurface as an 

achromatic flat lens for focusing. Figures 6(d)-6(f) show the field patterns (|Hz|
2) when the 

focusing metasurface (f = 20μm) is obliquely (θ0 = 45°) illuminated by a Gaussian beam with 

different wavelengths. It is observed that the reflection waves are primarily redirected into the 

−1st diffraction order, and are focused at approximately the same position for different colors 

as indicated by the dashed line in Figs. 6(d)-6(f) for all the three wavelengths. In comparison, 

Figs. 6(a)-6(c) show the corresponding field patterns for an ordinary off-axis lens constructed 

by a single gradient grating. The incident Gaussian beam can also be focused, but the 

focusing point is obviously different for different wavelengths due to the intrinsic chromatic 

characteristic of the single grating. Therefore, the combined metasurface can indeed work as a 

multiwavelength achromatic flat lens. To demonstrate the wide-angle performance of the 

focusing metasurface, we also simulate the cases for other incident angles of the Gaussian 

beam as shown in Figs. 6(g)-6(l). When the Gaussian beam illuminates the metasurface with 

incident angle 33° [Figs. 6(g)-6(i)], the beam is primarily reflected back along its original 

incident path, and focused in the same point (−10.7um, 16.8um) even if the color of the 

incident light is different. Similarly, when the incident angle is 60° [Fig. 6(j)-6(l)], majority of 

light can also be focused at a same point (−4.4um, 19.0um) for all the three wavelengths. 

From the intensity profile at the focal plane of the focusing metasurface as shown in Fig. 7, 

we can see that, the focusing beam width (1μm) is significantly smaller than incident beam 

width (5μm), and the focusing positions of the three wavelengths with blue, green and red 

colors, respectively, are indeed the same, which further proves the achromatic property of the 

combined metasurface. The peak value and the conversion efficiency [see Table 2] for 660nm 

is smaller than those for the other two short wavelengths, which is also due to the small 

groove spacings of the combined metasurface that is larger than the critical spacing for 

440nm and 550nm, but smaller than that for 660nm [see Fig. 3(a)-3(c)]. 
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Fig. 7. Cross section cuts of |Hz|
2 for wavelength of 440nm (blue), 550nm (green), and 660nm 

(red), respectively, in the focal plane of the off-axis achromatic focusing metasurface with 

different incident angles (a) 33°, (b) 45°, and (c) 60°, respectively. The black curves represent 

the corresponding intensity profile of the incident Gaussian beam. 

3. Summary 

In summary, we introduce a type of off-axis multiwavelengths achromatic metasurfaces with 

wide-angle performance. The metasurface is constructed by integrating multiple metallic 

gratings with different subwavelength grooves in a single surface. The groove height of each 

elementary grating determines the corresponding resonance wavelength for enhanced 

diffraction, and the ratio between the resonance wavelength and grating period is fixed to 

achieve the achromatic operations. Such metasurfaces are utilized to demonstrate achromatic 

diffraction and focusing for visible light. The superior performance of the achromatic 

metasurfaces proposed here may pave the way towards practical applications in imaging and 

display systems. 
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