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Abstract 
Chloroquine (CQ) was and still considered as the most common agent in the 
treatment and prophylaxis of malaria, it also possesses many different phar-
macological and biological activities that make it able to be used as a therapy 
or adjuvant therapy for many types of diseases. CQ exhibits anticancer activ-
ity alone or as adjuvants with other agents against many kinds of tumors. Its 
activities also were approved as an anti-inflammatory agent in rheumatoid 
and other autoimmune diseases like systemic lupus and rheumatic arthritis. 
Its’ important role in the improvement of many metabolic disorders like 
hypertension, hyperglycemia, and lipid profile disturbances was also estab-
lished. CQ can act against different microbial infections such as many types 
of viruses, bacteria and fungus by different mechanisms of action. Further-
more, its dermatological role in the treatment of many skin diseases was 
demonstrated. Recently, CQ showed a very responsive role in curing and 
prevention of the covoid-19 virus. This review summarizes intensively the 
multiple therapeutic applications of CQ and discusses the possible mechan-
isms of action for these applications. 
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1. Introduction 

Chloroquine (CQ) is 4-aminoquinoline that has been used for more than 70 
years as an antimalarial agent. Its development was started from natural product 
as its distance precursor quinine was isolated from crude extract of cinchona 
bark that was been used for reducing fever and malaria for long time [1]. CQ 
had been synthetized since 1934 by German Farbnindustrie Bayer Laboratories 
[Figure 1 and Figure 2] [2]. CQ was considered the drug of choice for malarial 
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infection for several years till its antimalarial role was reduced by emergence of 
CQ resistant strains of malarial parasite [2]. CQ is often used alone or together 
with other compounds to treat many biological disorders other than malaria, 
such as cancer, inflammatory conditions, hypertensive crises in some cases, high 
level of blood sugar, dyslipidemia, and different microbial diseases [3] [4]. For a 
long time it was used in the clinic to treat autoimmune diseases like systemic 
lupus erythematosus (SLE) and rheumatoid arthritis (RA) by inhibition of the 
immune system and by its anti-inflammatory properties [5] [6]. Its potent cyto-
toxic effects against different types of cancer such as colorectal, lung, breast, he-
patocellular and human cervical cancer were observed [7] [8]. The weak basicity 
of CQ molecule with pKas of 8.4 and 10.2 [9] [10] makes it able to accumulate in 
acidic organelles such as lysosomes, endosomes, Golgi apparatus and interfere 
with the activity and hydrolysis of the lysosomal enzymes by increasing the pH 
lumens of these organelles, therefore makes inhibition to the autophagy process 
which is involved in many biological disorders [11]. Short term administration 
of CQ may not induce toxicity but longer exposure has been associated with 
some dangerous side including irreversible retinal toxicity, bone marrow sup-
pression, cardiomyopathy and hypoglycemia [12] [13]. Hydroxychloroquine 
sulfate (HCQ), is a famous derivative of CQ, was first synthesized in 1946 by ad-
dition a (OH) functional group to CQ pharmacophore that make it less toxic by 
(~40%) than original CQ in animals trials (Figure 2) [14]. HCQ is still widely 
available to treat autoimmune diseases, such as rheumatoid arthritis and sys-
temic lupus erythematous. It is important to say that Chloroquine and Hydrox-
ychloroquine share similar mechanisms of acting and chemical structures and 
both of them are weak bases and immune-modulators [15]. Although there are 
many reviews about Chloroquine and its therapeutic effects on different diseases 
and disorders, the majority of them focus on a limited therapeutic strategy with 
its mechanisms of action by which can improve or treat specific disorders such 
as; anticancer or antimicrobial etc. This study was conducted to cover in more 
details as possible as diseases and disorders that CQ and HCQ could be used to 
treat them as well as the mechanisms by which they can manage them. It also 
extended to show the most observed side effects of CQ.  

2. Therapeutic Indications of CQ and HCQ 
2.1. Anticancer 

Cancer means lose the cellular ability to control and regulate their cycle and gain 
the ability of unlimited cell proliferation, division that finally produce a mass of 
cells called tumor [16]. Cancers have many different mechanisms and molecules 
to enhance their growth and metastasis by enhancing malignant cells to cope 
with the bad micro-environmental conditions like hypoxia and low nutrients 
[17]. 

Anticancer activity of CQ and HCQ was well established and demonstrated 
in-vivo on colon cancer, lung and breast cancer or in-vitro on cancer cell lines.  
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Figure 1. Quinine structure (2). 

 

 

Figure 2. Synthetic pathways of CQ and HCQ (2). 
 
Also, they have excellent potential as cancer-specific chemosensitizer for com-
bination therapy as an adjuvant with other anticancer agents [18]. 

2.1.1. Mechanism of Anticancer Effect of CQ, HCQ 
There are multiple hypotheses proposed on how CQ, HCQ exert their anticancer 
activity when given as mono or adjuvant therapy. For their anticancer activity, 
CQ and HCQ have multiple mechanisms of action that might complement each. 

1) Inhibition of Autophagy  
The main mechanism to which, the anticancer effect of CQ was attributed is 

inhibition of autophagy (self-eating) [19]. Autophagy is a biological process by 
which cytoplasmic organelles are eliminated by lysosomes that contain lysosom-
al degradation enzymes. Up to date, there are three types of autophagy are 
known micro-autophagy, macro-autophagy, and chaperone-mediated autopha-
gy. They are different by their initiation, mechanisms involved in, and destruc-
tive mode during delivery to the lysosome [17] [18]. Autophagy mostly referred 
to macro-autophagy, is survival mechanisms when cells undergo stress and un-
suitable conditions like increasing temperature, low nutrients level, or dimi-
nishing amount of oxygen needed. That means autophagy plays important role 
in biological processes by keeping the hemostasis of the cells [19] [20]. In anoth-
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er side autophagy also having a harmful role that it may contribute to several 
human disorders like cancer, neurodegenerative diseases like Alzheimer and 
Parkinson [21]. Autophagy may be implicated in both innate and adaptive im-
mune system defense. It also presents during the total different inflammatory 
steps and it has been eliminated many cellular invaders like viruses, bacteria, and 
parasites. 

There are two opposite hypotheses on the role of autophagy in cancer. The 
first suggests that autophagy may promote cancer cell survival [22] [23] [24], but 
the other suggests the opposite that it may participate in the inhibition of ma-
lignancy and limit cancer cells ability to accumulate genotoxic reactive oxygen 
species [25]. The last one explains the main mechanism of the anticancer effect 
of CQ and HCQ. 

First hypothesis, indicates that the suppression of autophagy can enhance on-
cogenesis through alteration of the metabolic pathways and produce oxidative 
stress, that totally lead to helpless mitochondrial turnover [26] [27], inducing 
genetic instability (which is a consequence of oxidative stress) [28] [29] [30], 
enhancing Oncogenes impairment to induce senescence, (a process that blocks 
the malignant cells proliferation permanently while allows their turnover by 
immune cells) [31] [32] [33]. For this hypothesis, the treatment approach that 
able to enhance the autophagy process, will be a promising strategy for cancer 
progression inhibition. 

On other hand, the second hypothesis states that autophagy able to facilitate 
tumor progression and neoplasm establishment [34] by enhancing their coping 
with the micro-environment hard conditions through providing a source of 
energy and nutrients to abnormal cell [35] preserving both functions of mito-
chondria which are controlling the quality of its network and providing meta-
bolic substrate from mitochondria metabolism [36] and finally decreasing the 
accumulation of potentially cytotoxic entities like reactive oxygen species [37] 
[38] [39] [40]. According to this hypothesis; the treatment strategy that works to 
make suppression to autophagy is effective as anticancer therapy or adjuvant 
therapy [41] [42]. 

To set in between some types of cancer may be enhanced with autophagy and 
other could be inhibited with it [43]. 

CQ, HCQ as weak bases having good safety profile [43], and become proto-
nated in acidic compartments like lysosome and late endosome. It can fuse with 
these acidic compartments resulting in blocking the flux of stimulating auto-
phagy [44] that will lead to inhibition of lysosomal activity of the autolysosome, 
hence stopping the degradation. Therefore there is no energy supplying through 
autophagy pathway because autophagy can promote cancer according to 2nd hy-
pothesis, cancer progression can be stopped by stopping it.  

2) Other mechanisms: 
Chloroquine showed additional mechanisms for cancer treatment other than 

autophagy inhibition.  
CQ may also enhance the blood vessels normalization which results to reduce 
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the tumor hypoxia through improving the functional and structural features of 
tumor blood vessels [45] [46] since the appearance of disorganized and dysfunc-
tional blood vessels is the most important feature of many cancers, since they 
become permeable and enhance the facilities of tumor invasion and progression. 
In addition CQ can improve these vessels by decreasing the density and tortuos-
ity of tumor vessels that result in improvements in endothelial cell arrangement 
and formation of tight junction, it also contributes to reducing the leakiness of 
tumor vessels and elevates their perfusion. It is important to say that the norma-
lization of tumor vessels also enhance the efficacy and delivery of other chemo-
therapeutic agents [47]. Therefore this action reduces the survival capacity of 
cancer cells in the blood stream and becomes unable to be metastasized. Because 
of conformational changes that the autophagy provides blockage of cancer cells 
will reduce the metastatic propagation rather than prevention.  

CQ was shown to suppress pancreatic ductal adenocarcinoma (PADC) and 
cancer stem cells (CSCs) which are known to be resistant to many medicines and 
promote tumor progression and metastasis [48]. In animal of PADC, Chloro-
quine showed its ability to target CSCs by inhibition of signaling pathways that 
driven by chemokine, leading to suppression of signal transducer and activator 
of transcription 3 (STAT3) and extracellular signal kinase (ERK), that have a 
very critical role in metastatic spread [49]. It is able to block epithelial mesen-
chymal transition in CSCs. Moreover, it can target CSCs in triple-negative breast 
cancer via down-regulation of multiple signaling pathways like STAT3 that 
produce decreasing in CSCs [50].  

a) Interference with the p53 pathway 
The tumor suppressor protein p53 plays an essential role in maintaining an 

error-free genome and inducing cell death in case the damage is irretrievable. 
Therefore, it is a key protein in the prevention of tumor development [51] [52]. 
Both in vitro and in vivo research has indicated that CQ can stabilize the p53 
protein and activate the p53-dependent transcription of pro-apoptotic genes. So 
CQ intercalates in DNA, which leads to structural changes and thus induction of 
p53 [53] [54] [55] [56] [57]. 

2.1.2. CQ as Adjuvant  
Adjuvant CQ is a promising candidate for combination with a variety of cyto-
toxic agents for the prevention of CSCs driven tumor progression [58]. CQ as 
adjuvant uses is also due to its ability to sensitize cancer cells to other therapeu-
tic agents by alteration of non-CSC-specific signaling pathways. Treatment with 
CQ has been shown to improve Cisplatin therapeutic efficacy to DNA damaging 
and mammalian target rapamycin (mTOR) inhibitor in breast cancer cells [59]. 
This chemo-sensitization being independent of autophagy inhibition mechan-
ism, as exposure to the autophagy inhibitor Bafilmycin failed to decrease cell 
viability. In addition, blocking of genes that enhance autophagy like autophagy 
related protein 12 (Atg 12) and Beclin-1, cannot resemble CQ effects [60]. The 
most effective mechanism by which CQ can induce drug sensitization include 

https://doi.org/10.4236/pp.2020.1110022


B. G. Alani et al. 
 

 

DOI: 10.4236/pp.2020.1110022 256 Pharmacology & Pharmacy 
 

DNA intercalation and promote the activation of ataxia telangiectasia mutated 
(ATM) and P53 [61].  

CQ can also penetrate the malignant cells and enhance the radiation response 
of tumor cells culture. It was also found that CQ can effectively sensitize mul-
ti-drug resistance tumor cells to certain anticancer agent [62].  

Finally, CQ as a drug act by anti-autophagy pathway or other mechanisms it 
becomes a very useful therapy to treat many types of cancer like pancreatic ade-
nocarcinoma, prostate cancer, breast cancer, ovarian cancer and renal cell car-
cinoma [63].  

2.2. Anti-Inflammatory 

CQ has been used as an anti-inflammatory drug for systemic lupus erythemat-
ous (SLE) and rheumatoid arthritis (RA) by modulating the immune system [64] 
[65]. SLE is an autoimmune disorder that may affect a number of organs and 
tissues of the body associated with skin lesions [66].  

Many studies demonstrated that the administration of CQ can inhibit angi-
ogenesis and a significant decrease of dermal blood vessels [67]. Under in vitro 
conditions, it can induce apoptosis of human endothelial cells and decrease cells 
proliferation and reducing the levels of angiogenesis [68]. It is able to improve 
and decrease the sign and symptoms of SEL in joints and epidermal lesions [69]. 
CQ seems to be an anti-angiogenic agent by decreased expression of VEGF and 
CD34+ blood vessel number [67]. RA is a chronically progression systemic au-
toimmune disease associated with extra-articular manifestations like malaise and 
fatigue [70]. RA had been reported to affect near to 1% of adults population of 
affected regions [71] [72]. This disease varies from simple self-limited to sever 
and joint destruction with intense physical disability and multiple morbidities 
[73]. Many immune modulators like pro-inflammatory cytokines play a critical 
role in RA pathophysiology [74]. Native T cells differentiate into Th cells which 
result in potent cytokine IL-17 production that promotes synovitis. B cells are 
also involved in pathogenic process by antigen presentation to self-antibodies 
and cytokine productions [75] [76]. These manifestations of RA are both locally 
and systemically and describe an inflammatory condition [77].  

Mechanism of Anti-Inflammatory Effect 
Different modes of action are explained the anti-inflammatory effects of Chlo-
roquine, mostly are approved by in-vitro studies. The relations between the the-
rapeutic efficacy, mode of actions and safety were observed in-vivo [78]. The 
most essential mode of action of this compound is the ability to interference 
with the autophagy and lysosomal activity by inhibition their function, it can 
make destabilize lysosomal membrane and stimulate releasing of its enzymes in-
side the cells [79]. This lysosomal activity inhibition might inhibit lymphocytes 
function that results in immunomodulatory and anti-inflammatory effects (ex-
actly anti-rheumatic effects) [80].  

Inhibition signaling pathways are another mode of action of CQ which can 
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produce own anti-inflammatory action. This mechanism is done by the interfe-
rence of this compound with the activity of cyclic guanosine monophosphate 
adenosine monophosphate (cyclic G-AMP) synthase [81], in which when it be-
ing stimulated, it able to enhancing IFN genes pathway which is the major 
source of type I IFN response. IFN-I is the gene that is strongly implicated in 
pathogenesis of many inflammatory and autoimmune disorders like RA [82] 
[83]. So G-AMP inhibitor like Chloroquine is suitable therapy for this inflam-
matory rheumatic pathway [84]. The other anti-rheumatic mode of action of 
Chloroquine is summarized by reducing the inflammatory cytokines by various 
cells type. In in-vitro study; this drug able to inhibit the production of IL-1, IL-6 
and TNF in mononuclear cells [85].  

Also anti-inflammatory effect of CQ may be achieved through inhibition of ara-
chidonate cyclooxygenase and inhibition of PG synthesis. The anti-inflammatory 
effectiveness of CQ could be also partly explained by its PG antagonist activity 
recognized in the mesenteric vascular preparation [86]. CQ suppressed the pro-
duction of PGD2 and PGE2 in a dose-dependent fashion. This suppression was 
due to a cyclooxygenase inhibition, since the formation of the prostaglandins 
from exogenous endo-peroxide PGH2 was unaffected. 

CQ is an inhibitor of the cutaneous cyclooxygenase, and this effect may con-
tribute to its anti-inflammatory action in various dermatological disorders [87]. 

Many researches find that using Chloroquine for RA treatment can reduce the 
infiltration in joints as well as the general pain, and can increase the physical 
function of the patients [88]. 

2.3. Anti-Atrial Fibrillation  

Atrial fibrillation (AF) is the most heart rhythm abnormality, its incidence may 
elevate with age [89] [90]. AF is defined as a supraventricular tachyarrhythmia as 
a result of uncontrolled atrial activation with atrial mechanical function deteri-
oration [91]. The electrocardiographic findings show the alteration of P-waves 
with fibrillatory or oscillatory waves of various amplitudes, sizes and timing. AF 
is responsible for significant mortality and morbidity cases as a result of cardiac 
function impairment and increasing the rate of stroke risk.  

Many studies suggest that blocking the inward rectifiers through a specific 
condition, it become useful antiarrhythmic therapy for atrial and ventricular 
tachy-arrhythmias [92] [93] [94]. Since 1950, Chloroquine was noticed to have a 
potent antiarrhythmic effect against atrial and ventricular tachyarrhythmia [95]. 

Mechanism of Anti-Atrial Fibrillation  
CQ act as antiarrhythmic by mechanism of blocking the heteromers of the 
G-protein-gated inward rectifier potassium channel subunits Kir2.1, Kir3.1 and 
Kir6.2 responsible for the inward-rectifier K+ current (/K1), the acetylcho-
line-sensitive K+ current (/KACh), and the ATP-sensitive K+ current (/KATP) 
respectively. Also, it able depolarizes the RMP and increases automaticity, which 
can be explained by its blocking effects on /K1. The latter may enhance FDs un-
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derlying a triggered activity mechanism [96]. 

2.4. Antihypertensive Effect 

Essential hypertension is a systemic and local vascular inflammation [97]. How-
ever immune system may also participate in hypertension pathogenesis [98]. 
Therefore some hypertension cases are a result from some autoimmune disord-
ers [99]. The loss of immunological tolerance may increase the possibility of 
hypertension [100] [101]. It is important to mention that several autoimmune 
diseases such as rheumatoid arthritis and systemic lupus erythematosus is cha-
racterized by cardiovascular diseases like hypertension and endothelial dysfunc-
tion [102] [103].  

Chloroquine had been used in treatment of many autoimmune disorders 
[104] [105] and currently it is stilled among the first-line therapy for these con-
ditions [106]. Chloroquine may have very promising results in patients with 
hypertension associated with some autoimmune disease [107].  

Mechanism of Antihypertensive Effect 
According to Cameron G. McCarthy et al. (2017), Chloroquine having different 
novel anti-hypertension mechanism in vasculature of spontaneously hyperten-
sive rats, which consist of inhibition of cyclooxygenase-dependent contraction to 
acetylcholine, reduction of vascular and systemic generation of reactive oxygen 
species (ROS), improvement of nitric oxide bioavailability, and decreasing the 
matrix metalloproteinase enzyme (MMP2). All of these mechanisms collectively 
could reduce blood pressure and ameliorate the hypertensive vascular dysfunc-
tion [108] [109]. 

2.5. Hypoglycemic Effects 

Diabetes mellitus (DM) defines as a chronic metabolic disease due to defect in 
insulin secretion [110], it characterized by permanent rising of blood sugar. DM 
affects millions of people in the world despite the presence of many anti-diabetic 
agents [111] [112].  

Many studies proved that CQ and HCQ have beneficial antidiabetic effects. 
The anti-diabetic effect of them was firstly diagnosed in 1984 in patients with 
type 2 diabetes mellitus, when it showed a great reduction in the insulin dose 
required [113]. Moreover, a long term treated with CQ was found to be benefi-
cial to reduce glycated hemoglobin (HbA1C) in diabetic patients [114].  

Mechanism of Hypoglycemic Effects 
CQ can inhibit insulin degradation in a way which enhances its own metabolic 
effect and sensitivity [115] [116]. Its main role in metabolism of insulin is 
through augments the connection between insulin and its receptor (tyrosine ki-
nase), the half-life of insulin receptor complex and prologs the activity insulin 
[117] [118]. According to different studies about this subject, it has different ef-
fects on insulin metabolism. Thus in diabetes mellitus1 (DM1) CQ can improve 
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glucose tolerance [119], elevate peripheral glucose disposable and reduce insulin 
metabolic clearance rate [120]. While in the case of diabetes mellitus 2 (DM2), it 
is able to decrease the insulin resistance [121] by inhibiting degradation of the 
latter. The closest explanation to truth for glucose-lowering effect of this agent is 
that CQ can stabilize intracellular lysosome and slow the breakdown of bond 
between insulin and its receptor [122]. CQ is an acid trophic molecule, therefore 
when intracellular lysosomal concentration becomes high with it, then the 
intracellular pH value increased thus will produce inactivation of proteolytic 
enzyme (insulinase) which responsible for both insulin degradation and pro-
ducing recirculation of substantial proportion of insulin in its active form [123] 
[124]. CQ also can improve insulin sensitivity and decrease its resistance 
through indirect effect of reducing inflammation [125]. Moreover, CQ was re-
ported to have good effects in enhancing insulin sensitivity by activation of pro-
tein kinase B resulting in an increase of glucose uptakes and glycogen synthesis 
[126].  

2.6. Anti-Lipidemic Effect 

Dyslipoproteinemia is the major factor in the development of atherosclerotic 
process in SEL. Hyperlipidemia seems to be a common finding since it has been 
detected in many cases of SLE [127] [128]. Nephrotic syndrome and renal failure 
are the secondary cause of lipoprotein abnormalities because they can induce 
disturbances in lipid metabolism pathways. There are many evidences that 
demonstrate the effects of CQ on lipid metabolism [129]. CQ shows an effective 
inhibitory action on cholesterol synthesis [130]. 

Mechanism of Anti-Lipidemic Effect 
There are several mechanisms that CQ can use to produce lipid-modifying ef-
fect. CQ could reduce the LDL (low density lipoprotein) serum level through 
up-regulation of LDL-C receptors that may cause an enhancement to remove 
plasma lipoprotein [131] [132] [133]. Many studies have reported that the fa-
vorable effects of CQ on serum lipid levels manifested by; reducing LDL-C, total 
cholesterol (TC), increasing in high-density lipoprotein (HDL-C), and decreas-
ing in triglyceride level (TGs) [134] [135] [136] [137].  

Reduction of Apolipoprotein b lipoprotein is investigated through using this 
agent as a treatment with RA and SEL treated patients [138]. One of them indi-
cates that because it is a weak base compound, that makes it able to accumulate 
in high amount inside the acid intracellular organelles such as lysosomes [139] 
and cause a reduction in secretion of VLDL which is one of a lysosomal func-
tion. In addition, this agent inhibits the enzyme involved in cholesterol biosyn-
thesis pathway (2, 3 oxidosqualene cyclase) [140]. CQ enhances LDL receptors 
activity by inhabitation of lysosomal hydrolysis of cholesterol esters. In animal 
model, there was a suggestion that this medicine may produce antithrombotic 
effects [141].  

The mechanism of action of CQ may be also related to interfering action with 
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lysosomal activity, inhibition of antigen presentation and toll-like receptor sig-
naling [142]. On the basis of these mechanisms of actions of this drug, the expe-
rimental data suggest that it can produce productive effects on cardiovascular 
disease. Indeed, its action on the lysosome able to decrease insulin degradation 
levels [143] and overcome cholesterol synthesis [144]. CQ can also elevate the 
level of LDL receptors in the liver, as a result, increasing the catabolism plasma 
LDL and lowering the plasma cholesterol concentration [145]. 

2.7. Antimicrobial Effects 
2.7.1. Antimalarial Effect 
CQ was registered during the first part of the 20th century as an effective qui-
nine subunit and the drug of choice to treat malarial infection [146]. It was ap-
proved to be the most effective and successful antimalarial agent according to 
worldwide scale because the wide deployment coinciding with the geographical 
distribution of Plasmodium and it has a high efficacy against parasitic infection 
toxicity [147].  

CQ also gained an interest in the field of other infectious diseases [148]. 
In-vitro data suggest the concept by which this agent can produce effects against 
all intracellular organisms, which can multiply and grow inside the acidic envi-
ronment [147]. 

1) Mechanism of antimicrobial effect 
There are multiple mechanisms of action for CQ for different microbial infec-

tions but they are varying according to the pathogens, although they do not have 
been improved for all pathogens, CQ enters cells as a non-protonated form 
where it becomes protonated according to Henderson-Hasselbach law in a re-
verse way to the pH [149]. So CQ becomes concentrated inside acidic organelles 
like Golgi vesicles, endosome, and lysosome [148]. There are two main mechan-
isms of action of CQ as antimicrobial agent, first, is the alkalinisation of acid ve-
sicles inside cells that is infected by intracellular microorganisms like bacteria 
and fungi. Second, is the alteration of post-translation changes of newly synthe-
sized protein in cells that infected by viruses. 

2.7.2. Anti-Intracellular Parasites 
The evidence of using CQ in treating infections other than malaria was de-
scribed the first time in vitro and in vivo with Q fever model caused by Coxiella 
burnetii (C. burenti). Also, CQ is very harmful to different intracellular bacterial 
growths such as T. whipplei and Legionella pneumophila and others [150] [151]. 

There are a wide number of suggestions about the environment of low pH 
within the phagosomal compartments of the cell, which is the most important 
condition for high number of intracellular pathogens to access iron of cell to 
their growth and multiply [152] [153].  

Mechanism of action of CQ in cellular biology, initially by manipulation of 
the pH of acidic vacuoles, in which, these intracellular parasites multiply, 
growths and lives.  
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Other types of bacteria like Legionella pneumophila and Tropheryma whipp-
lei (the microbe of Whipple disease which able to multiply inside phagosomes), 
are inhibited by CQ since an increasing the intravascular pH will reduce the via-
bility of this bacteria [154].  

Francisella tularensis, which is the pathogen responsible for tularemia, it had 
been shown to be dramatically inhibited by CQ in vitro by the effect of this agent 
through mechanism of dose-dependent manner [153].  

Regarding to Mycobacterium species, Chloroquine can inhibit its growth by 
increasing the intracellular alkalinity and decrease the level of iron availability as 
so it does with L. pneumophila [152].  

2.7.3. Extracellular Infections 
In case of Staphylococcus aureus and other some bacterial species, the addition 
of Chloroquine (a lysosomotropic alkalinizing agent) enhance the intracellular 
killing ability of some antibiotics like levofloxacin and moxifloxacin. CQ can 
enhance the bactericidal activity and potency of levofloxacin and moxifloxacin 
when their pH is neutralized from 5 to 7.4. It was reported that the low PH of 
intra-phagolysosomal can affect the ability of these antibiotics to kill intracellu-
lar bacteria, and this also includes other bacteria like Salmonella enterica, Esche-
richia coli, Bacillus anthracis, Brucella abortus, and many others [155] [156]. 

2.7.4. Fungal Infections 
CQ showed effectiveness as antifungal against fungal infection like Histopasma 
capslatum, and Cryptococcus neoformans.  

There are some different mechanisms of action of CQ according to fungus 
type. H. capslatum is survived inside mammalian phagolysosome and main-
tained the phagosomal PH of 6.5 [157] through inhibiting phagolysosomal fu-
sion [158] and buffering the phagosomal PH [159], that would cause a restric-
tion in iron concentration within the phagolysosome [160]. It can kill C. neo-
formans by mechanism independent of iron deprivation [161] [162]. Although, 
C. neoformans can maintain the phagolysosomal PH at 5.1 [163], treatment with 
CQ can cause an increase in the phagolysosomal pH that will cause an inhibition 
to its growth at alkaline PH [162]. CQ has an ability to kill the Aspergillus fumi-
gatus using PH dependent mechanism [163], and inhibit growth of Penicillum 
marneffei [161] (an opportunistic fungus in acquired immune deficiency syn-
drome (AIDS) patient) by elevation the intra-vacuolar pH and making some 
disruptions in metabolic processes [164] [165]. The reduction in intracellular 
iron level results in an impaired function of many cellular enzymes that will lead 
to subsequent deleterious effects on major and essential steps of biological and 
metabolic processes such as DNA cellular replication or gene. 

2.7.5. Antiviral Activities 
Chloroquine also have antiviral activity exerted by increasing pH degree within 
acidic organelles like lysosomes, endosomes, and Golgi vesicles, this action can 
appear by either one form of two mechanism chooses; firstly it might responsible 
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for inhibition the viral important and critical steps, that low pH-dependent re-
quired for viral entry to the host cells. Indeed, there are many viruses that have 
PH-dependent conformational alterations that stimulate fusion, penetration and 
un-coating, and it is crucial for endocytosis because of the acidification that oc-
curs inside endosomal pathway [166]. Thus the antiviral effect done by this me-
chanism is related to types of viruses that use endosomes for cell entry [167]. 
According to [168], Chloroquine, by raising the lysosomal PH above the level 
required can inhibit the un-coating step, which is the most essential step in in-
duction fusion between lysosomal membrane and viral envelop of influenza B 
virus and hepatitis A virus (HAV) [169], because it is a pH-dependent step. Se-
condly, it has an ability to inhibit viral envelops glycoprotein post-translational 
modifications by glycosyl transferases and protease inside endoplasmic vesicle 
and trans-Golgi network [170] [171]. These enzymes are needed low pH values 
for their activation and function, therefore the administration of this medicine 
might lead to reducing viral infectivity by impairing the maturation of viral en-
velop like Flaviviridae viruses [172]. Relative to its effectiveness against HIV-1 
activity, Chloroquine is making an alteration to the glycosylation pattern and to 
the charges of amino acid in several regions of glycoprotein (gp 120) [173] [174]. 
The alteration of immune escaping and broadening of antibody repertoire can 
be provided by reducing the number of potential N-linked glycosylation sites in-
side the V3 region of gp120 [174]. CQ can reduce the infectivity of HIV-1 newly 
produced and the ability of that virus-infected cell to form syncytia which have a 
relation with structural modification in gp120. CQ may be responsible for bio-
synthesis inhibition of sialic acid (component of HIV-1 envelop glycoprotein) by 
inhibition of some specific cellular enzymes that have been involved in the sialic 
acid biosynthesis pathway [175].  

Chloroquine may also have indirect antiviral effects by preventing the spread 
of severe acute respiratory syndrome (SARS) associated coronavirus (CoV) in 
cell culture through interfering with terminal glycosylation of cellular receptor, 
angiogenesis converting enzyme2 (ACE2) [176], and sialic acid (a component of 
SARS-CoV and orthomyxoviruses receptors [177]. Moreover, it has immune-
modulatory effects, where they cause decreasing the production of tumor necro-
sis factor α and interleukin6, which enhance the inflammatory reactions of many 
viral infections [178]. Chloroquine decreased viral infectivity by impaired enve-
lop maturation like Flaviviridae viruses (172]. The anti-HIV-1 activity is through 
alteration of the glycosylation pattern and amino acid charge within several re-
gions of the gp120 viral envelops protein [173] [174]. 

2.7.6. CQ and Covid-19 
Coronaviruses are big enveloped, single-stranded, RNA viruses. Coronaviruses 
belong to Coronaviridae family which is classified into three groups according to 
serologic and genetic relationships [179]. The severe acute respiratory syndrome 
coronavirus (SARS-CoV) belongs to members of group2 [180]. The world is 
currently in the throes of a pandemic of this kind of coronavirus which is com-

https://doi.org/10.4236/pp.2020.1110022


B. G. Alani et al. 
 

 

DOI: 10.4236/pp.2020.1110022 263 Pharmacology & Pharmacy 
 

mon as COVID-19. The ability of Chloroquine to inhibit certain types of Coro-
naviruses has been explored with excellent results [181] [182].  

Several in vitro studies report antiviral activity of Chloroquine and hydrox-
ychloroquine against SARS-CoV-2. In vivo data, although promising, is cur-
rently limited to one study with considerable limitations. CQ and HCQ are in-
corporated in many available protocols guidelines for the treatment of 
COVID-19 [183]. The efficacy of hydroxychloroquine was improved by com-
bining this drug with azithromycin (an antibiotic) with antiviral properties 
against other RNA-viruses such as Zikavirus [184]. Also, CQ and HCQ are listed 
with drugs which may be useful in prophylaxis of COVID-19 [185]  

1) Mechanism of CQ/HCQ in treatment of COVID-19 
Many Postulates describe the potential mechanisms of action of CQ/HCQ 

against SARS-CoV-2. CQ may reduce glycosylation angiotensin-converting en-
zyme 2 (ACE2) by binding to (ACE2) on the cell surface virus to enter the host 
cells [176]. ACE2 expression is also believed to be up regulated by infection with 
SARS-CoV-2 [186]. Other hypothesis postulates that CQ might block the pro-
duction of pro-inflammatory cytokines (such as interleukin-6); thereby blocking 
the pathway that subsequently leads to acute respiratory distress syndrome 
(ARDS) [188]. In addition to the fact that some viruses enter host cells through 
endocytosis using vesicles called endosomes. Virus can replicate through endo-
somes and released when endosome fuses with the acidic intracellular lysosome. 
The release of virus is essential for viral replication when endosomes ruptured 
[187]. The rupture of endosomes is blocked by Chloroquine, which accumulates in 
lysosomes, interfering with this process [188]. It also believed that Chloroquine 
raises the pH level of the endosome, which may interfere with virus entry and/or 
exit from host cells [189]. Future studies may show and clarify the effectiveness 
and precise mechanism of action of CQ/HCQ in the treatment of COVID-19.  

2.8. Systemic and Dermatological Disease  

CQ and HCQ were used to treat a variety of skin conditions, the scientific evi-
dence being insufficient and just limited to some isolated case reports. Its usage 
is recommended in patients with disseminated granuloma annular that does not 
show a good response or only limited response to topical corticosteroids [190]. 
Both CQ and HCQ showed an efficacy for long treatment of photosensitive dis-
orders, like actinic recticuloid and chronic actinic dermatitis [191]. CQ and 
HCQ prevent the progression of graft-versus-shot disease (GVHD) by suppres-
sion of T cells response to foreign antigens and alteration in T cells production 
of pro-inflammatory cytokines, such as IL-1, IL6 and TNF-alpha [192]. 

HCQ is the drug of choice in Patients with localized cutaneous disease who 
fail to respond to sun protection and topical or intralesional corticosteroid ther-
apy or those with alopecia or disseminated skin lesions [193]. It also effective for 
other photosensitivity dermatoses like porphyria cutanea tarda (PCT) [194] po-
lymorphous light eruption [195], dermato-myositis (skin manifestations) [196], 
reticular erythematous mucinosis [197], essner’s lymphocytic infiltrate [198] and 
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solar urticarial [199], especially in the summer months for patients who fail to 
respond to sun protection or “hardening” with light therapy [200]. CQ and HCQ 
are reported to be effective for granulomatous dermatoses, such as sarcoidosis 
(with neurologic involvement) [201] and disseminated granuloma annulare 
[202], and may even be used intralesionally [203]. Patients with lymphocytoma 
cutis, atopic dermatitis, urticarial vasculitis, localized scleroderma, and idi-
opathic panniculitis have also been treated with CQs [204]. 

3. Adverse Effects of Chloroquine (Toxicity) 

Chloroquine when used in standard low doses shows only a few adverse effects, 
especially when used as prophylaxis for malaria or other systemic disorders. 
However, acute toxicity by CQ is most frequently encountered if it is given very 
rapidly by parenteral routes either in therapeutic or overdose. The most com-
mon side effects of CQ are retinopathy, neuromayopathy, myopathy, and car-
diomyopathy [205] [206] [207].  

3.1. Adverse Effects on the Eye 

It includes two common adverse effects which are; retinopathy and keratopathy. 
Both of them are associated with long-term administration of CQs [205] [206]. 

3.2. Adverse Effects on the Ears 

Ears’ adverse reaction of CQs is associated with reversible ototoxicity. Sensori-
neural hearing loss, a sense of imbalance, and tinnitus were reported [208] [209]. 

3.3. Adverse Effects on the Cardiovascular System 

Chloroquine rarely caused cardiovascular side effects, but it may cause severe 
and irreversible disorders like cardiomyopathy and conduction disturbances 
[207] [208] [209] [210]. Hemolysis and blood dyscrasias may be rarely occurred 
[211]. 

3.4. Adverse Effects on the Digestive System 

Gastrointestinal discomfort is the most common side effects of Chloroquine. It 
may be mild to moderate and can be managed by dose reduction. Nausea, vo-
miting, and diarrhea are the other common gastrointestinal event also might be 
happened [212] [213]. 

3.5. Adverse Effects on the Skin 

Dermatological adverse reaction related to Chloroquine is pruritus, which is ap-
peared more common in dark-skin patient received this agent, because it binds 
to melanin in the skin [214]. 

3.6. Adverse Effects on the Musclo-Skeletal System 

Musculo-skeletal system adverse Chloroquine reaction is a myopathy which re-
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sponsible for muscle weakness, decreased or loss of tendons reflexes [215]. 

3.7. Adverse Effects on the Nervous System 

Nervous system Chloroquine’s most common adverse effect is a neuromyopathy 
which is characterized by slowly progressive weakness when it is used for a long 
time especially in the old patients [216]. Metabolic adverse effect is characterized 
by hypoglycemic effect; this may lead to convulsion [217]. 

4. Conclusion 

Chloroquine antimalarial agents saved the lives of many people in the whole 
world. It was firstly used almost a century ago, and it is not only used to treat the 
malarial infection but also it can be used in a variety of autoimmune, inflamma-
tory disorders and microbial infections. In this review, data were collected to 
demonstrate the multiplicity actions displayed by Chloroquine to improve and 
treat different inflammatory diseases, immune system disorders, microbial infec-
tions and several metabolic disturbances. There is also a role in the recovery of 
some skin diseases. Through their mechanism, the CQ can produce its action 
which is demonstrated briefly. Also, toxicity and adverse effects of CQ were 
showed in this review. Low doses of CQ may be accompanied by low side effects. 
The relation and benefits of CQ in the treatment of Covid-19 also still need more 
studies to clarify the mechanism and when it is useful and when it should be ar-
rested. In conclusion, CQ is a drug of wide applications and needs more studies 
to precisely determine the exact mechanisms of action that happen by its effect 
and to develop strategies that will help to be used in the clinic. 
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