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Abstract— The advent of streaming feeds of full-motion video (FMV) 
and wide-area motion imagery (WAMI) have overloaded an image 
analyst’s capacity to detect patterns, movements, and patterns of life.  
To aid in the process of WAMI exploitation, we explore computer 
vision and pattern recognition methods to cue the user to salient 
information.   For enhanced exploitation and analysis, there is a need 
to develop WAMI methods for situation awareness. Computer vision 
algorithms provide cues, contexts, and communication patterns to 
enhance exploitation capabilities. Multi-source data fusion using 
exploitation context from the video needs to be linked to semantically 
extracted elements for situation awareness to aid an operator in 
rapid image understanding. In this paper, we identify: (1) 
opportunities from computer vision techniques to improve WAMI 
target tracking, (2) relate developments of clustering methods for 
activity-based intelligence and stochastic context-free grammars for 
accessing, indexing, and linking relevant information to assist 
processing and exploitation, and (3) address situation awareness 
methods of multi-intelligence collaboration for future automated 
video understanding techniques. Our example uses the open-source 
Columbus Large Image Format (CLIF) WAMI data to demonstrate 
connection of video-based semantic labeling with other information 
fusion enterprise capabilities incorporating text-based semantic 
extraction. 

Keywords: Wide-Area Motion Imagery, Exploitation, Measures of 
Effectiveness, Stochistic Context-Free Grammar, Enterprise Fusion 

I.  INTRODUCTION  
Applied Imagery Pattern Recognition seeks to emulate the 

knowledge and analytical skills of a human towards enhanced 
perception, motion estimation, and natural language 
processing. While the ability to progressively instantiate these 
tasks of a human into machines is emerging through computer 
vision and artificial intelligence; there are still many functions 
that require human input. For example, an analyst looking at 
full-motion video (FMV) or wide-area motion imagery 
(WAMI) can readily see patterns emerging from social, 
cultural, and individual behavioral activities. But it is difficult 
to fully capture, replicate, and automate in software the 
mechanisms underlying perception, video summarization, and 
activity understanding of analysts. While a number competing 
models have been proposed and used, an exclusive winner is 
yet to be established. Thus, we seek methods of enhanced 
exploitation from video to assist and augment human skill in 
rapidly assessing and acquiring situation awareness [1].   

Fig. 1 illustrates the functions of applied imagery pattern 
recognition within an information fusion enterprise [2]. 
Imagery analysis includes more than image exploitation; it 

requires the ability to bring in other sources of sensor, 
intelligence and mission data, the ability to access, store, and 
report imagery and imagery annotated products, as well as 
dynamic collaboration with other users that are processing 
information (e.g., another imagery data set, text extraction). 
The use of imagery is only one aspect of coordination as there 
is a need to: (1) use context to constrain, optimize and 
accelerate image analysis, (2) use of textual and verbal requests 
to coordinate sensor use, and (3) use of other sensor modalities 
to cue sensors. Likewise, the imagery can drive analysis 
through information extraction, establishing semantic content 
in the image, and cueing other sensors or imagery tools to 
exploit the data for further analysis and reporting.  

 
Figure 1  - Information Fusion in the Enterprise. 

In this paper, we will highlight current directions in WAMI 
and FMV that support situational awareness exploitation and 
analysis. Information fusion of imagery intelligence (IMINT) 
with non-IMINT intelligence (e.g., human intelligence - 
HUMINT) requires situation awareness, semantic 
representation and extraction, and soft fusion to reduce 
uncertainty [3]. 

Computer vision has progressed from 2D static image 
interpretation, dynamic scene analysis, and 3D content 
characterization to 4D object dynamic tracking and event 
analysis [4, 5, 6]. Recovery of 3D objects from video requires 
analysis of the sensor motion from dynamic scenes [7, 8, 9], 
analysis of sensors [10], and processing [11] from which to 
establish persistent surveillance [12,13,14,15]. These elements 
of motion processing and the advances in sensor resolution 
have enabled WAMI exploitation [16]. Recently, simulations 
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III. COMPUTER VISION 
Computer vision (CV) supports unmanned aerial vehicles 
(UAVs) and remotely piloted vehicles (RPVs) that utilize 
electro-optical sensors (i.e., visual cameras), operate over 
varying environments, and support user targeting from 
multimedia sources. Most existing books in CV follow one of 
three paradigms: biologically inspired CV algorithms [30], 
signal and image processing [31, 32], and application specific 
algorithms. There is a much larger system-level consideration 
that has gone unaddressed for many years. Cameras and 
modern image manipulation tools have made video a more 
accessible and ubiquitous medium for communication. The 
explosive multimedia growth has closed the gap between 
richness of linguistic communication, once limited to text and 
print, to video. Therein lays the next set of challenges: How 
does culture factor in the way a message is composed in a 
visual form?  Alternatively, given a set of images of forensic 
nature, how much can we infer about the context from what is 
directly seen in the image? CV has a long way to go before 
matching parity with human analysts. CV algorithms need to 
support system-level processing through 3D analysis, feature 
extraction, graphical methods, tracking, semantics, and 
support for user situational awareness, understanding, and 
assessment. Table 1 overviews methods cues, context, and 
communications (3C) for 3C vision. 

A. Cues 
Cues (targets): Image processing for detection, segmentation, 
classification, and identification require extensions to 
semantics and SA, as shown in Fig. 4. The cues from images 
and multimedia content provide a basis for 3D geometry, 
graphical methods of feature processing, and track analysis. 
Current methods that build on fundamental approaches include 
dense data, scene analysis, and semantic content for cause 
determination and decision making. The extraction of cues 
over locations supports contextual analysis. 

B. Conetxt 
Context (environment): Three methods for situational 
awareness contextual processing include: physical (candidate 
generation), photogrammatic (candidate evaluation), and 
computational (consistency determination) from which the 
variable aspects are assessed for enhanced 3C visioning. For 
example, context (Q) is developed from three parameters 
(variables) of the model set (A), the operator set (O), and the 
decision policy (I). Direct, recognition-based, and search 
strategies exist for contextual processing. Instantiating a visual 
search for context includes: a priori probabilities (P), the 
operator set (O), and the evaluation metrics (E) of which Q = 
(A = {p}, O, I = f(E)). Using background models, syntactic 
tracking, content-based image retrieval (CBIR), similarity 
metrics, and moment theory; these concepts support 
anticipatory autonomy over entities in the environment for 
sensor and information management through channel analysis. 

 
Figure 4 – Concepts in 3C Vision. 

C. Channels 
Channels (sensors): In natural and artificial vision, virtual 
representations over multimedia analysis help derive course of 

Table 1: Techniques of 3C Vision 
 Cues Contexts Channels 

Vision Concurrent basic information and 
relative description 

Intended action, a priori knowledge and 
common culture 

Media to convey processed information, 
including the coding scheme 

Analytic 
Strategy 

Capturing current scene 
(geometry and environment) 

Discover relations for scene understanding Decision making and action planning (inter-
human mediation) 

3D Perspective geometry (lighting, 
local contrast, shape, color, 
texture),  occlusion, relative depth 

Image topology (location, 
foreground/background, pattern or color) 

Mapping, and visualization in a web-based 
virtual reality environment 

Features Feature extraction (region, 
motion, depth) and decision 
(computing complexity) 

Feature search among: Appearance of 
scene features, environment 
considerations, and processing. (Ex: 
Content based image retrieval) 

Linguistic content: document images, textual 
paragraphs/sentences, and pictorial 
representations of content 

Graphical 
methods 

Bipartite graph matching over 
feature space 

Hypothesis testing using a pattern tree, 
feature graph, and refinements grammar   

Social, cognitive, and sensor networks for 
information communication extraction and 
delivery 

Tracking Ego-motion, optical flow, 
morphological, and spatial 
tracking 

Temporal or circumstantial instances for 
matching, segmenting, linguistic/syntactic, 
structuring, and behavior analysis 

Information carries (text, sound, images), 
multimedia which requires content structuring 
for dynamic applications 

Semantics Tree-scan grammars Direct (cue, metadata), search, or 
recognition-based retrieval for 
linguistic/syntactic applications 

Icons, metaphors, and annotations extraction 
from web content over images/text 
representative grammars 

Situation Perspective-based analysis for 
assessment 

Knowledge support for awareness based 
on patterns, retrieval requests, and terrain 
content.  

Interaction through augmented reality, pictorial 
indexing, and multimedia content for 
understanding 

User User-directed scene analysis for 
object and semantic decision 
making 

Attention focusing for perception, action, 
and cooperative data analysis over 
locations, activities, and events of interest 

Knowledge transfer, social interaction, usability 
visualizations, annotations to enhance 
aesthetics, usefulness, and interactivity 



action and situational understanding. Methods include (1) use 
of natural language for explanation, comment, question, and 
integration and (2) ambient intelligence over embedded, 
context aware, personalized, adaptive, and anticipatory 
reasoning. Adding a new channel captures attention 
(attentative), supports information understanding (explicative), 
and improves information retention (mnemonic). Use of 
representation grammar for grouping, detailing, sequencing, 
comparing, and directing advance traditional image processing 
methods over social, cognitive, and sensor networks.  For 
grammar, there is a need for semantic exploitation with 
uncertainty analysis. 

IV. SEMANTIC UNCERTAINTY 
Semantic ontologies [33] enable a framework for many 

applications such as information sharing, command and 
control, and emergency response. Information sharing, and the 
inherent policies within an architecture, enable data to be fused 
into actionable knowledge. A key to information fusion is to 
reduce uncertainty that may come from many sources that 
require a unified, common, and standardized semantic lexicons. 
Fig. 1 [34], shows the relations between sensed and reported 
world information from which uncertainty reasoning are 
required for image processing and user interaction, refinement, 
and understanding [35, 36, 37, 38].       

The evaluation of how uncertainty is processed is 
dependent on the system-level metrics such as timeliness, 
accuracy, scope, precision, confidence, throughput, and cost 
[39], which also are information fusion quality of service (QoS) 
metrics [40].  Future large complex information fusion systems 
will require performance evaluation [41] and understanding of 
the connections between various metrics [42] such as 
information quality of text-based analysis. It is a goal to 
formulate, test, and evaluate different methods of a semantic 
uncertainty ontology that is common, universal, and 
standardized to link to computer vision techniques. When 
evaluating both the system’s performance as a whole [43] and 
the specific impact of the uncertainty handling approach, 
differences arise. For example, when evaluating timeliness (or 
any other system-level metrics), one will likely find some 
factors not directly related to the handling of uncertainty itself, 
such as object tracking and identification report updates (i.e., 
Level 1 fusion) [44, 45, 46], situation and threat assessment 
relative to scenario constraints (i.e., Level 2/3 fusion) [47], 
overall system architectures (e.g. centralized, distributed, etc.), 
data management processes and feedback / input control 
processes (i.e., Level 4 fusion considerations) [48], and user-
machine coordination based on operating systems (i.e., Level 5 
fusion), and others.  

Key to the DFIG [49] levels of information fusion is 
evaluation. For example, there have been efforts in 
comprehensive tracking [50, 51], object classification [52], and 
situation awareness evaluation [53] which focus on measures 
of performance (MOPs). Future evaluations will include 
Measures of Effectiveness (MOEs) [54] that include 
uncertainty characterization [55] and linking to semantic 
content. One use case is that of WAMI for developments in 
Level 1 fusion [56, 57, 58]. Other CV working groups [59] are 
exploring semantic technology with datasets that are not 

necessarily focused on uncertainty, but have a rich set of 
ontologies and datasets for collaboration and comparisons.   

As the computer vision community envisions effortless 
interaction between humans and computers, seamless 
interoperability and information exchange among applications, 
and rapid and accurate identification and invocation of 
appropriate services. As work with semantics and services 
grows more ambitious, there is an increasing appreciation of 
the need for principled approaches to representing and 
reasoning under uncertainty. Commonly applied approaches to 
uncertainty reasoning include probability theory [60], expert 
systems [61], fuzzy logic, subjective logic [62, 63], Dempster-
Shafer theory, DSmT [64], and numerous other techniques. 
Issues with image processing include: 

• Automated agents (e.g., to exchange Web information); 
• Uncertainty-laden data. (e.g., terrain information); 
• Non-sensory collected information (e.g., human sources); 
• Dynamic composability (e.g., annotated video); or 
• Information extraction (e.g., indexing from large databases) . 

These problems are all related with information fusion, 
involve both text-based [65] and physics-based [66] data, and 
can be easily extrapolated to represent the more general classes 
of problems found in the sensor, data, and information fusion. 
A recent example of hard-soft fusion uses a controlled natural 
language (CNL) for data-to-decisions [67].  

V. CHALLENGE PROBLEMS FOR LARGE FORMAT IMAGERY 
Video representation and reasoning evaluation framework 

includes both hard sources (e.g. imaging, radar, video, etc.) and 
soft sources (e.g., human reports, software alerts, etc.) which 
require integration for uncertainty MOEs. Computer vision 
needs extend to non-saptial data; however, even the spatial data 
requires new technologies as the size, amount, and speed of the 
data being collected is increasing. One way to address the 
problem is to collect imagery data for challenge problem 
development. The data would enable development of tools 
needed for data formatting and cross cueing as well as data 
analysis through algorithm innovation. A general framework 
for challenge problem testing and evaluation is shown in Fig. 5 
that includes the metrics visualization such as receiver 
operating characteristic curves. 

 
Figure 5 – Evaluation process. 

 
A challenge problem includes: 
– Problem Definition:  The scope and significance 
– Data:  Applicable data for the defined problem 

• Tools for reading and processing data 



• Suggestions on training and test sets 
• Characterization of the data 

– Goals: Research questions and suggested experiments 
– Metrics: Guidance on reporting results 
– Tools: Baseline code & results which show reproducible 

minimum performance standards for the defined problem 

Scenarios provide data and support documentation for real 
world analysis either through analytical, simulated, or 
empirical results. One example of an open-source WAMI 
challenge problem is the Columbus Large Image Format 
(CLIF) collection which includes baseline methods for image 
registration [68]. Fig. 6 shows the image data set from which 
results can be compared for infrared, multimodal source, and  
object tracking and identification [69] over operating 
conditions solutions [70] event detection.  
 

 
 

Figure 6 – WAMI data set [68]. 
 

Effectiveness relates to a system’s capability to produce an 
effect.  Many benefits of fusion include providing locations of 
events, extending coverage, and reducing ambiguity and false 
alarms. The goal is to support users in their tasks whether 
providing refined information, reducing time and workload, or 
determining completeness, accuracy, and quality in task 
completion. Effectiveness includes efficiency: doing things in 
the most economical way (good input to output ratio), efficacy: 
getting things done, (i.e., meeting objectives), and correctness: 
doing "right" things, (i.e., setting right thresholds to achieve an 
overall goal - the effect). MOEs support system-level 
management and design verification, validation, testing, and 
evaluation. The WAMI output step involves the assessment of 
how information is presented to the users and, therefore, how it 
impacts the quality of their decision-making process.  

Key aspects of measuring effectiveness come from quality 
of service (QoS) metrics that can be utilized for hard-soft 
semantic information fusion [71, 72, 73, 74]. Another 
perspective includes quality of information, or rather 
information quality (IQ), metrics to combine different types of 
uncertainty to an established affect. IQ metrics establish user 
semantic content as a schema or ontology [75] of uncertainty 
analysis such as a popular method of probabilistic ontologies 
[76]. Together, these metrics and representations support a 
formal theory of high-level information fusion [1, 77].  

One recent example of algorithm innovation is context-free 
grammar [78] that enables sharing between systems through 
semantic information [79]. To support geospatial information 
systems interoperability, the methods of exploitation must 
switch between pixel-level views (i.e. imagery) versus the 

graph-level analysis (i.e. social networks) which can be linked 
between large graphs and images. The distance-level metrics in 
the graph should quickly be coordinated with the pixel-level 
information to provide linkage metric. 

VI. EXAMPLE – WAMI 
Characterizing the semantics in IF processes is not a new 
research topic. An example is the Semantic Web as part of the 
Web Ontology Language (OWL) (http://www.w3.org/TR/owl-
guide/). OWL operational semantics support message formats 
(e.g. XML schema) and protocol specifications for an 
ontology knowledge representation. With a knowledge 
representation, semantic analysis can be inserted in the 
message format output from CV semantic analysis.  

Semantic analysis is important for activity-based intelligence 
(ABI) which enables analysts to filter data (e.g.,  characterize 
activities), fuse (e.g., locate activities and events), analyze, 
(e..g., identify and locate actors), and report (e.g. identify and 
locate networks of these actors and develop patterns of life). 
Fig. 7 outlines the workflow on an operator doing the OODA 
“orient” or analyzing the video data. We are interested in 
image extraction of content, cues and context through 
ontology text generation. Using the WAMI data, we are 
interested in behavioral analysis [80], activity recognition 
[81], and object motion [82]. 

 
Figure 7 – Analyst Image Processing. 

A. Schemas 
A schema for image processing is shown in Fig. 8 for the 
Cursor on Target (CoT) program [83]. As detailed, the schema 
provides target type and identification (ID) allegiance, time 
stamps, and coordinate. While the schema is simple [84], for 
purposes of information transmission, processing, exploitation, 
and dissemination, future developments could include 
semantic fields. It is important to determine which semantic 
content is most relevant for operational information fusion 
management and systems design. 
  

In order to determine what ontology content can be added to 
such a message passing schema, there are three issues (1) what, 
(2) how much, and (3) which ones. For the case of physics-
based (video) and textual-based reports, we need to determine 
what semantic content could be useful. One simple case is that 
either a human analyst can report a “vehicle” in the uid field, or 
a machine tracker could extract the information from the video 
to update the uid field of “vehicle”. One example of “vehicle” 
could be from extracted text and video exploitation of a red 
vehicle. What is obviously missing from the CoT schema is 



quality metrics (e.g. confidence, timeliness, and position 
accuracy) and semantic content (e.g. vehicles).  

 
 

Figure 8 – Cursor on Target Schema [84] 

B. Wide Area Motion Imagery Tracking 
WAMI has gained in popularity as it affords advanced 
capabilities in persistence, increased track life, and situation 
awareness, but it also poses new challenges such as tracking 
evaluation [85] and low frame updates (timeliness) [86, 87].  
We utilize the results from a WAMI tracker for track location 
accuracy and the pixels on target for classification. For 
example, track multiple targets with an on-road analysis from 
established context, as shown in Fig. 9, from the Columbus 
Large Image Format (CLIF) data set. 

  
 

Figure 9 – WAMI Tracking. 

Leveraging developments from computer vision [88, 89, 90, 
91, 92], the persistence coverage affords such methods as 
multiple objects and group tracking [93, 94, 95], road 
assessment and tracking [96, 97], contextual tracking [98], and 
advances in particle filtering [99]. Because of the numerous 
objects and their dynamic movements, there are opportunities 
for linear road tracking, but also there is a need for nonlinear 
track evaluation [100], such as the randomized unscented 
transform (RUT) filter [101] for accuracy assessment.  

C. Wide Area Motion Imagery Semantic Labeling 
As shown in Fig. 10, we can detect, cluster information, parse 
the semantic outputs, and provide probabilities for likelihood 
analysis based on the assessed semantics.  

 
Figure 10 – Analysis of Semantic Analysis 

Stochastic Context‐free grammar (SCFG) can be expressed as 
G=(V, T, S, P, Pr): 
 

– V is a finite set of non‐terminal variable (symbol) elements; 
– T is a finite set of terminals, disjoint from V, which make up the 

actual content of the sentence; 
– S∈V is the start variable (symbol), used to represent the whole 

sentence; 
– P is a finite set of rewrite rules or productions of the grammar. 

They are in the form of X→ λ, where X∈V and λ∈(V∪T); and 
– Pr is the set of probabilities for every production rules.  

Situation awareness is based on the places, things, and 
events. Activity-Based Intelligence (ABI) enables analysts to 
understand what is happening from multi-INT source 
intelligence. Using SCFG, we develop cognitive semantic 
representations of the WAMI track outputs using SCFG.   
Cognitive semantics is the study of meaning applied to words 
and symbols which can be mapped to image perception. Some 
of the activity attributes determined from an image could be:  

Reference 
– Thing : actors or entities (vehicle) 
– Place : locations (event) 
– Time : reference (day, arrivals) 
 
Correlations (Grammar) 
– Relationship: a sequence of things (type) 
– Path: a sequence of places (waypoints) 
– History: a sequence of time (duration) 
 
Network (Context) 
– Social Network: a relationship of things (group) 
– Terrain Network: a relationship of places (road) 
– Time Network: a relationship of places (order) 
 
Associations (Rules) 
– Action: behavior or process of things 
– Route: behavior or process of places  (Track) 
– Timeline: a behavior or process of stamps 
 
Linking (through Probability analysis) 
– Cause: events that set other things in motion or that constrain motion 

based on past and present (Markov)  
– Coincidence: events that happen together  
– Irrelevant – events that are non-plausible (Non-causal) 
– Causality : the relationship between cause and effect. 
 

Using the SCFG framework, we can extract semantic content 
from the image that can be included in the schema, metadata, 
or reported to an analyst [102]. For example, from Fig. 11, we 
have G = (V, T, S, P, Pr) = (Vehicles, 4, Tracks, Rules, Pr). 
The things are the vehicle (S), activity context is the rules (P), 
causal activity is the probability analysis (Pr), and the 
semantic output (T).  For a four word sentence (T) we have S 
→ N P V P [1.0], N P → Det N [0.7], Det → red [0.4], N → 
car [0.7], V1 → start track [0.2], V2 → end track [0.8]. The 
issue here is to link the semantic output from a track before the 
intersection to after the intersection with the path information. 
Further exploration and analysis will relate to the semantic 
analysis for activity assessment.  

 
Figure 11 – Semantic Extraction of WAMI data. 



VII. CONCLUSIONS 
The paper overviews developments in computer vision for 

enhanced exploitation to include cues, contexts, and 
communication for situation awareness (SAW). Developing the 
operational semantics for WAMI will include issues of 
representation, reasoning, and policy which need to be 
considered for command and control [103]. Operational 
considerations for WAMI require a common understanding that 
is achievable by a formal specification of the semantics 
involved for SAW [104, 105].  We presented techniques of 
image exploitation for linking to semantic content extraction in 
relation to schemas and ontologies to support the development 
for WAMI simultaneous tracking and identification. Future 
work includes group tracking, activity analysis, hard-soft 
fusion, and contextual understanding and display fusion for 
enhanced situation awareness. 

REFERENCES 
[1]  E. P. Blasch, E. Bosse, and D. A. Lambert, High-Level Information 

Fusion Management and Systems Design, Artech House, 2012. 
[2]  E. Blasch, O. Kessler, J. Morrison, J. F. Tangney et al., “Information 

Fusion Management and Enterprise Processing.” IEEE NAECON, 2012.   
[3]  E. Blasch, P. C. G. Costa, K. B. Laskey, H. Ling, and G. Chen, “The 

URREF Ontology for Semantic Wide Area Motion Imagery 
Exploitation,” IEEE NAECON, 2012. 

[4]  T. Y. Young and G. Seetharaman, “A Regional Approach to Tracking 
Three Dimensional Motion in an Image Sequence," in Advances in 
Computer Vision and Image Processing, Vol. 3, (Ed.) Thomas S. Huang, 
Chapter 3, pp. 63-99, JAI Press, Greenwich, CT, 1987. 

[5]  G. Seetharaman and T. Y. Young, “A Region Correspondence Approach 
to the Recovery of 3-Dimensional Motion and Structure in Dynamic 
Scenes," in Image Understanding in an Unstructured Environment, (Ed.) 
Sushing S. Chen, Ch.  3, pp. 75-124, World Scientific Press, NJ, 1988. 

[6]  A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A surveys,” ACM 
Computing Surveys, Vol. 38, 2006. 

[7]  D. Ramanan, D.A. Forsyth, A. Zisserman, “Tracking people by learning 
their appearance,” IEEE Pattern Analysis and Machine Intelligence, 
29(1):65-81, 2007. 

[8]  T. Y. Young, G. Seetharaman and Wei-Zao Zhao, “Analysis and 
Extraction of Three Dimensional Information from An Image Sequence," 
in Advances in Artificial Intelligence Research, Vol. 1, (Ed.) M.B. 
Fishman, Chapter 8, pp. 209-223, JAI Press, Greenwich, CT, 1989. 

[9]  G. Seetharaman, “Image Sequence Analysis: Three Dimensional 
Perception of Dynamic Scenes," in Handbook of Computer Vision and 
Image Processing, Vol. 2, (Ed.) Tzay Y. Young, Chapter 10, pp. 361-403, 
Academic Press, San Diego, 1994. 

[10]  G. Seetharaman and H. Le, “Video Assisted GPS for Visual Terrain 
Navigation using Landmarks," International Journal of Distributed 
Sensor Networks, Vol. 2, No. 2, pp. 103-119, 2006. 

[11]  T. Rovito, S. Suddarth, J. Layne, K. Priddy, and E. Blasch, “Antenna 
Aim-point Integration for Stareing-Mode Surveillance (AIMS),” Proc. 
IEEE Nat. Aerospace Electronics Conf (NAECON), 2008. 

[12]  F. Bunyak, K. Palaniappan, S. K. Nath, G. Seetharaman, “Flux tensor 
constrained geodesic active contours with sensor fusion for persistent 
object tracking,” J .of Multimedia, Vol. 2, No. 4, Aug, 2007, pp. 20-33. 

[13]  E. Blasch, “Emerging Trends in Persistent Surveillance Information 
Fusion,” IEEE Advanced Video and Signal Based Surveillance, 2009. 

[14]  M. H. Kolekar, et al., “Event detection and semantic identification using 
Bayesian belief networks,” IEEE Video-Ori. Object & Ev. Class, 2009. 

[15]  I. Ersoy, K. Palaniappan, G. Seetharaman, “Visual tracking with robust 
target localization,” IEEE Int. Conf. Image Processing, 2012. 

[16]  R. Porter, A. M. Fraser, and D. Hush, “Wide Area Motion Imagery: 
narrowing the semantic gap,” IEEE Signal Processing Magazine, Sept 
2010, pp. 56-65. 

[17]  J. M. Ekholrn, K. C. Walli, and J. D. Hendrix, “Optimizing Computer 
Vision based Scene Reconstruction from Aerial Vehicles” IEEE Applied 
Imagery Pattern Recognition, 2012.  

[18]  E. Blasch, I. Kadar, J. Salerno, M. M. Kokar, S. Das, G. M. Powell, D. 
D. Corkill, and E. H. Ruspini, “Issues and Challenges in Situation 

Assessment (Level 2 Fusion),” J. of Advances in Information Fusion, 
Vol. 1, No. 2, pp. 122 - 139, Dec. 2006. 

[19]  E. Waltz and J. Llinas, Multisensor and Data Fusion. Artech House, 
Norwood, MA, 1990. 

[20]  HQ USAF AFISC/SE Safety Investigation Workbook, AFP-1271-Vol. 3, 
1987 (available at: library.ndmctsgh.edu.tw/milmed/avitation/file-
air/AFP-127-1-Vol-3.pdf) 

[21]  D. S. Fadok, J. Boyd, and J. Warden,  Air Power’s Quest for Strategic 
Paralysis, Maxwell Air Force Base AL: Air Univ. Press, 1995. 

[22]  E. Blasch, “Situation Impact and User Refinement,” Proc. SPIE, Vol. 
5096, 2003. 

[23]  E. Blasch, “Proactive Decision Fusion for Site Security,” Int’l Conf on 
Info. Fusion, 2005. 

[24]  M. Nilsson, Capturing semi-automated decision making: the 
methodology of CASADEMA. PhD. Thesis, Orebro Univ., SWE, 2010.   

[25]  R. Rousseau, and R. Breton, “The M-OODA: A Model Incorporating 
Control Functions And Teamwork In The OODA Loop,” Proc. 
Command and Control Res, & Tech. Symp. 2004. 

[26]  E. Blasch, P. Valin, et al., “Implication of Culture: User Roles in 
Information Fusion for Enhanced Situational Understanding,” Intl. Conf 
on Info. Fusion, 2009. 

[27]  E. Blasch, R. Breton, et al., “User Information Fusion Decision Making 
Analysis with the C-OODA Model,” Int’l Conf. on Info Fusion, 2011. 

[28]  E. Blasch, “Sensor, User, Mission (SUM) Resource Management and 
their interaction with Level 2/3 fusion” Int’l Conf. on Info Fusion, 2006. 

[29]  V. Cantoni, S. Levialdi, B. Zavidovique, 3C Vision; Cues, Contexts and 
comunications, Elsevier, 2011. 

[30]  V. Cantoni, S. Levialdi, and V. Roberto, Artificial Vision: Image 
Description, Recognition and Communication, Academic Press, 1997. 

[31]  R.C. Gonzalez, R.E. Woods, and S. L. Eddins, Digital Image Processing 
(Second Edition), Prentice Hall, Upper Saddle River, NJ, 2009. 

[32]  S. S. Young, R. G. Driggers, and E. L. Jacobs, Signal Processing and 
Performance Analysis for Image Systems, Artech House, 2008. 

[33]  K.B. Laskey, K.J. Laskey, P.C.G. Costa, M. Kokar, T. Martin, and T. 
Lukasiewicz (eds.) “Uncertainty Reasoning for the World Wide Web: 
W3C Incubator Group Report.” World Wide Web Consortium.  
Available at http://www.w3.org/2005/Incubator/urw3/XGR-urw3/. 

[34]  P. C. G. Costa, K. B. Laskey, E. Blasch and A-L. Jousselme, “Towards 
Unbiased Evaluation of Uncertainty Reasoning: The URREF Ontology,” 
Int’l Conf. on Info Fusion, 2012. 

[35]  E. P. Blasch and P. Hanselman, "Information Fusion for Information 
Superiority," IEEE Nat.  Aerospace and Electronics Conference, 2000. 

[36] E. Blasch, “Level 5 (User Refinement) issues supporting Information 
Fusion Management” Int’l Conf. on Info Fusion, 2006. 

[37] E. Blasch, "User refinement in Information Fusion", Chapter 19 in 
Handbook of Multisensor Data Fusion 2nd Ed,  (Eds.) D. Hall, and J. 
Llinas, CRC Press, 2008. 

[38]  D. L. Hall and J. M. Jordan, Human Centered Information Fusion, 
Artech House, 2010. 

[39] E. Blasch, M. Pribilski, B. Roscoe, et. al., “Fusion Metrics for Dynamic 
Situation Analysis,” Proc SPIE, Vol. 5429, Aug 2004. 

[40] E. Blasch, I. Kadar, J. Salerno, M. M. Kokar, S. Das, G. M. Powell, et 
al., “Issues and Challenges in Situation Assessment (Level 2 Fusion),” J. 
of Adv. in Info. Fusion, Vol. 1, No. 2, pp. 122 - 139, Dec. 2006. 

[41] E. Waltz and J. Llinas, “System Modeling and Performance Evaluation,” 
Ch 11 in Multisensor Data Fusion Systems, Artech House 1990. 

[42] J. Llinas, “Assessing the Performance of Multisensor Fusion Processes,” 
Ch 20 in Handbook of Multisensor Data Fusion, (Eds.) D. Hall and J. 
Llinas, CRC Press, 2001. 

[43]  P. Hanselman, C. Lawrence, E. Fortunano, B. Tenney, and E. Blasch, 
“Dynamic Tactical Targeting,” Proc. of SPIE, Vol. 5441, 2004. 

[44]  K. C. Chang and Robert M. Fung, “Target Identification with Bayesian 
Networks in a Multiple Hypothesis Tracking System”, Optical 
Engineering, Vol. 36, No. 3, pp.684-691, March, 1997. 

[45] E. Blasch, Derivation of A Belief Filter for High Range Resolution 
Radar Simultaneous Target Tracking and Identification, Ph.D. 
Dissertation, Wright State University, 1999. 

[46] C. Yang and E. Blasch, “Pose Angular-Aiding for Maneuvering Target 
Tracking,” Int’l Conf. on Info Fusion, July 2005. 

[47] G. Chen, D. Shen, C. Kwan, J. Cruz, M. Kruger, and E. Blasch, “Game 
Theoretic Approach to Threat Prediction and Situation Awareness,” J. of 
Advances in Information Fusion, Vol. 2, No. 1, 1-14, June 2007. 



[48] E. Blasch, I. Kadar, K. Hintz, et al., “Resource Management 
Coordination with Level 2/3 Fusion Issues and Challenges,” IEEE Aero. 
and Elec. Sys. Mag., Vol. 23, No. 3, pp. 32-46, Mar. 2008. 

[49] E. Blasch et al., “DFIG Level 5 (User Refinement) issues supporting 
Situational Assessment Reasoning,” Int. Conf. on Info Fusion, 2005. 

[50] K. C. Chang, Z. Tian, S. Mori, and C-Y. Chong, “MAP Track Fusion 
Performance Evaluation,” Int. Conf. on Information Fusion, 2002.  

[51] E. P. Blasch, O. Straka, J. Duník, and M. Šimandl, “Multitarget 
Performance Analysis Using the Non-Credibility Index in the Nonlinear 
Estimation Framework (NEF) Toolbox,” Proc. IEEE Nat. Aerospace 
Electronics Conf (NAECON), 2010. 

[52] R. Carvalho and KC Chang, “A Performance Evaluation Tool for Multi-
Sensor Classification Systems,” Int’l Conf. on Information Fusion, 2009. 

[53] J. Salerno, E. Blasch, et al., “Evaluating algorithmic techniques in 
supporting situation awareness,” Proc. of SPIE,  Vol. 5813, 2005. 

[54] E. Blasch, P. Valin, E. Bossé, “Measures of Effectiveness for High-
Level Fusion,” Int’l Conference on Information Fusion, 2010. 

[55] P.C.G. Costa, et al., “Evaluating Uncertainty Representation and 
Reasoning in HLF systems,” Int’l Conf. on Information Fusion,  2011. 

[56] H. Ling, et al., “Evaluation of visual tracking in extremely low frame rate 
wide area motion imagery,” Int’l Conf. on Information Fusion, 2011. 

[57] R. Pelapur, S. Candemir, F. Bunyak, M. Poostchi, et. al, “Persistent 
Target Tracking Using Likelihood Fusion in Wide-Area and Full Motion 
Video Sequences,” Int’l Conf. on Info. Fusion, 2012.  

[58] P. Liang, et al., “Multiple Kernel Learning for Vehicle Detection in Wide 
Area Motion Imagery,” Int. Conf. on Info Fusion, 2012. 

[59]  E. Blasch, H. Ling, Y. Wu, et al., “Dismount Tracking and Identification 
from Electro-Optical Imagery,” Proc. SPIE, Vol. 8402, 2012. 

[60] D. Schum, “The Evidencial Foundations of Probabilistic Reasoning,” 
Northwestern University Press, 1994. 

[61] P. Walley, “Measures of Uncertainty In Expert Systems,” Artificial 
Intelligence, 83(1), May 1996, pp. 1-58. 

[62] L. M. Kaplan, S. Chakraborty, and C. Bisdikian, “Subjective Logic with 
Uncertain Partial Observations,” Int. Conf. on Information Fusion, 2012. 

[63] A. J∅sang and R. Hankin, “Interpretation and Fusion of Hyper Opinions 
in Subjective Logic,” Int. Conf. on Information Fusion, 2012. 

[64] J. Dezert, D. Han, Z-g. L, and J-M. Tacnet, “Hierarchical DSmP 
transformation for decision-making under uncertainty,” Int’l Conf. on 
Information Fusion, 2012.  

[65] A. Auger and J. Roy, “Expression of Uncertainty in Linguistic Data,” 
Int. Conference on Information Fusion, 2008. 

[66] H. Ling, L. Bai, E. Blasch, and X. Mei, “Robust infrared vehicle tracking 
across target pose change using L1 regularization,” Int’l Conf. on 
Information Fusion, 2010. 

[67] A. Preece, D. Pizzocaro, D. Braines, D. Mott, G. de Mel, and T. Pham, 
“Integrating hard and soft Information Sources for D2D Using 
Controlled Natural Language,” Int’l Conf. on Information Fusion, 2012. 

[68] O. Mendoza-Schrock, J. A. Patrick, and E. P. Blasch, “Video image 
registration evaluation for a layered sensing environment.” IEEE Nat. 
Aerospace Electronics Conf. (NAECON), 2009. 

[69] E. Blasch and B. Kahler, “Multi-resolution EO/IR Tracking and 
Identification” Int’l Conf. on Info Fusion, 2005. 

[70] B. Kahler and E. Blasch, ”Sensor Management Fusion Using Operating 
Conditions,” Proc. IEEE Nat. Aerospace Electronics Conf, 2008. 

[71] W. Perry, D. Signori, and J. Boon, “Exploring the Information 
Superiority: A Methodology for Measuring the Quality of Information 
and its Impact on Shared Awareness,” RAND Corporation, 2004. 

[72] M. E. Johnson and K. C. Chang, “Quality of Information for Data 
Fusion in Net Centric Publish and Subscribe Architectures,” Int’l Conf. 
on Information Fusion, 2005. 

 [73] M. A. Hossain, P. K. Atrey, and A. El Saddik, “Modeling Quality of 
Information in Multi-Sensor Surveillance Systems,” IEEE Int. Conf. on 
Data Engineering Workshop, 2007.  

[74] C. Bisdikian, L. M. Kaplan, M. B. Srivastava, D. J. Thornley, et al., 
“Building principles for a quality of information specification for sensor 
fusion,” Int’l Conf. on Information Fusion, 2009. 

[75] E. Blasch, “Ontological Issues in Higher Levels of Information Fusion: 
User Refinement of the Fusion Process,” Int. Conf. on Info Fusion, 2003. 

[76] R. Carvalho, et al, “PROGNOS: Predictive Situational Awareness with 
Probabilistic Ontologies,” Int’l  Conf. on Info.  Fusion, 2010. 

[77] A. Stolcke and J. Segal, “Precise N-gram probabilities from stochastic 
context-free grammars,” Proc. Comp. Linguistics, 1994. 

[78] J. Gao E. Blasch, and Q. Chen, “Quantitative culturomics using random 
fractal theory,” IEEE NAECON, 2012. 

[79] G. Levchuk, et al, “Adversarial behavior recognition from layered and 
persistent sensing systems,” Proc. SPIE, Vol. 7347, 2009.  

[80] G. Levchuk, A. Bobick,  and E. Jones, E., “Activity and function 
recognition for moving and static objects in urban environments from 
wide-area persistent surveillance inputs,” Proc. SPIE, Vol. 7704, 2010. 

[81] Y. Yin, H. Man, J. Wang, and G. Yang, “Human Motion Change 
Detection By Hierarchical Gaussian Process Dynamical Model With 
Particle Filter.” IEEE Audio-Vis Sys Surveillance, 2010. 

[82] P.C.G. Costa, KC Chang, et al., “High-Level Fusion: Issues in 
Developing a Formal Theory,” Int’l Conf. on Information Fusion, 2010. 

[83] M J. Kristan, J. T. Hamalainen, D. P. Robbins, and P. J. Newer, , 
“Cursor-on-Target Message Router User’s Guide,” MITRE Product – 
MP090284, 2009. (accessed on line) 

[84] R. A. Shulstad, “Cursor on Target: Inspiring Innovation to 
Revolutionizing Air Force Command and Control,” Air and Space 
Power Journal. Vol. 4, Dec., 2011.  

[85] E. Blasch and P. Valin, “Track Purity and Current Assignment Ratio for 
Target Tracking and Identification Evaluation,” Int’l Conf. on Info 
Fusion, 2011. 

[86] K. Palaniappan, F. Bunyak, P. Kumar, et al., “Efficient feature extraction 
and likelihood fusion for vehicle tracking in low frame rate airborne 
video,” Int’l Conf. on Information Fusion, 2010. 

[87] K. Palaniappan, R. Rao, G. Seetharaman, "Wide-area persistent airborne 
video: Architecture and challenges," Distributed Video Sensor Networks: 
Research Challenges and Future Directions, Springer, Part V, Chapter 
24, pp. 349 – 371, 2011. 

[88] Y. Wu, H. Ling, E. Blasch, G. Chen, and L. Bai, “Visual Tracking based 
on Log-Euclidean Riemannian Sparse Representation,” Int. Symp. on 
Adv. in Visual Computing - Lecture Notes in Computer Science, 2011. 

[89] X. Mei, H. Ling, Y. Wu, E. P. Blasch, and L. Bai, “Minimum Error 
Bounded Efficient L1 Tracker with Occlusion Detection,” IEEE 
Computer Vision and Pattern Recognition, 2011. 

[90] Y. Wu, E. Blasch, G. Chen, L. Bai, and H. Ling, “Multiple Source Data 
Fusion via Sparse Representation for Robust Visual Tracking,” Int. 
Conf. on Info Fusion, 2011. 

[91] Y. Wu, J. Wang, J. Cheng, H. Lu, E. Blasch, L. Bai, and H. Ling, “Real-
Time Probabilistic Covariance Tracking with Efficient Model Update,” 
IEEE Trans. on Image Processing, 21(5):2824-2837, 2012.  

[92] X. Zhang, W. Li, W. Hu, H. Ling, et al., “Block covariance based L1 
tracker with a subtle template dictionary,” Pattern Recognition, 2012.  

[93] E. P. Blasch and T. Connare, “Improving Track maintenance Through 
Group Tracking,” Proc. of the Workshop on Estimation, Tracking, and 
Fusion; A Tribute to Yaakov Bar Shalom, 360 –371, May 2001. 

[94] T. Connare, E. Blasch, et al., “Group IMM tracking utilizing Track and 
Identification Fusion,” Proc.  of the Workshop on Estimation, Tracking, 
and Fusion; A Tribute to Yaakov Bar Shalom, 205 -220, May 2001. 

[95] M. Wieneke and W. Koch, “A PMHT Approach for Extended Objects 
and Object Groups,” IEEE T. Aero. and Elec. Syst., vol. 48, no. 3, 2012.  

[96] C. Yang and E. Blasch, “Fusion of Tracks with Road Constraints,” J. of. 
Advances in Information Fusion, Vol. 3, No. 1, 14-32, June 2008. 

[97] X. Shi, H. Ling, E. Blasch, and W. Hu, “Context-Driven Moving Vehicle 
Detection in Wide Area Motion Imagery,” Int’l Conf on Pattern 
Recognition (ICPR), 2012. 

[98] E. D. Marti, J. Garcia, and J. L Crassidis, “Improving Multiple-Model 
Context-Aided Tracking through an Autocorrelation Approach,” Int’l 
Conf. on Info Fusion, 2012. 

[99] F. Papi. M. Podt, Y. Boers, et al., “Constraints Exploitation for Particle 
Filtering based Target Tracking,” Int’l Conf. on Info Fusion, 2012. 

[100]  Z. Duan, X. Rong Li, et al., “Design and Analysis of Linear Equality 
Constrained Dynamic Systems,” Int’l Conf. on Info. Fusion, 2012. 

[101]  O. Straka, J. Duník, and M. Šimandl,  “Randomized Unscented Kalman 
Filter in Target Tracking,” Int. Conf. on Information Fusion, 2012. 

[102]  Z. Yao, X. Yang, L. Lin, M. W. Lee, et al.., “I2T: Image Parsing to Text 
Description,” Proc.  of IEEE, Vol. 98, no.8, pp 1485-1508,  2010. 

[103]  L. Scholz, D. Lambert, et al., “A Blueprint for Command and Control: 
Automation and Interface,” Int’l Conf. on Info Fusion, 2012. 

[104]  E. Blasch, P. C. G. Costa, K. B. Laskey, D. Stampouli, G. W. Ng, et al., 
“Issues of Uncertainty Analysis in High-Level Information Fusion – 
Fusion2012 Panel Discussion,” Int’l Conf. on Info Fusion, 2012.  

[105]  P. C. G. Costa, et al., “Uncertainty Evaluation: Current Status and 
Major Challenges –Panel Discussion,” Int’l Conf. on Info Fusion, 2012. 


